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118 A. WALD

A. Introduction

By a sequential test of a statistical hypothesis.is meant any statistical test
procedure which gives a specific rule, at any stage of the experiment (at the
n-th trial for each integral value of n), for making one of the following three
decisions: (1) to accept the hypothesis being tested (null hypothesis), (2) to
reject the null hypothesis, (3) to continue the experiment by making an addi-
tional observation. Thus, such a test procedure is carried out sequentially.
On the basis of the first trial, one of the three decisions mentioned above is made.
If the first or the second decision is made, the process is terminated. If the
third decision is made, a second trial is performed. Again on the basis of the
first two trials one of the three decisions is made and if the third decision is
reached a third trial is performed, etc. This process is continued until either
the first or the second decision is made.

An essential feature of the sequential test, as distinguished from the current
test procedure, is that the number of observations required by the sequential
test is not predetermined, but is a random variable due to the fact that at any
stage of the experiment the decision of terminating the process depends on the
results of the observations previously made. The current test procedure may
be considered a limiting case of a sequential test in the following sense: For any
positive integer n less than some fixed positive integer N, the third decision is
always taken at the n-th trial irrespective of the results of these first n trials.
At the N-th trial either the first or the second decision is taken. Which decision
is taken will depend, of course, on the results of the N trials.

In a sequential test, as well as in the current test procedure, we may commit
two kinds of errors. We may reject the null hypothesis when it is true (error
of the first kind), or we may accept the null hypothesis when some alternative
hypothesis is true (error of the second kind). Suppose that we wish to test the
null hypothesis H, against a single alternative hypothesis H;, and that we want
the test procedure to be such that the probability of making an error of the
first kind (rejecting H, when H, is true) does not exceed a preassigned value a,
and the probability of making an error of the second kind (accepting Ho when
H, is true) does not exceed a preassigned value 8. Using the current test pro-
cedure, i.e., a most powerful test for testing H, against H, in the sense of the
Neyman-Pearson theory, the minimum number of observations required by the
test can be determined as follows: For any given number N of observations a
most powerful test is considered for which the probability of an error of the first
kind is equal to @. Let B(IV) denote the probability of an error of the second
kind for this test procedure. Then the minimum number of observations is
equal to the smallest positive integer N for which g(N) < 8.

In this paper a particular test procedure, called the sequential probability
ratio test, is devised and shown to have certain optimum properties (see section
4.7). 'The sequential probability ratio test in general requires an expected num-
ber of observations considerably smaller than the fixed number of observations
needed by the current most powerful test which controls the errors of the first
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and second kinds to exactly the same extent (has the same « and 8) as the se-
quential test. The sequential probability ratio test frequently results in a
saving of about 509, in the number of observations as compared with the cur-
rent most powerful test. Another surprising feature of the sequential prob-
ability ratio test is that the test can be carried out without determining any
probability distributions whatsoever. In the current procedure the test can be
carried out only if the probability distribution of the statistic on which the test
is based is known. This is not necessary in the application of the sequential
probability ratio test, and only simple algebraic operations are needed for carry-
ing it out. Distribution problems arise in connection with the sequential prob-
ability ratio test only if we want to make statements about the probability dis-
tribution of the number of observations required by the test.

This paper consists of two parts. Part I deals with the theory of sequential
tests for testing a simple hypothesis against a single alternative. In Part II a
theory of sequential tests for testing simple or composite hypotheses against
infinite sets of alternatives is outlined. The extension of the probability ratio
test to the case of testing a simple hypothesis against a set of one-sided alterna-
tives is straight forward and does not present any difficulty. Applications to
testing the means of binomial and normal distributions, as well as to testing
double dichotomies are given. The theory of sequential tests of hypotheses
with no restrictions on the possible values of the unknown parameters is, how-
ever, not as simple. There are several unsolved problems in this case and it is
hoped that the general ideas outlined in Part II will stimulate further research.

Sections 5.2, 5.3 and 5.4 in Part II deal with the applications of the sequential
probability ratio test to binomial distributions, double dichotomies and normal
distributions. These sections are nearly self-contained and can be understood
without reading the rest of the paper. Thus, readers who are primarily in-
terested in these special cases of the sequential probability ratio test rather than
in the general theory, may profitably read only the above mentioned sections
For the benefit of readers who lack a sufficient background in the mathematical
theory of statistics the exposition in sections 5.2, 5.3 and 5.4 is kept on a fairly
elementary level.

It should be pointed sut that whenever the number of observations on which
the test is based is for some reason determined in advance, for instance, if certain
data are available from past history and no additional data can be obtained, then
the current most powerful test procedure is preferable. The superiority of the
sequential probability ratio test is due ‘to the fact that it requires a smaller ex-
pected number of observations than the current most powerful test. This
feature of the sequential probability ratio test is, however, of no value if the num-
ber of observations is for some reason determined in advance.

B. Historical Note

To the best of the author’s knowledge the first idea of a sequential test, i.e.,
a test where the number of observations is not predetermined but is. dependent
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on the outcome of the observations, goes back to H. F. Dodge and H. G. Romig
who proposed a double sampling inspection procedure [1]. In this double samp-
ling scheme the decision whether a second sample should be drawn or not de-
pends on the outcome of the observations in the first sample. The reason for
introducing a double sampling method was, of course, the recognition of the fact
that double sampling results in a reduction of the amount of inspection as com-
pared with “single” sampling.

The double sampling method does not fully take advantage of sequential
analysis, since it does not allow for more than two samples. A multiple sampling
scheme for the particular case of testing the mean of a binomial distribution was
proposed and discussed by Walter Bartky [2]. His procedure is closely related
to the test which results from the application of the sequential probability ratio
test to testing the mean of a binomial distribution. Bartky clearly recognized
the fact that multiple sampling results in a considerable reduction of the average
amount of inspection.

The idea of chain experiments discussed briefly by Harold Hotelling [3] is also
somewhat related to our notion of sequential analysis. An interesting example
of such a chain of experiments is the series of sample censuses of area of jute in
Bengal carried out under the direction of P. C. Mahalanobis [6]. The succes-
sive preliminary censuses, steadily increasing in size, were primarily designed to
obtain some information as to the parameters to be estimated so that an efficient
design could be set up for the final sampling of the whole immense jute area in
the province.

In March 1943, the problem of sequential analysis arose in the Statistical
Research Group, Columbia University,' in connection with a specific question
posed by Captain G. L. Schuyler of the Bureau of Ordnance, Navy Department.
It was pointed out by Milton Friedman and W. Allen Wallis that the mere notion
of sequential analysis could slightly improve the efficiency of some current most
powerful tests. This can be seen as follows: Suppose that N is the planned
number of trials and Wy is a most powerful critical region based on N observa-
tions. If it happens that on the basis of the first n trials (n < N) it is already
certain that the completed set of N trials must lead to a rejection of the null
hypothesis, we can terminate the experiment at the n-th trial and thus save some
observations. For instance, if Wy is defined by the inequality «} + . . . + ¥ >,
and if for some n < N we find that 2} 4+ ... 4 22 > ¢, we can terminate the
process at this stage. Realization of this naturally led Friedman and Wallis to
the conjecture that modifications of current tests may exist which take advantage
of sequential procedure and effect substantial improvements. More specifically,
Friedman and Wallis conjectured that a sequential test may exist that controls
the errors of the first and second kinds to exactly the same extent as the current

1 The Statistical Research Group operates under a contract with the Office of Scientific
Research and Development and is directed by the Applied Mathematics Panel of the
National Defense Research Committee.
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most powerful test, and at the same time requires an expected number of observa-
tions substantially smaller than the number of observations required by the
current most powerful test.? )

It was at this stage that the problem was called to the attention of the author
of the present paper. Since infinitely many sequential test procedures exist,
the first and basic problem was, of course, to find the particular sequential test
procedure which is most efficient, i.e., which effects the greatest possible saving
in the expected number of observations as compared with any other (sequential
or non-sequential) test. In April, 1943 the author devised such a test, called
the sequential probability ratio test, which for all practical purposes is most
efficient when used for testing a simple hypothesis H, against a single alterna-
tive H 1.

Because of the substantial savings in the expected number of observations
effected by the sequential probability ratio test, and because of the simplicity
of this test procedure in practical applications, the National Defense Research
Committee considered these developments sufficiently useful for the war effort
to make it desirable to keep the results out of the reach of the enemy, at least for
a certain period of time. The author was, therefore, requested to submit his
findings in a restricted report [7] which was dated September, 1943.° In this
report the sequential probability ratio test is devised and its mathematical theory
is developed. In July 1944 a second report [8] was issued by the Statistical
Research Group which gives an elementary non-mathematical exposition of
the applications of the sequential probability ratio test, together with charts,
tables and computational simplifications to facilitate applications.

Independently of the developments here, G. A. Barnard [9] recognized the
merits of a sequential method of testing, i.e., the possibility of a saving in the
number of observations as compared with the current most powerful test. He
also devised an interesting sequential test for testing double dichotomies, which
differs from the one obtained by applying the sequential probability ratio test.

Some further developments in the theory of the sequential probability ratio
test took place in 1944. Extending the methods used in [7], C. M. Stockman
[10] found the operating characteristic curve of the sequential probability ratio
test applied to a binomial distribution. Independently of Stockman, Milton
Friedman and George W. Brown (independently of each other) obtained the
same result which can be extended to the normal distribution and a few other
specific distributions, but is not applicable to more general distributions. The
general operating characteristic curve for any sequential probability ratio test
was derived by the author [11]. A few months later the author developed a
general theory of cumulative sums [4] which gives not only the operating char-

? Bartky’s multiple sampling scheme [2] for testing the mean of a binomial distribution
provides, of course, an example of such a sequential test (see, for example, the remarks on
p-377in [2]). Bartky’s results were not known to us at that time, since they were published
nearly a year later.

? The material was recently released making the present publication possible.
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acteristic curve for any sequential probability ratio test but also the character-
istic function of the number of observations required by the test.

The theory of the sequential probability ratio test as given in the present
paper differs considerably from the exposition given in [7], since the new de-
velopments in [4] have been taken into account. However, some tables and a
few sections of the original report [7] are included in the present paper without
any substantial changes.

PART 1. SEQUENTIAL TEST OF A SIMPLE HYPOTHESIS AGAINST A
SINGLE ALTERNATIVE

1. The Current Test Procedure

Let X be a random variable. In what follows in this and the subsequent
sections it will be assumed that the random variable X has either a continuous
probability density function or a discrete distribution. Accordingly, by the
probability distribution f(z) of a random variable X we shall mean either the
probability density function of X or the probability that X = z, depending upon
whether X is a continuous or a discrete variable. Let the hypothesis H, to be
tested (null hypothesis) be the statement that the distribution of X is fo(z).
Suppose that H, is to be tested against the single alternative hypothesis H, that
the distribution of X is given by fi(x).

According to the Neyman-Pearson theory of testing hypotheses a most power-
ful critical region Wy for testing H, against H, on the basis of N independent
observations z; , - - - , Ty on X is given by the set of all sample points (2, - - -,
zy) for which the inequality

f 1($1)f 1(1:2) coo f 1(112”)
(1) @) olaw) =

is fulfilled. The quantity & on the right hand side of (1.1) is a constant and is
chosen so that the size of the critical region, i.e., the probability of an error of
the first kind should have the required value a.

For a fixed sample size ¥ the probability 8 of an error of the second kind is a
single valued function of a, say Bx(a), if a most powerful critical region is used.
Thus, if in addition to fixing the value of « it is required that the probability of
an error of the second kind should have a preassigned value 8, or at least it should
not exceed a preassigned value 8, we are no longer free to choose the sample size
N. The minimum number of observations required by the test satisfying these
conditions is equal to the smallest integral value of N for which 8x(a) < 8.

Thus, the current most powerful test procedure for testing Ho against H; can
be briefly stated as follows: We choose as critical region the region defined by
(1.1) where the constant k is determined so that the probability of an error of
the first kind should have a preassigned value a and N is equal to the smallest
integer for which the probability of an error of the second kind does not exceed
a preassigned value 8.
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2. The Sequential Test Procedure: General Definitions

2.1. Notion of a sequential test. In current tests of hypotheses the number of
observations is treated as a constant for any particular problem. In sequential
tests the number of observations is no longer a constant, but a random variable.
In what follows the symbol 7 is used for the number of observations required by
a sequential test and the symbol & is used when the number of observations is
treated as a constant.

Sequential tests can be described as follows: For each positive integer m the
m-dimensional sample space M, is subdivided into three mutually exclusive
parts Ry, R- and R,.. After the first observation z; has been drawn H, is
accepted if x; lies in R , H, is rejected (i.e., H, is accepted) if z; lies in R}, or a
second observation is drawn if z; liesin R, . If the third decision is reached and
a second observation z, drawn, H, is accepted, H, is accepted, or a third observa-
tion is drawn according as the point (x; , z,) lies in Ry, Rz or in Ry . If (x;, x2)
lies in R, , a third observation x; is drawn and one of the three decisions is made
according as (z1, 2, 25) lies in Ry, R} or in R;, etc. This process is stopped
when, and only when, either the first decision or the second decision is reached.
Let n be the number of observations at which the process is terminated. Then
n is a random variable, since the value of n depends on the outcome of the
observations. (It will be seen later that the probability is one that the sequential
process will be terminated at some finite stage.)

We shall denote by E,(n) the expected value of n if H, is true and by Ei(n)
the expected value of n if H, is true. These expected values, of course, depend
on the sequential test used. In order to put this dependence in evidence, we
shall occasionally use the symbols Ey(n | S) and Ei(n | S) to denote the values
Ey(n) and Ey(n), respectively, when the sequential test S is applied.

2.2. Efficiency of a sequential test. As in the current test procedure, errors of
two kinds may be committed in sequential analysis. We may reject Ho, when
it is true (error of the first kind), or we may accept H, when H, is true (error of
the second kind). With any sequential test there will be associated two num-
bers a and 8 between 0 and 1 such that if H, is true the probability is a that we
shall commit an error of the first kind and if H, is true, the probability is 8 that
we shall commit an error of the second kind. We shall say that two sequential
tests S and S’ are of equal strength if the values @ and g associated with S are
equal to the corresponding values o’ and 8’ associated with S’. If @ < o and
B L B,orif a £ o and B < B/, we shall say that S is stronger than S’(S’ is
weaker than S). If a > o’ and B8 < B/, orif @ < &’ and g > G’, we shall say
that the strength of S is not comparable with that of S’.

Restricting ourselves to sequential tests of a given strength, we want to make
the number of observations necessary for reaching a fnal decision as small as
possible. If S and S’ are two sequential tests of equal strength we shall say
that S’ is better than S if either Eo(n | S") < Eo(n|S) and Ei(n|S) < E,
(n]8),or Es(n|8) < Eyn|S8)and Ex(n|S) < Ei(n|S). A sequential test
will be said to be an admissible test if no better test of equal strength exists.
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If a sequential test S satisfies both inequalities E¢(n | S) < Eo(n | 8’) and E,
(n | 8) < Ei(n] S') for any sequential test S’ of strength equal to that of S, then
the test S can be considered to be a best sequential test. That such tests exist,
i.e., that it is possible to minimize Eo(n) and E,(n) simultaneously, is not proved
here; but it is shown later (section 4.7) that for the so called sequential prob-
ability ratio test defined in section 3.1 both E¢(n) and E;(n) are very nearly
minimized." Thus, for all practical purposes the sequential probability ratio
test can be considered best.

Since it is unknown that a sequential test always exists for which both Eo(n)
and E(n) are exactly minimized, we need a substitute definition of an optimum
test. Several substitute definitions are possible. We could, for example, re-
quire that the test be admissible and the maximum of the two values Eo(n) and

Eo(n) + Ei(n)
2

E\(n) be minimized, or that the mean , or some other weighted

average be minimized. All these definitions are equivalent if a sequential test
exists for which both Ey(n) and E,(n) are minimized; but if they cannot be mini-
mized simultaneously the definitions differ. Which of them is chosen is of no
significance for the purpose of this paper, since for the sequential probability
ratio test proposed later both expected values Eo(n) and E,(n) are, if not exactly,
very nearly minimized. If we had a priori knowledge as to how frequently H,
and how frequently H; will be true in the long run, it would be most reasonable
to minimize a weighted average (weighted by the frequencies of H, and H,,
respectively) of Eo(n) and Ei(n). However, when such knowledge is absent,
as is usually the case in practical applications, it is perhaps more reasonable to
minimize the maximum of E,(n) and E;(n) than to minimize some weighted
average of E¢(n) and Ej(n). Hence the following definition is introduced.

A sequential test S is said to be an optimum test if S is admissible and Max
[Eo(n | S), Ex(n} S)] < Max [E¢(n | '), Ei(n | S8')] for all sequential tests S’ of
strength equal to that of S.

By the efficiency of a sequential test S is meant the value of the ratio’

Max [Eo(n | %), Ei(n | $¥)]
Max [Eo(n|S), Ei(n]S8)]

where S* is an optimum sequential test of strength equal to that of S.

2.3. Efficiency of the current procedure, viewed as a particular case of a sequential
test. The current test procedure can be considered as a particular case of a
sequential test. In fact, let N be the size of the sample used in the current pro-
cedure and let TVy be the critical region on which the test is based. Then the

4 The author conjectures that E¢(n) and E,(n) are exactly minimized for the sequential
probability ratio test, but he did not succeed in proving this, except for a special class of
problems (see section 4.7).

5 The existence of an optimum sequential test is not essential for the definition of effi-
ciency, since Max [Eo(n | 8*), E1(n | $*)] could be replaced by the greatest lower bound of
Max [E(on | 8’), Ei(n | S§")] with respect to all sequential tests S’ of strength equal to that
of S.
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current procedure can be considered as a sequential test defined as follows: For
allm < N, the regions Ry, , R, are the empty subsets of the m-dimensional sample
space M. ,and R,, = M,.. Form = N, Ry is equal to Wy, R¥ is equal to the
complement Wy of Wy and Ry is the empty set. Thus, for the current pro-
cedure we have Ey(n) = Ei(n) = N.

It will be seen later that the efficiency of the current test based on the most
powerful critical region is rather low. Frequently it is below . In other words,
an optimum sequential test can attain the same « and 8 as the current most
powerful test on the basis of an expected number of observations much smaller
than the fixed number of observations needed for the current most powerful test.

In the next section we shall propose a simple sequential test procedure, called
the sequential probability ratio test, which for all practical purposes can be con-
sidered an optimum sequential test. It will be seen that these sequential tests
usually lead to average savings of about 509, in the number of trials as compared
with the current most powerful test.

3. Sequential Probability Ratio Test

3.1. Definition of the sequential probability ratio test. We have seen in section
2.1 that the sequential test procedure is defined by subdividing the m-dimensional
sample space M, (m = 1, 2, --- , ad inf.) into three mutually exclusive parts
R., R and R,.. The sequential process is terminated at the smallest value n
of m for which the sample point lies either in RS, or in R}, . If the sample point
lies in RS, we accept H, and if it lies in R%, we accept H; .

An indication as to the proper choice of the regions Ry, , R, and R,, can be
obtained from the following considerations: Suppose that before the sample is
drawn there exists an a priori probability that H, is true and the value of this
probability is known. Denote this a priori probability by go. Then the a priori
probability that H, is true is given by g1 = 1 — go, since it is assumed that the
hypotheses Hy and H; exhaust all possibilities. After a number of observations
have been made we gain additional information which will affect the probability
that H; (¢ = 0,1) is true. Let gom be the a posteriori probability that H, is true
and g1 the a posteriori probability that H, is true after m observations have been
made. Then according to the well known formula of Bayes we have

9o Pom(T1s - Tm)
3.1 m =
©-1) go GoPom(T1, -+ Tm) + G1D1m(T1, - -+, Tm)
and .
glplm(xl, Tty Tm)
3.2 =
( ) Gim Jo p(’m(xh M) I,,.) + glplm(xh Tty xm)
where pim(z1, - -+, Tm) denotes the probability density in the m-dimensisnal
sample space calculated under the hypothesis H; (¢ = 0, 1).° As an abbrevia-
tion for pim(21, - - , m) We shall use simply pin .
¢ If the probability distribution is discrete pim(z1, -+ , zm) denotes the probability that

the sample point (z;, -+ , Zm) will be obtained.
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Let do and d; be two positive numbers less than 1 and greater than §. Suppose
that we want to construct a sequential test such that the conditional probability
of a correct decision under the condition that H, is accepted is greater than or
equal to do, and the conditional probability of a correct decision under the
condition that H, is accepted is greater than or equaltod;.” Then the following
sequential process seems reasonable: At each stage calculate gom and gim. If
gim > dy, accept Hy. If gom > do, accept Hy. If gim < drand gom < do, draw
an additional observation. R}, in this sequential process is thus defined by the
inequality gom > do , Rm by the inequality g1 > d1, and R by the simultaneous
inequalities gim < di and gom < do. It is necessary that the sets R, Rm and
R. be mutually exclusive and exhaustive. For this it suffices that the in-
equalities

3.3 =__9Pm 5
3:3) Jim goPom + J1Dim
and

Jo Dom
3.4 ” = ——— >
( ) 9o goPom + J1D1m

be not fulfilled simultaneously. To show that (3.3) and (3.4) are incompatible,
we shall assume that they are simultaneously fulfilled and derive a contradiction
from this assumption. The two inequalities sum to

(3.5) Gim + gom = di + ds.

Since gom + g1n = 1, we have
1>di+ 4

which is impossible, since by assumption d; > % ( = 0,1). Hence it is proved
that the sets RY, , Rn and R,, are mutually exclusive and exhaustive.

The inequalities (3.3) and (3.4) are equivalent to the following inequalities,
respectively:

Pim 5 g0
(3.6) o = 1 — &
and

Pim o1 — do
@7 Pom ~ §1 do

The constants on the right hand sides of (3.6) and (3.7) do not depend on m.
If an a priori probability of H, does not exist, or if it is unknown, the inequali-
ties (3.6) and (3.7) suggest the use of the following sequential test: At each stage

7 The restriction do > 1/2 and d; > 1/2 are imposed because otherwise it might happen
that the hypothesis with the smaller a posteriori probability will be accepted.
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calculate pim/Pom . If P1m = Pom = O, the value of the ratio pim/pom is defined
to be equal to 1. Accept H; if

3.8) Pim > 4.
?Om

Accept H, if

3.9) P < B,
Dom

Take an additional observation if

(3.10) B< B < 4.

DPom

Thus, the number n of observations required by the test is the smallest integral
value of m for which either (3.8) or (3.9) holds. The constants A and B are
chosen so that 0 < B < A and the sequential test has the desired value « of the
probability of an error of the first kind and the desired value g8 of the probability
of an error of the second kind. We shall call the test procedure defined by (3.8),
(3.9) and (3.10), a sequential probability ratio test.

The sequential test procedure given by (3.8), (3.9) and (3.10) has been justi-
fied here merely on an intuitive basis. Section 4.7, however, shows that for this
sequential test the expected values Ey(n) and E;(n) are very nearly minimized.?
Thus, for practical purposes this test can be considered an optimum test.

3.2. Fundamental relations among the quantities o, 8, A and B. In this section
the quantities «, 8, A and B will be related by certain inequalities which are of
basic importance for the sequential analysis.

Let {za}(m = 1,2, - - - , ad inf.) be an infinite sequence of observations. The
set of all possible infinite sequences {x.} is called the infinite dimensional sample
space. It will be denoted by M, . Any particular infinite sequence {zn.} is
called a point of M .. For any set of n given real numbers a,, - - - , a, we shall
denote by C(a., - - -, a,) the subset of M _, which consists of all points (infinite
sequences) {Zm} (m = 1,2, --- , ad inf.) for whichz; = a;, -+, 2, = a,. For
any values a;, -+, a, the set C(a1, : - -, a,) will be called a cylindric point of
order n. A subset S of M ., will be called a cylindric point, if there exists a posi-
tive integer n for which S is a cylindric point of order n. Thus, a cylindric point
may be a cylindric point of order 1, or of order 2, etc. A cylindric point C(a:,
+++, ay) will be said to be of type 1 if

P _ fi(@a) fi(az) - - - fi(aa)
Pon fo(al)fo(ae) e fo(a,.) > A

8 It seems likely to the author that Eo(n) and E\(n) are exactly minimized for the se-
quential probability ratio test. However, he did not succeed in proving it, except for a
special class of problems (see section 4.7).
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and

Pim _ fi(@) - - - fi(am)
B < on = Toa) o) <A

A cylindric point C(ay, - - - , a,) will be said to be of type 0 if

(m=1,-,n—1)

Pin _ fiay) --- fi(a,)
Do~ ola) — olaw) = B

and

P _ f1(@1) - - - fi(am) -1 e om
B o~ Fola) - To(a <A (m=1, ,n—1).
Thus, if a sample (21, - - - , 2) is observed for which C(z,, - - - , z,) is a cylindrie
point-of type 7, the sequential test defined by (3.8), (3.9) and (3.10) leads to the
acceptance of H; (z = 0, 1).
Let Q: be the sum of all cylindric points of type ¢ (¢ = 0,1). For any subset
M of M , we shall denote by P;(M) the probability of M calculated under the
assumption that H;is true (: = 0, 1). Now we shall prove that

(3.11) P+ Q) =1 (Z=0,1)
This equation means that the probability is equal to one that the sequential
process will eventually terminate. To prove (3.11) we shall denote the variate

logiléii) by Z2; &nd 21 + o e + Zm by Zm ('I«, m = 1’ 2’ e ad inf,), Further_
0\ Lz

more, denote by n the smallest integer for which either Z, > log 4 or Z, <
log B. If no such finite integer n exists we shall say that n = . Clearly, n is
the number of observations required by the sequential test and (3.11) is proved
if we show that the probability that n = w is zero. But the latter statement
was proved by the author elsewhere (see Lemma 1 in [4]). Hence equation
(3.11) is proved.

With the help of (3.11) we shall be able to derive some important inequalities

satisfied by the quantities a, 8, A and B. Since for each sample (z1, - - , z.)
for which C(z1, - -+, x,) is an element of @, the inequality pi./pe > A holds,
we see that
(3.12) Py(Q1) > APy(Qy)

Similarly, for each sample (z,, -- -, ,) for which C(z; y ", Zy) is a point of
Qo the inequality pi./po» < B holds. Hence
(3.13) P1(Qu) < BPo(Qo).

But Py(Q)) is the probability of committing an error of the first kind and P1(Qv)
is the probability of making an error of the second kind. Thus, we have

(3.14) Py(Q)) = a; Py(Qy) = B.
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Since @, and @, are disjoint, it follows from (3.11) that

(3.15) PyQ) =1 —a; Pi(@)=1-8

From the relations (3.12)-(3.15) we obtain the important inequalities
(3.16) 1-8>Aa

and

3.17) . B8<B(1 — a).

These inequalities can be written as

(3.18) - = 5 < }1

and

(3.19) L <=

The above inequalities are of great value in practical applications, since they
supply upper limits for ¢ and 8 when A and B are given. For instance, it follows
immediately from (3.18) and (3.19), and the fact that 0 < a < 1,0 < 8 < 1 that

(3.20) a < 1—}1
and
(3.21) 8 < B.

A pair of values a and 3 can be represented by a point in the plane with the
coordinates « and 8. It is of interest to determine the set of all points (a, 8)
which satisfy the inequalities (3.18) and (3.19) for given values of A and B.
Consider the straight lines L; and L. in the plane given by the equations

(3.22) Aa=1-g8
and
(3.23) 8 = B(1 — o),

. . . 1 .
respectively. The line L, intersécts the abscissa axis at & = 4 and the ordinate

axisat 8 = 1. The line L, intersects the abscissa axis at « = 1 and the ordinate
axis at 8 = B. The set of all points («, 8) which satisfy the inequalities (3.18)
and (3.19) is the interior and the boundary of the quadrilateral determined by
the lines L;, L, and the coordinate axes. This set is represented by the shaded
area in figure 1.

The fundamental inequalities (3.18) and (3.19) were derived under the assump-
tion that z,, x2, - - - , ad inf. are independent observations on the same random
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variable X. The independence of the observations is, however, not necessary
for the validity of (3.18) and (3.19). In fact, the independence of the observa-
tions was used merely to show the validity of (3.11). But (3.11) can be shown
to hold also for dependent observations under very general conditions. Hence,
if H; states that the joint distribution of z;, ., - -+, Z 1s given by the joint
probability density function pim(z1, -+, Zm)’ (¢ =0,1;m = 1,2, --- , ad inf.)
and if (3.11) holds, then for the sequential test of H, against H,, as defined by
(3.8), (3.9) and (3.10), the inequalities (3.18) and (3.19) remain valid. For
instance, let Ao and \; be two different positive values <1 and let H;(z = 0, 1)

be the hypothesis that the joint probability density function of z;, -+, Zm 18
given by

Ve

B
0 ik ] X
A
Fi16. 1
1 —iz2—} § (zj—N;zj-1)? .
p{m(xly T = (2T)m/2e 1 i=2 (z = 0, 1)
ie., that z; and (z; — Az;-)(f = 2, 3, -+, ad inf.) are normally and inde-

pendently distributed with zero means and unit variances, then the inequalities
(3.18) and (3.19) will hold for the sequential test defined by (3.8), (3.9) and
(3.10). _

3.3. Determination of the values A and B in practice. Suppose that we wish
to have a sequential test such that the probability of an error of the first kind is
equal to a and the probability of an error of the second kind is equal to 8. De-

¢ Of course, for any positive integers m and m’ with m < m’ the marginal distribution of
Zy, -+, Zm determined on the basis of the joint distribution Pim/(z:, -+ , Tm’) must be
equal to Pim(Z1, *** , Tm).
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note by A (e, 8) and B(a, B) the values of A and B for which the probabilities of
the errors of the first and second kinds will take the desired values « and 8.
The exact determination of the values A (e, 8) and B(e, B) is rather laborious, as
will be seen in Section 3.4. The inequalities at our disposal, however, permit the
problem to be solved satisfactorily for practical purposes. From (3.18) and
(3.19) it follows that

(3.24) A <P
and
(3.25) B(a,8) > —P—.
l1—a
1—-8 _B
Suppose we put A = — = a(a, B) (say), and B = == b(a, B) (say).

Then A is greater than or equal to the exact value A (e, 8), and B is less than or
equal to the exact value B(e, 8). This procedure, of course, changes the prob-
abilities of errors of the first and second kind. If we were to use the exact value
of B and a value of A which is greater than the exact value, then evidently we
would lower the value of @, but slightly increase the value of 8. Similarly, if
we were to use the exact value of 4 and a value of B which is below the exact
value, then we would lower the value of 8, but slightly increase the value of a.
Thus, it is not clear what will be the resulting effect on « and 8 if a value of 4 is
used which is higher than the exact value, and a value of B is used which is lower
than the exact value. Denote by o’ and 8’ the resulting probabilities of errors
1-8 B = 2.

a l—a

We now derive inequalities satisfied by the quantities o, 8/, @ and 8. Sub-
stituting a(e, B) for A, b(e, 8) for B, o’ for a and B’ for 8 we obtain from (3.18)
and (3.19)

of the first and second kind, respectively, if we put A =

! 1 a
3.26 * < =
(3:26) 1-8"a(e,8) 1-—28
and
B _ B
8.27) = < b(e, B) = =

From these inequalities it follows that l

, a
(3.28) a S I——B
and

(3.20) p< b
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Multiplying (3.26) by (1 — 8)(1 — 8’) and (3.27) by (1 — «)(1 — ¢’) and adding
the two resulting inequalities, we have

(3.30) o + 5 < a+ B

Thus, we see that at least one of the inequalities o/ < « and 8’ < 8 must hold.
In other words, by using a(e, 8) and b(e, 8) instead of A(a, 8) and B(a, B), re-
spectively, at most one of the probabilities « and 8 may be increased.

If « and B are small (say less than .05), as they frequently will be in practical

a
1_ﬁand1_a

we see from (3.28) and (3.29) that the quantity by which o can possibly exceed
a, or 8’ can exceed 8, must be small. Section 3.4 contains further inequalities
which show that the amount by which o’(8") can possibly exceed «(8) is indeed
extremely small. Thus, for all practical purposes o’ < a and 8’ < 8.

If fi(z) (the distribution under the alternative hypothesis) is sufficiently near
fo(x) (the distribution under the null hypothesis), 4(«, 8) and B(a, 8) will be
1-8

a

applications, are nearly equal to « and B, respectively. Thus,

nearly equal to and respectively; and consequently o’ and 8’ are

1—a’
also very nearly equal to o and B respectively. The reason that (3.18) and
(3.19) and therefore also (3.24) and (3.25),are inequalities instead of equalities

is that the sequential process may terminate with ;ﬁ >Ador P < B If at

0n n

the final stage f—‘-" were exactly equal to A or B, then A(«, 8) and B(a, 8) would

On

1 -8
@

be exactly and

1 f o respectively. If fi(x) is near fy(z), it is almost

certain that the value of IP—;i" is changed only slightly by one additional observa-
on
P,

tion. Thus, at the final stage P * will be only slightly above A, or slightly below

0
B and consequently A (e, 8) and B(a, 8) will be nearly equal to 1 ; b and 1 f o

respectively. If fractional observations were possible, that is to say, if the num-

. . . P .
ber of observations were a continuous variable, P—"" would also be a continuous
0om

function of m and consequently A(a, 8) and B(a, 8) would be exactly equal to

1 ; B and i f o respectively. Thus, we have inequalities in (3.24) and (3.25)

instead of equalities merely on account of the fact that the number m of observa-
tions is discontinuous, i.e., m can take only integral values.

Hence for all practical purposes the following procedure can be adopted: To
construct a sequential test such that the probability of an error of the first kind does
not exceed o and the probability of an error of the second kind does not exceed 8, put
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A=1 ﬁandB—

equalztzes (3.8), (3.9) and (3 10).
In most practical cases the calculation of the exact values A(a, 8) and B(a, 8)
1 -8

a

and carry out the sequential test as defined by the in-

will be of little interest for the following reasons: When 4 = a(e, 8) =

and B = b (a,8) = l—ﬁ& , the probability o’ of an error of the first kind cannot

exceed a and the probability 8’ of an error of the second kind cannot exceed 8,
except by a very small quantity which can be neglected for practical purposes.
Thus, for all practical purposes the use of a(a, 8) and b(e, 8) instead of A(a, B)
and B(e, ) will not decrease the strength of the sequential test. The only
possible disadvantage from the substitution is that it may increase the expected
number of trials necessary for a decision. Since the discrepancy between A (a, 8)
and B(a, 8) on the one hand and a(e, 8) and b(a, B) on the other, arises only
from the discontinuity of the number m of observations, it is clear that the in-
crease in the expected number of trials caused by the use of a(c, 8) and b(a, B)
will be slight. This slight increase, however, cannot be considered entirely a
loss for the following reason: if a(a, 8) > A(a, B) or b(e, 8) < B(a, 8), then we
can sharpen the inequality (3.30) to o’ + 8’ < a + 8. Hence by using a(e, B)
and b(a, 8) we gain in strength.

The fact that for practical purposes we may put 4 = a(a, 8) and B =
b(a, B) brings out a surprising feature of the sequential test as compared with
current tests. While current tests cannot be carried out without finding the
probability distribution of the statistic on which the test is based, there are no
distribution problems in connection with sequential tests. In fact, a(e, 8) and

b(a, B) depend on « and 8 only, and the ratio Z—Tm'i' can be calculated from the data

of the problem without solving any distribution problems. Distribution prob-
lems arise in connection with the sequential process only if it is desired to find the
probability distribution of the number of trials necessary for reaching a final
decision. (This subject is discussed later.) But this is of secondary importance
as long as we know that the sequential test on the average leads to a saving in
the number of trials.

3.4. Probability of accepting Hy (or H,) when some third hypothesis H is Yrue.
In Section 3.2 we were concerned with the probability that the sequential prob-
ability ratio test will lead to the acceptance of Hy (or H;) when H, or H,is true.
Since in Part II we shall admit an infinite set of alternatives, and since this is
the practically important case, it is of interest to study the probability of accept-
ing H, (or Hy) when any third hypothesis H, not necessarily equal to Ho or H,,
is true. Let H be the hypothesis that the distribution of X is given by f(z).
If f(z) is equal to fo(z) or fi(x) we have the special case discussed in Section 3.2.
In what follows in this and the subsequent sections any probability relationship
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will be stated on the assumption that H is true, unless a statement to the con-
trary is explicitly made. Denote by v the probability that the sequential prob-
ability ratio test will lead to the acceptance of H; . Clearly, if H = H,, then
vy =caandif H = H,,theny =1 — 8.

The probability v can readily be derived on the basis of the general theory of

cumulative sums given in [4]. Denote log flézi) byz;. Then{z} (t=2, ---,
o\Ly

ad inf.) is a sequence of independent random variables each having the same dis-
tribution. Denote by Z ; the sum of the first j elements of the sequence {z.} i.e.,

(331) ZJ'=ZI+"'+ZJ' (j=1727"'7adinf').

For any relation R we shall denote by P(R) the probability that R holds. For
any random variable Y the symbol EY will denote the expected value of Y.
Let n be the smallest positive integer for which either Z, > log A or Z, < log B
holds. Iflog B < Z., < log A holdsform = 1,2, -- -, ad inf., we shall say that
n = . OQObviously, » is the number of observations required by the sequential
probability ratio test. As we have seen in Section 3.3, in practice we shall put

A =a(e,B) = 1 : 8 and B = b(e, B) = ——é—&. Since B must be less than A4,

1 —

1-8 > B . This inequality
a l—«a
is equivalent to @ + 8 < 1, which in turn implies that B < 1and A > 1. Thus,
in all that follows it will be assumed that A > 1 and B < 1. We shall also
assume that the variance of z; is not zero.

According to Lemma 1 in [4] the relation P(n = «) = 0 holds. Hence, the
probability is equal to one that the sequential process will eventually terminate.
This implies that the probability of accepting Hyis equal to 1 — #.

Let z be a random variable whose distribution is equal to the common dis-
tribution of the variates z; (1 = 1,2, --- , ad inf.). Denote by ¢() the moment
generating function of z, i.e.,

we shall consider only values « and 8 for which

o(t) = Ee*.

It was shown in [4] that under very mild restrictions on the distribution of z
there exists exactly one real value h such that h % 0and ¢() = 1. Furthermore,
it was shown in [4] (see equation (16) in [4]) that

(3.32) Ee™™ = 1.

Let E* be the conditional expected value of e*** under the restriction that H,
is accepted, i.e., that Z, < log B, and let E** be the conditional expected value
of e”" under the restriction that H, is accepted, i.e., that Z, > log A. Then we
obtain from (3.32)

(3.33) (1 —¥y)E*¥ 4+ vE* =1

10 The probability that H, will be accepted is equal to 1 — v, as will be seen later.
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Solving for ¥ we obtain

1-— E*
(3.34) Y = m.

If both the absolute value of Ez and the variance of z are small, which will be the
case when fi(z) is near fy(z), E* and E** will be nearly equal to B* and A*, re-
spectively. Hence, in this case a good approximation to y is given by the ex-
pression

. __1-B
(3.35) Y=o
It is easy to verify that h = 1if H = Hy,and h = —1if H = H,. The differ-
ence ¥ — v approaches zero if both the mean and the variance of z converge to
Zero.

To judge the goodness of the approximation given by ¥, it is desirable to de-
rive lower and upper limits for y. Such limits for v can be obtained by deriving
lower and upper limits for £* and E**. First we consider the case when h > 0.
Let ¢ be a real variable restricted to values >1, and let p be a positive variable
restricted to values <1. For any random variable ¥ and any relationship R
we shall denote by E(Y | R) the conditional expected value of Y under the re-
striction that R holds. It was shown in [4] that the following inequalities hold:"

(3.36) B"{g.léb. tE (e"' le™ < %)} < E* < B* > 0)

and

(3.37) 4" < B < AP {l.u.b. oE (e"' | > %)} (& > 0).
P

The symbol g.1.b. stands for the greatest lower bound with respect to ¢, and the
¢
symbol Lu.b. stands for least upper bound with respect to p. Putting
P

(3.38) glb.{E (e’“ | < %) =

and

(3.39) Lub. pE (e"'|é'“ > %) =3,
P

the inequalities (3.36) and (3.37) can be written as
(3.40) By < E*< B (h > 0)

11 See relations (23) and (26) in [4]. The notation used here is somewhat different from
that in [4].
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and
(3.41) A" < B < A - (h > 0).

Since B < 1and A > 1, we see that E* < 1 and E** > 1if h > 0. From
this and the relations (3.34), (3.40) and (3.41) it follows easily that
1-B << 1 — 4B

AP — B == B (h > 0)

(3.42)

1
If b < 0, limits for v can be obtained as follows: Let 2/ = —z, A’ = B B =

Then b’ = —h > 0andy’ = 1 — vy. Thus, according to (3.42) we have

_ r\h’ (RN
lh,(B) ,,'S'Y'S—l',,,-n—(B—')‘—h‘,
&’y — (B) A" — »'(B)
where 8’ and %’ are equal to the expressions we obtain from (3.38) and (3.39),
respectively, by substituting A’ for A and 2’ for z. Since » and & depend only on
the product hz = h'z’, we see that 8 = 8 and o = n. Hence, we obtain from
(3.43)

L
I
(3.43)

1— 4" _ 1 — g4

where 6 and 5 are given by (3.38) and (3.39), respectively.

In Section 3.5 we shall calculate the value of # and & for binomial and normal
distributions. If the limits of v, as given in (3.42) and (3.44), are too far apart,
it may be desirable to determine the exact value of v, or at least to find a closer
approximation to y than that given in (3.35). A solution of this problem is
given in [4] (see section 7 of that paper). There the exact value of v is derived
when z can take only a finite number of integral multiples of a constant d. If z
does not have this property, arbitrarily fine approximation to the value of v
can be obtained, since the distribution of z can be approximated to any desired
degree by a discrete distribution of the type mentioned before if the constant d
is chosen sufficiently small. The results obtained in [4] can be stated as follows:
There is no loss of generality in assuming that d = 1, since the quantity d can
be chosen as the unit of measurement. Thus, we shall assume that z takes only
a finite number of integral values. Let g, and g, be two positive integers such
that P(z = —g¢1) and P(z = go) are positive and z can take only integral values
> —g1 and <g.. Denote P(z = 7) by h;. Then the moment generating
function of z is given by

g2 X
(p(t) = E h,-e".

i=—g)
Put u = ¢’ and let u;, - -+ u, be the g = g1 + g2 roots of the equation of g-th
degree
g2 i
(3.45) 2 k' =1
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Denote by [a] the smallest integer > log A, and by [b] the largest integer < log B.
Then Z, can take only the values

(3-46) [b] -—n+1, [b]_gl+27"'7[b]) [a]) [a]+ 17"')[a]+gz_ 1.

Denote the ¢ different integers in (3.46) by ¢1, --- , ¢, , respectively. Let A be
the determinant value of the matrix |[|u$ || (7,7 = 1, ---, g) and let A; be the
determinant we obtain from A by substituting 1 for the elements in the j-th
column. Then, if A # 0, the probability that Z, = ¢;is given by

@47) PZ, =) = 5.
Hence
(348) y=PZ 2l =LY

where the summation is to be taken over all vaues of j for which ¢; > [a].

3.5. Calculation of 6 and u for binomial and normal distributions. Let X be a
random variable which can take only the values 0 and 1. Let the probability
that X = 1 be p; if H;is true (¢ = 0, 1), and pif Histrue. Denotel — pbygq
and 1 — p;by ¢; (¢ =0,1). Then fi(1) = p;;£:(0) = ¢;,f(1) = pand f(0) = ¢.
It can be assumed without loss of generality that p; > po. The moment generat-
fi@) .
Jo(z)

o= () () 43

Let h = 0 be the value of ¢ for which ¢(h) = 1, i.e.,

A A
P o\ _
P (Po) te (%) L

ing function of z = log"—=! is given by

First we consider the case when k > 0. It is clear that ¢ = G‘Ex;) > 1im-
olZ,
plies that z = 1. Hence ¢ > 1implies that ¢ = (;183 (gl) . From
0 0
this and the definition of & given in (3.39) it follows that
h
3.49) s = <l’3) h > 0).
( po ( )

h
Similarly, the inequality ¢® < 1 implies that e* = (g—l) . From this and the
0

definition of 5 given in (3.38) it follows that

(3.50) n = (q—‘>h (> 0).
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If h <0, it can be shown in a similar way that

(3.51) 5= (ng_:)" (h < 0)

and

(3.52) n= (%: ' (h < 0).
Now we shall calculate the values of § and 5 if X is normally distributed. Let

(3.53) filz) = \75 ¢ e G =0,1)

and

(3.54) f@) = .,

We can assume without loss of generahty that 6, = —Aand §; = A where A > 0,
since this can always be achieved by a translation. Then

fiz)
3.55 =1 = 2Az.
(3.55) Lyxe
The moment generating function of z is given by
(3.56) (p(t) = e!A“ﬂA’t’.
Hence

0
3.57) h=— A
Substituting this value of k& in (3.38) and (3.39) we obtain
(3.58) 8 = Lu.b. pE(e'”'le-”= > %)
'

and
(3.59) 7= glb. {E’(e_”’ | < %)

For any relation R let P*(R) denote the probability that the relation R holds
calculated under the assumption that the distribution of x is normal with mean
0 and variance unity. Furthermore, let P**(R) denote the probability that R
holds if the distribution of « is normal with mean — 8 and variance unity. Since
¢ % is equal to the ratio of the normal probability density function with mean
— 0 and variance unity to the normal probability density function with mean 6
and variance unity, we see that
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sk |~z >
(3.60) E (6—20:: l e—zoz Z ;I_,;) _ P (

)
(=)
B <! _P**(—m :)

=)

It can easily be verified that the right hand side expressions in (3.60) and
(3.61) have the same values for 6 = Aas for§ = —\. Thus,also é and 5 have the
same values for 6 = Aasfor § = — \. It will be, therefore, sufficient to compute
4 and 5 for negative values of 6. Let § = —\ where A > 0. First we show that

and

(3.61)

1
1 =3 Clearly

1
IP**( ") —2\z

(3.62) ( ) S D)

Putting ¢ = %(o < p < 1) in (3.62) gives

L P** (eﬂz < %) Prx (‘f”«r >

1).
)

(3.63) P
P* (8”2 S gl_:) pP* (e—ﬂ\z 2 :_l_
P
Hence
(g-P** eﬂz S 1) 1
n = glb Vi=—7
(3.64) 3 pP* (e”“ > _)

Because of the symmetry of the normal distribution, it is easily seen that

) )
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Hence

(3.65) n =

o | =
"

1 00
Now we shall calculate the value of 5. Denote \_/?_71- f e dt byG(z). Then

pr (e”’ > 1) — p*= (2)\x > log ’1_))
p

= P**(z leog1> = G(2)\ logl— )\).
2Z o p

(2> o prfys L 1)= G_ 1 )
P(e Zp) P(a:_zklogp Gz)‘logp—&-)\.

1

Denote o log 1 by u. Since p can vary from 0 to 1, 4 can take any value from
p
2

0to ©. Sincep = e~

Similarly

* we have

[ *k ( 2Az 1
pP** (™" > -
(3.66) 5 = Lub. J—__') ~ lub. {e-”"G(“ - ")} 0<u< ).

S (e 20 G+
=3

We shall prove that
(3.67) ¢ %g—i—:; = x(w)  (say)

is a monotonically decreasing function of u and consequently the maximum is
at u = 0. For this purpose it suffices to show that the derivative of log x(u)
is never positive. Now

(3.68) log x(u) = log G(u — \) — log G(u + \) — 2\u.

1 d
Denote Von e by ®(x). Since Tu G(u) = —&(u) it follows from (3.68) that

Pu —N) , P+ N

d -
(3.69) ElT;lOg x(u) = G =N + G TN 2X\.
It follows from the mean value theorem that the right hand side of (3.69) is
e o @ (). -
never positive if au ((_;Tu) is equal to or less than 1 for all values of u. Thus,

we need merely to show that
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d (@(u)) _ ¥ @)Gw) — G w)dw)

(3.70) du \G (w) G2(u) 2 2
_YWew + W) _ ¥ W)
G*(u) G*(u) Gu) —
Denote%((%)) by y. The roots of the equation y> — uy — 1 = 0 are

_uxAVu+ 4
y=—-"5——"-
Hence the inequality ¥* — uy — 1 < 0 holds if and only if
u — \/u"’+4sygu+\/u2+4.
2 2
Since y cannot be negative, this inequality is equivalent to

®(u) u+ VR + 4
W) ¥ TV T
Gw Y= 2
Thus we have merely to prove (3.71). We shall show that (3.71) holds for
all real values of u. Birnbaum has shown [5] that for u > 0

3.71)

2 —
3.72) M‘é‘*—_ﬂ ) < Gu).
Hence

du) 2 Ve 4+ u

which proves (3.71) for v > 0. Now we prove (3.71) foru < 0. Letu = — »
where v > 0. Then it follows from (3.73) that

d(v) 2

. —— < ey .

(3.74) G0 SVitoe—v

Taking reciprocals, we obtain from (3.74)

_G(v) > V1 + v — v'

(3.75) B > 5
Since
Gu)  G@) + 28@) _ G()
s = a0 W T
we obtain from (3.75)
(3.76) Gw)  ViP+14+3 Vot a+o

&(u) — 2 - 2
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Taking reciprocals, we obtain

o) 2 _Ve+4d—v_Vet4i+u
Gw) ~Vve+4+v 2 2 :

Hence (3.71) is proved for all values of « and consequently § is equal to the value
of the expression (3.67) if we substitute 0 for w. Thus,

_G(=N)
3.77) 5= TN
4. The Number of Observations Required by the Sequential Probability
Ratio Test

4.1. Expected number of observations necessary for reaching a decision. As
before, let

z = log.’;.zg—z;, 2 = log';:g:; (¢=1,2, ---,adinf)
and let n be the number of observations required by the sequential test, i.e., n is
the smallest integer for which Z, = 2, + --- + 2z, is either >log A or <log B.
To determine the expected value E(n) of n under any hypothesis H we shall
consider a fixed positive integer N. The sum Zy = 2, 4+ -+ + zy can be split
in two parts as follows

(4.1) Zy=2,.+ 2,

where Z = 241+ -+ +2vifn < Nand Z, = Zy — Z,if n > N. Taking
expected values on both sides of (4.1) we obtain

(4.2) NEz = EZ, + EZ., .

Since the probability that n > N converges to zero as N — «, and since
[Zn]| < 2(log A + |log B|) if n > N, it can be seen that

(4.3) lim [EZ, — E(N — n)Ez] = 0.
N=00
From (4.2) and (4.3) it follows that
(4.4) EZ, = EnEz.
Hence
EZ,
4.5) En = i

Let E*Z, be the conditional expected value of Z, under the restriction that the
sequential analysis leads to the acceptance of Hy, i.e. that Z, < log B. Simi-
larly, let E**Z, be the conditional expected value of Z, under the restriction that
H, is accepted, i.e., that Z, > log A. Since v is the probability that Z, > log 4,
we have

(4.6) EZ, = (1 — v)E*Z, + vE**Z, .
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From (4.5) and (4.6) we obtain

_ O = vE*Z, + vE**Z,
Ez )

The exact value of EZ, , and therefore also the exact value of En, can be com-
puted if z can take only integral multiples of a constant d, since in this case the
exact probability distribution of Z, was obtained (see equation (3.47)). If z
does not satisfy the above restriction, it is still possible to obtain arbitrarily fine
approximations to the value of EZ, , since the distribution of z can be approxi-
mated to any desired degree by a discrete distribution of the type mentioned
above if the constant d is chosen sufficiently small.

If both | Ez | and the standard deviation of z are small, E*Z, is very nearly
equal to log B and E**Z, is very nearly equal to log A. Hence in this case we
can write

4.7 En

U —vlogB+yloga
4.8) En i .

To judge the goodness of the approximation given in (4.8) we shall derive lower
and upper limits for En by deriving lower and upper.limits for E*Z, and E**Z,, .
Let r be a non-negative variable and let

4.9) t=MaxEGz—r|z>7) r>0)
and

(4.10) g =MinE@z+r|z+r<0). r >0)
It is easy to see that

(4.11) logA < E¥Z,<logd + ¢

and

(4.12) log B+ ¢ < E*Zn < log B.

We obtain from (4.7), (4.11) and (4.12)
A—7)(ogB + &) +ylogd . p (1 —v)gB+ y(logd + §)

(4.13) Ez Ez
and ' ifEz >0

(1= v)logB+ylogd+8) _ p (1~ y)logB+¥) +ylog 4
(4.14) Ez Ez

if Bz < 0.

4.2. Calculation of the quantities £ and &' for binomial and normal distributions.
Let X be a random variable which can take only the values 0 and 1. Let the
probability that X = 1 be p;if H:is true (¢ = 0, 1), and p if H is true. Denote
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1 —pbygand1 — p;by g: (i = 0,1). Then fi(1) = p:,fi(0) = ¢;, f(1) = p
and f(0) = g. It can be assumed without loss of generality that p, > po. It
(@) filz)

f(@) fo@ ~ o8

is clear that log

L _om

> 0 implies that £ = 1 and consequently log "=

— = Hence
So(1)
(4.15) §E=MaxE@z —r|z >7) =log%
T 0
Since log ?E ; < 0 implies that z = 0, we have
(4.16) g =MinE@z+r|z+r SO)=log;il
r 0
Now we shall calculate the values £ and ¢ if X is normally distributed. Let
_ 1 e .
fi(x) = Vo @ =0,1) (0 > 6)
and
f(x) - _1 e—(z-0)*l2
V2 )
We may assume without loss of generality that §, = —A and 6, = A where

A > 0, since this can always be achieved by a translation. Then

(4.17) z = log‘fi‘%) = 2Ax.

1 3.2 1 f © g2 _
Denote ——\/-27_ e by &(z) and \/h.27r ] e dtby G(x). lett = z 0.
Thenz = 2A(¢t + 6) and

Ez—rlz—1r>0) —2AE’(t+0—2—A t+o—2Azo>
(4.18)
= a5 [ €~ e @ = 22 (-6 + 2
where
(4.19) ty =1 — 0.

2A

®(to)
G(to)
cally decreasing function of ¢ . Hence the maximum of E(z — r |z —r>0)
is reached for » = 0 and consequently

m<m+ﬁon—mﬁ+§gﬂ

In section 3.5 (see equation (3.70)) it was proved that ~—~ — ¢, is a monotoni-

(4.20) =G ( =
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Now we shall calculate ¢. We have
=MinEz+r|z+r<0)=—-MaxE(—z —r|—z —1r >0)
(4.21)

r r
= —2A MraxE(—x —ﬂ{—x ~ 5 > O).

Lett = —x+0andto— — +0 Then

- r r
E(—x—-z—A —x—ﬂZO)—E(t“tolt—tOZO)

(4.22) "
G(t)f(t weo dt = g — .

Since this is a monotonically decreasing function of {,, we have

r r &(6)
(4.23) M?.x E'(— ~5al~% "3 > 0) G - 0.
From (4.21) and (4.23) we obtain
®06)
(4.24) g = —2A [ GO ]

4.3. Saving in the number of observations as compared with the current test
procedure. We consider the case of a normally distributed variate, such that

1
Jo(x) = Vr g He0?
and
1
fi(z) = Vo e He? (61 # 6o).

Denote by n(a, 8) the minimum number of observations necessary in the current
most powerful test for the probabilities of errors of the first and second kinds
to be a and B, respectively, or less.

We shall calculate the number of observations required by the most powerful
test. It can be assumed without loss of generality that 6, < 6,. According
to the current most powerful test procedure the hypothesis H, is accepted if
# < d and the hypothesis H, is accepted if Z > d, where & is the arithmetic
mean of the observations and d is a properly chosen constant. The probability
of an error of the first kind is given by G[/n(d — 6,)] and the probability of an

rror of the second kind is given by 1 — G[v/n(d — 6,)] where G(t) =

\/27r f 2 dz. To equate these probabilities to a and B, respectively, the
quantities d and n must satisfy
(4.25) GlVnld — 6)] =
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and
(4.26) 1 — GlVn(d — )] = B.

Denote by Ao and A the values for which G(A\¢) = aand G(A;) = 1 — 8. Then
we have

(4.27) Vnd — 6) = X
and

(4.28) Vnd — 6) = \.
Subtracting (4.27) from (4.28) we obtain

(4.29) V(8 — 6) = A\ — Ao
From (4.29)

(4.30) n = n(a,p) = ————g‘o‘ = ’;‘3:

If the expression on the right hand side of (4.30) is not an integer, n(«, 8) is the
smallest integer in excess.

1-8

and

In the sequential probability ratio test we put A = a(e, 8) =

B = ble, B) = f—f—a . Then the probability of an error of the first (second)
kind cannot exceed «(8) except by a negligible amount. Let A(e, 8) and
B(a, B) be the values of A and B for which the probabilities of errors of the first
and second kinds become exactly equal to « and B, respectively. It has been
shown in Section 3.2 that A(e, 8) < a(e, 8) and B(e,-8) > b(a, 8). Thus, the
expected values Ei(n) and Eo(n) are only increased by putting A = a (@, 8) and
B = b (a, B) instead of A = A (a,8) and B = B (e, B).

Consider the case where | §; — 6 | is small so that the quantities ¢ and £ can
be neglected. Thus, we shall use the approximation (4.8). Sincey = aif H =
Hyandy = 1 — 8if H = H,, we obtain from (4.8)

_ @t e+ |b* |
@.31) B = g e
and
4.32) Eon) = =0 —b* + o

Eol—2 % Eo(—2)

where a* = log a(a, 8) = log 1-8 and b* = log b(a, B) = log Since

@ l—a

(4.33) Ei(z) = (60 — 6)°
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and
(4.34) Eo(—2) = 3(6 — ),

it follows from (4.30), (4.31) and (4.32) that n?’;(’n;) and nl(i';fn;) are independent

of the parameters 6, and 6, .

TABLE 1
Average percentage saving of sequential analysis, as compared with current most
powerful test for testing mean of a normally distributed variate
A. When alternative hypothesis is true:

~
~.
\\
g \\ [ .01 .02 .03 .04 .05
\\\

.01 58 60 61 62 63

.02 54 56 57 58 59

.03 51 53 54 55 54

.04 49 50 51 52 53

.05 47 49 50 50 51

B. When null hypothests ts true:
\\
~ «
\\ .01 .02 .03 .04 .05
8 \\\

.01 58 54 51 49 47

.02 60 56 53 50 49

.03 61 57 54 51 50

.04 62 58 55 52 50

.05 63 59 55 53 51

The average saving of the sequential analysis as compared with the current
E E,
method is 100 (1 i) ) per cent if H, is true, and 100 (1 o(n) ) per

"~ n(a, B) (e, 8)
cent if Hois true. In Table 1 the expression 100 (1 — is shown in Panel

. Eo(n)
A, and the expression 100 (1 ~ (e B)

Because of the symmetry of the normal distribution, Panel B is obtained from
Panel A simply by interchanging « and 8.

in Panel B, for several values of « and 8.
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As can be seen from the table, for the range of « and 8 from .01 to .05 (the
range most frequently employed), the sequential process leads to an average
saving of at least 47 per cent in the necessary number of observations as com-
pared with the current procedure. The true saving is slightly greater than shown
in the table, since E;(n) calculated under the condition that A = a (a, 8) and
B = b (e, B) is greater than E:(n) calculated under the condition that 4 = 4
(e, B) and B = B (e, B).

4.4. The characteristic function, the moments and the distribution of the number
of observations necessary for reaching a decision. It was shown in [4] (see equa-
tion (15)-in [4]) that the following fundamental identity holds

(4.35) E{e™ (O]} =1 (o(t) = Ee™)

for all points ¢ of the complex plane for which ¢(¢) exists and | ¢(t) | > 1. The
symbol n denotes the number of observations required by the sequential test,
i.e., n is the smallest positive integer for which Z, is either > log A or < log B,
and ¢(¢) denotes the moment generating function of z.

On the basis of the identity (4.35) the exact characteristic function of n is
derived in section 7 of [4] in the case when z can take only integral multiples of
a constant. If the number of different values which Z, can take is large, the
calculation of the exact characteristic function is cumbersome, because a large
number of simultaneous linear equations have to be solved. However, if | Ez |
and ¢, are small so that | Z, — log A | (when Z, > log A) and | Z, — log B |
(when Z, < log B) can be neglected, the calculation of the characteristic func-
tion is much simpler, as was shown in [4]. We shall briefly state the results
obtained in [4]. Let & be the real value > 0 for which (k) = 1. Furthermore
let t = t;(r) and t = #,(7) be the roots of the equation in ¢

—log o(t) = 7
such that lim ¢,(7r) = 0 and lim #(7) = h. Finally, let ¢1(7) the character-
7=0

=0
istic function of the conditional distribution of n under the restriction that Z, >
log A, and ¥.(7) the characteristic function of the conditional distribution of n
under the restriction that Z, < log B. Then, if | Z, — log A | (when Z, >
log A) and | Z, — log B | (when Z, < log B) can be neglected, y1(7) and y(7) are
the solutions of the linear equations

(4.36) Wi(n) A" + (1 = yWa(n)B"" = 1
and .
(4.37 YWA() A% 4+ (1 — yWa()B* = 1
where

1— B

v =PZ,2log 4) = 15 pi-
The characteristic function of the unconditional distribution of = is

(4.38) ‘ ¥(7) = wa(r) + (1 — y)¥elr).
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As an illustration we shall determine y1(7), ¥»(7) and ¢(7) when z has a normal
distribution. Then we have

2
— log () = —(Ez)t — ?2:t2 =7
Hence
2FE
(4.39) hom =
[
1 2 2
t(r) = 5 (= Bz + V/(Ez)’ — 2027).
(4.40)

ta(7) = ;%(—E’z -V (Ez)* — 24%7).

From (4.36), (4.37) and (4.38) we obtain

Bag _ Bﬂl
(4.41) Wa(r) = A9 Bor _ o2 gov’

. Aal — ‘402
(4.42) a - 7)\02(7) = A1 B2 _ f92 go1
and

A% 4 B2 — A% — B%

(4.43) V() = g — e
where

(4.44) g = ;1—2 (—Ez + /(B2 = 2627)
and

(4.45) g2 = % (—Ez — V(E2)* — 2027).

For any positive integer r the r-th moment of = i.e., E(n") is equal to the r-th
derivative of y(7) taken at + = 0. Let E*(n") be the conditional expected value
of n” under the restriction that Z, < log B, and let E**(n") be the conditional
expected value of n” under the restriction that Z, > log A. Then

(4.46) E*(n") = t%:—fl) o and E¥*(n') = d—%—:g—f)

7=0

(k = 1, 2) and therefore also the

It may be of interest to note that d—'l;—(f)
T =0

moments of n can be obtained from the identity (4.35) directly by successive
differentiation. In fact, the identity (4.35) can be written as (neglecting the
excess of Z, over the boundaries log 4 and log B)

(4.47) yAW[—loge(®)] + (1 — 7v)BY[—loge(®)] = 1.
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Taking the first r derivatives of (4.47) with respect totat¢{ = Oand ¢ = h
d "’k(") (k =

Tal)

1,2;5=1, - -+, r) from which these unknowns can be determined. For example,

dyi(7)
dr

of (4.47) with respect to ¢ and denoting dr'p:ET) by ¢{” () we obtain

we obtain a system of 2r linear equations in the 2r unknowns ————-

- (k = 1, 2) can be determined as follows: Taking the first derivative

y(log A)A" Yl—log v(§)] — 7A”’(‘t’)) ¥l —log o()]

(4.48) + (1 — 7)(log B)B*ys[—log ¢(t)]
— (1 = VB £ 2 YO~log o(0] = 0.
Putting ¢ = 0 and ¢ = h we obtain the equations

449) ylog 4 — v EQuP0) + (1 — 1) log B — (1 — 1) 9 y0) =0

#(0) ¢(0)
and
vllog A)4* — 74 £ 40 (0)
(4.50)
+ (1 — y)(og BYB* — (1 — B EP ywg) = ¢

e(h)
from which ¢{"(0) and ¥<"(0) can be determined.

The distribution of n can be obtained by inverting the characteristic function
of (7). This was done in [4] (neglecting the excess of Z, over log A and log B)
in the case when z is normally distributed. The results obtained in [4] can be
briefly stated as follows: If B = 0, orif B > 0 and A = o, the distribution
of n is a simple elementary function. If B = 0 and Ez > 0, the distribution of

1 .
m = 53 (Ez2)™n is given by

(4.51) F(m) dm = 5 (;)m, gotmmte gy 0<m< o)
where .
(4.52) = —, (Ez) log A.

1
If B> 0,4 = « and Ez < 0 the distribution of m = 29t (Ez)™n is given by the

1
expression we obtain from (4.51) if we substitute = (Ez) log B for c.

If B> 0and A < «, the distribution of m is given by an infinite series where
each term is of the form (4.51) (see equation (76) in [4]).
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Since m is a discrete variable, it may seem paradoxical that we obtained a
probability density function for m. However, the explanation lies in the fact
that we neglected the excess of Z, over log A and log B which is zero only in the
limiting case when Ez and ¢ approach zero.

The distribution of m given in (4.51) can be used as a good approximation
to the exact distribution of m even if B > 0, provided that the probability that
Z, 2 log A is nearly equal to 1.

It was pointed out in [4] that if | Ez | and o, are sufficiently small, the distribu-
tion of n determined under the assumption that z is normally distributed will
be a good approximation to the exact distribution of n even if z is not normally
distributed.

4.5. Lower limit of the probability that the sequential process will terminate with
a number of trials less than or equal to a given number. Let Pi(no) be the prob-
ability that the sequential process will terminate at a value n < ng , calculated
under H; ({ = 0, 1). Let

(4.53) Py(n) = Py [2 20 < log B]

and ”

(4.54) Piny) = P, [”Z.: ze > log A] )

It is clear that )

(4.55) Py(ne) < Pi(no) (i =0,1).

no
For calculating P;(n,) we shall assume that n, is sufficiently large so that E Za

am]
can be regarded as normally distributed. Let G(A) be defined by

(4.56) G0\ = \/_ e gt.

Furthermore, let
log A — noEi(2)

(4.57) Ai(ng) Vi@
and
__log B — nyE(2)
(4.58) Ao(no) —m
where o,(2) is the standard deviation of z under H;. Then
(4.59) Pi(ng) = G\i(no)]
and
(4.60) Po(no) = 1 — GDo(no)l.

Hence we have the inequalities
(4.61) Py(ne) > G\i(no)]
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and
(4.62) Po(ne) > 1 — GNo(no)}.

Putting log 4 = log — 8 and log B = log f o Table 2 shows the values

1
of Pi(no) and Poy(no) corresponding to different pairs (e, 8) and different values
of no. In these calculations it has been assumed that the distribution under
H,is a normal distribution with mean zero and unit variance, and the distribution
under H, is a normal distribution with mean 6 and unit variance. For each pair
(e, B) the value of 6 was determined so that the number of observations required
by the current most powerful test of strength («, 8) is equal to 1000.

TABLE 2

Lower bound of the probability* that a sequential analysis will terminate within
vartous numbers of trials, when the most powerful current
test requires exactly 1000 trials

a= .0land 8 = .01 a= .0landB= .05 | a= .05and B = .05
Nu&l;tlasr of Alternative Null =~ |Alternative Null  (Alternative Null
hypothesis | hypothesis | hypothesis | hypothesis | hypothesis | hypothesis

true true true true true true
1000 .910 .910 .799 .891 773 773
1200 .950 .950 .871 .932 .837 .837
1400 972 972 .916 .957 .883 .883
1600 .985 .985 .946 .972 915 .915
1800 .991 .991 .965 .982 .938 .938
2000 .995 .995 977 .989 .955 .955
2200 .997 .997 .985 .993 .967 .967
2400 .999 .999 .990 .995 .976 976
2600 .999 .999 .994 .997 .982 .982
2800 1.00 1.00 .996 .998 .987 .987
3000 1.00 1.00 .997 .999 .990 .990

* The probabilities given are lower bounds for the true probabilities. They
relate to a test of the mean of a normally distributed variate, the difference be-
tween the null and alternative hypothesis being adjusted for each pair of values
of a and B so that the number of trials requlred under the most powerful current
test is exactly 1000.

4.6. Truncated—sequential analysis. In some applications a definite upper
bound for the number of observations may be desirable. Thus, a certain
integer no is chosen so that if the sequential process does not lead to a final
decision for n < m,, a new rule is given for the acceptance or rejection of H,
at the stage n = n,.

A simple and reasonable rule for the acceptance or rejection of Hy at the stage

no o
n = ny can be given as follows: If E 2o < 0 we accept Hy and if Z 2. >0
a=1

a=1
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we accept H;. By thus truncating the sequential process we change, however,
the probabilities of errors of the first and second kinds. Let « and 8 be the
probabilities of errors of the first and second kinds, respectively, if the sequential
test is not truncated. Let a(no) and B(n,) be the probabilities of errors of the
first and second kinds if the test is truncated at n = n,. We shall derive upper
bounds for a(ne) and B(ny).

First we shall derive an upper bound for a(n,). Let po(no) be the probability
(under the null hypothesis) that the following three conditions are simultanecusly
fulfilled:

@) logB<Zza<logA forn =1, --+,n — 1
a=1
no

(i) 0<Xiza<logd
a=1

(ili) continuing the sequential process beyond ny, it terminates with the
acceptance of H, .
It is clear that

(4.63) a(ng) < a 4+ po(no).

70
Let po(no) be the probability (under the null hypothesis) that 0 < X z, <

log A. Then obviously -~
po(no) < Bo(no)

and consequently

(4.64) a(ng) < a + po(no).

Let pi(no) be the probability under the alternative hypothesis that the fol-
lowing three conditions are simultaneously fulfilled:

@) logB <) z.<logd forn =1, ---,m — 1
a=1
7o

(ii) logB<2 2.<0

a=1

(ili) continuing the sequential process beyond m,, it terminates with the
acceptance of H,.
It is clear that

(4.65) Bno) < B + pi(no).

Let p1(no) be the probability (under the alternative hypothesis) that log B <
7o

E 2, £ 0. Then pi(n) < pi(ng) and consequently

a=1

(4.66) Bo) < B + Ailno).
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Let
- —no Ey(2)
! \/774;00(3)
log A — nyEy(2) —noEr(2) _log B — neEs(2)

2T Vo 0 P T Vmea®' T Vamea)

where :(2) is the standard deviation of z under H; ( = 0, 1). Then

(4.67) po(no) = G(v1) — G(w)

and -

(4.68) pi1(no) = G(vs) — G(vs).

From (4.64), (4.66), (4.67) and (4.68) we obtain
(4.69) a(ng) < a + G(n) — G(w)
and

(4.70) B(no) < B+ G(v) — G(vs).

The upper bounds given in (4.69) and (4.70) may considerably exceed ‘a(no)
and B(ng), respectively. It would be desirable to find closer limits.

Table 3 shows the values of the upper bounds of a(n,) and 8(n,) given by for-
mulas (4.69) and (4.70) corresponding to different pairs («, 8) 4nd different, values
1 " B,logB =log1 —
and assumed that the distribution under Hy is a normal distribution with mean
zero ar 1 unit variance, and the distribution under H, is a normal distribution
with mean 6 and unit variance. For each pair («, 8) the value of 6 has been
determined so that the number of observations required by the current most
powerful test of strength (e, B) is equal to 1000.

It seems to the author that the upper limits given in (4.69) and (4.70) are
considerably above the true a(n-) and 8(no) respectively, when 7, is not much
higher than the value of » needed for the current most powerful test.

4.7. Efficiency of the sequential probability ratio test. Let S be any sequen-
tial test for which the probability of an error of the first kind is «, the prob-
ability of an error of the second kind is 8 and the probability that the test
procedure will eventually terminate is one. Let S’ be the sequential prob-
ability ratio test whose strength is equal to that of S. We shall prove that the
sequential probability ratio test is an optimum test, i.e., that Ein|S) >
Ein|S) (G = 0,1), if for S’ the excess of Z, over log A and log B can be neg-
lected. This excess is exactly zero if z can take only the values d and —d
and if log A and log B are integral multiples of d. In any other case the excess
will not be identically zero. However, if | Ez| and ¢, are sufficiently small,
the excess of Z, over log A and log B is negligible.

For any random variable u we shall denote by E(u | S) the conditional
expected value of u under the hypothesis H; (z = 0, 1) and under the restriction

of ng. In these calculations we have put log A = log
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that H, is accepted. Similarly, let E} *(u | S) be the conditional expected value
of u under the hypothesis H; (¢ = 0, 1) and under the restriction that H, is
accepted. In the notations for these expected values the symbol S stands for

TABLE 3

Effect on risks of error of truncating* a sequential analysis at a predetermined
number of trials

a= .0landf = .01 | a= .0landB = .05 | a = .05and B = .05
i
e | bollen | balPEhe | boPRehy | bRty | porper, | Ubber
effective effective | effective | effective | effective | effective
a B a B8 @

1000 .020 .020 .033 .070 .095 .095
1200 .015 .015 .024 .063 .082 .082
1400 .013 .013 .019 .058 .072 .072
1600 .012 .012 .016 .055 .066 .066
1800 .011 .011 .014 .053 .062 .062
2000 .010 .010 .012 .052 .058 .058
2200 .010 .010 .012 .051 .056 .056
2400 .010 .010 .011 .051 .055 .055
2600 .010 .010 .011 .051 .053 .053
2800 .010 .010 .010 .050 .053 .053
3000 .010 .010 .010 .050 .052 .052

* If the sequential analysis is based on the values « and 8 shown, but a deci-
sion is made at 7 trials even when the normal sequential criteria would require
a continuation of the process, the realized values of « and 8 will not exceed the
tabular entries. The table relates to a test of the mean of a normally distributed
variate, the difference between the null and alternative hypotheses being ad-
justed for each pair (a,8) so that the number of trials required by the current
test is 1000.

the sequential test used. Denote by Q:(S) the totality of all samples for which
the test S leads to the acceptance of H;. Then we have

Pin _ Pl[Q (S)] - B
(@.71) By (po»IS) = PS] ~ T ==
** [ Din Px[Ql(S)] _ 1-p8
(4.72) B, ( ) PO T " a
-~ PlQS)] 1 —a
(4.73) (p | ) PIG®] ~ B
and

Pyl Q;(S) a
(4.74) 2 (P1n|S) PIG®)] 1 =8
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To prove the efficiency of the sequential probability ratio test, we shall first
derive two lemmas.
Lemma 1. For any random variable w the inequality

(4.75) e’* < Ee*
holds.

Proor: Inequality (4.75) can be written as
(4.76) 1 < Ee*

where v’ = u — Eu. Lemma 1 is proved if we show that (4.76) holds for any
random variable u’ with zero mean. Expanding ¢* in a Taylor series around
u' = 0, we obtain

4.77) =14 u + %" where 0 < £w) < u'.
Hence
(4.78) Ee* =1 + LEu™1 > 1

and Lemma 1 is proved.
LeEmMA 2. Let S be a sequential test such that there exists a finite integer N with
the property that the number n of observations required for the test is < N. Then

pln
B (1°g S) G =0,1).

pon
Ei(2)

The proof is omitted, since it is essentially the same as that of equation (4.5)
for the sequential probability ratio test.

On the basis of Lemmas 1 and 2 we shall be able to derive the following
theorem.

THEOREM. Let S be any sequential test for which the probability of an error
of the first kind is a, the probability of an error of the second kind is 8 and the prob-
ability that the test procedure will eventually terminate is equal to one. Then

(4.79) Ein|8) =

B 1—-8
(4.80) Eo(nIS)>E()|:(1—a)logl_a+alog = ]

and

asn B9 2 g [sloe Lty + 1ol "]

Proor: First we shall prove the theorem in the case when there exists a finite
integer N such that n never exceeds N. According to Lemma 2 we have

Eon|8) = & ( ) Eo (log Z‘"\S)

0on

(4.82) ,
— — pln
- i 0~ 0% (s

> + aEy* (log Pin
Do

on

)]
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5)
Js)]

= 1 1gE (10g P 1 — 8)E** (10g P
e [BE‘ <1°g Pre S>+(1 2 (l°gpo

From equations (4.71)—(4.74) and Lemma 1 we obtain the inequalities

and

1 n

(4.83)

(4.84) E; (log& S) < log B

pOn 1 -
(4.85) E;“*(logﬂlz s) < log =P

Don 2
(4.86) Ef (log Pon S) = —Ef (log Pin S) <logi—2¢

1n pOn B

and
4.87 E**(l Pen s) - —E**( Pin )< @,
( ) 1 og oo 1 \log Por S) < log =8

Since Eo(z) < 0, (4.80) follows from (4.82), (4.84) and (4.85). Similarly, since
Ei(z) > 0, (4.81) follows from (4.83), (4.86) and (4.87). This proves the theo-
rem when there exists a finite integer N such that n < N.

To prove the theorem for any sequential test S of strength (a, 8), for any
positive integer N let Sy be the sequential test we obtain by truncating S at the
N-th observation if no decision is reached before the N-th observation. Let
(an, Bx) be the strength of Sy. Then we have

4.88) Eon|S) > Eon|Sy) > —x [(1 — ay) log —P¥ 4+ aylog 1= ﬁ"]
Eo(z) 1— an ay

and

@89) Exn|S) > Exn|Sy) > E—l(;) [BN log 1_§~_ F (1 — B log =P

— an ay

Since lim ay = « and lim By = B, inequalities (4.80) and (4.81) follow from

N=o N=a

(4.88) and (4.89). Hence the proof of the theorem is completed.

If for the sequential probability ratio test S’ the excess of the cumulative sum
Z. over the boundaries log A and log B is zero, Eo(n | S) is exactly equal to the
right hand side member of (4.80) and Ei(n | S') is exactly equal to the right hand
side member of (4.81). Hence, in this case S’ is exactly an optimum test.
If both | Ez| and o, are small, also the expected value of the excess over the
boundaries will be small and, therefore, Eo(n | S’) and Ei(n | 8’) will be only
slightly larger than the right hand members of (4.80) and (4.81), respectively.
Thus, in such a case the sequential probability ratio test is, if not exactly, very
nearly an optimum test.”

12 The author conjectures that the sequential probability ratio test is exactly an opti-
mum test even if the excess of Z, over the boundaries is not zero. However, he did not

succeed in proving this.
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Part I1. SEQUENTIAL TEST OF A SiMPLE OrR CoMPOSITE HYPOTHESIS AGAINST
A SET OF ALTERNATIVES

In Part I we have dealt with the problem of testing a simple hypothesis Hy
against a single alternative H,. Here we shall consider the problem of testing
a simple or composite hypothesis against a set of infinitely many alternatives.
By a simple hypothesis we mean a hypothesis which specifies uniquely the
probability distribution of the random variable z under consideration. A
hypothesis is called composite, if it is not simple.

5. Test of a Simple Hypothesis Against One-sided Alternatives

5.1. General remarks.. Let f(z, 6) be the probability density function of a
random variable X, where 6 is an unknown parameter. Suppose that it is re-
quired to test the simple hypothesis that # = 6, and that the alternative values
of 6 are restricted to values 8 > 6,. Assume that it is desired to have a sequen-
tial test such that the probability of an error of the first kind is equal to a given a.

The probability of an error of the second kind is no longer a single value, but
is a function of the true value of 6. If f(z, 6) is a continuous function of z and
6, the probability of an error of the second kind will be arbitrarily near 1 — «
if the true value of 6 is sufficiently near 6,. Hence, if « is small, the prob-
ability of an error of the second kind is necessarily large when the true value of 8
is very near 6,. In most practical applications we do not care if the prob-
ability of an error of the second kind is high when the true value of 6 is very
near 6 , since in this case the error committed by accepting 6, is usually of very
little importance. However, there will be a value 6; > 6, such that we wish the
probability of an error of the second kind to be less than or equal to a given small
positive value 8 whenever the true value of 8 is greater than or equal to 6, .

In this case we can proceed as follows: Consider the single alternative hypothe-
sis H, that 6 = 6,. Construct a sequential test for testing § = 6, against the
single alternative H,; such that the probability of an error of the first kind is «
and the probability of an error of the second kind, i.e., the probability of ac-
cepting 6, when 6, is true, is 3. If this sequential test has the further property
that the probability of an error of the second kind is less than or equal to 8
whenever the true value of 6 is greater than 6:, then this sequential test pro-
vides a satisfactory solution of the problem of testing the hypothesis that 8 = 6,
against the set of alternatives 6 > 6, .

In most of the important cases occurring in practice, such as when X has a
normal, binomial, or Poisson distribution, etc., the sequential probability ratio
test for testing the hypothesis that 8 = 6, against a single alternative 6, (6, > 6,)
satisfies the condition that the probability of an error of the second kind is a
monotonically decreasing function of 8 in the domain 8 > 6,. Thus, in all these
cases the sequential probability ratio test for testing the hypothesis that § = 6,
against a properly chosen alternative 6, provides a satisfactory solution of our
problem.
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The case in which the alternative values of 6 are restricted to values less than
6, is entirely analogous to that in which the alternatives are restricted to values
greater than 6,, and need not be discussed separately.

It should be pointed out that the test procedure for testing 8 = 6o against
alternatives § > 6,, as described in this section, is also suitable for testing the
composite hypothesis that § < 6y, provided that the probability of rejecting
the null hypothesis is < « whenever the true value of 8is < 6,. This condi-
tion is fulfilled, for instance, when X has a normal, binomial or Poisson distribu-
tion.

5.2. Application to binomial distributions. 5.2.1. Statement of the problem.
The case of a binomial distribution arises when the result of a single observa-
tion is a classification into one of two categories. For example, this is the
situation in acceptance inspection of manufactured products, if each unit
inspected is classified into one of the two categories, non-defective and defective.
Let p denote the probability that an item belongs to a given category. The
value of p is usually unknown. We shall deal here with the problem of testing
the hypothesis that p does not exceed a given value p’ against the alternative
possibility that p > p'.

Since acceptance inspection of manufactured products is perhaps the most
important and widest field of application of such a test procedure, we shall, in
continuing the discussion, use the terminology of acceptance inspection. This,
of course, does not mean that the test procedure is not applicable to other
cases. Suppose that a lot containing a large number of units is submitted for
sampling inspection. Let p denote the proportion of defective units contained
in the lot. The probability that a unit drawn at random from the lot will be-
defective is equal to p. If m units are drawn at random from the lot, the prob-
ability that there will be d defectives among them is given by*

(5.1) TP — o @=0,1,--,m).

The probability distribution as given in (5.1) is called a binomial distribution.
The purpose of sampling inspection is to decide whether tlhie lot should be
accepted or rejected. It is clear that for high values of p we want to reject the
lot and for low values of p we want to accept the lot. Thus, it will be possible
to specify a particular value of p, say p’, so that if p < p’ we wish to accept the
lot, and if p > p’ we wish to reject the lot. Thus, our problem is to devise a
proper sampling inspection plan for testing the hypothesis that p < p'.
5.2.2. Tolerated risks for making a wrong decision. No sampling inspection
plan can guarantee that the correct decision will always be made, i.e., that the
lot will always be accepted when p < p’ and the lot will always be rejected when
P > p’, unless the lot is inspected completely. A complete inspection is usually

12 Formula (5.1) is exact only if the lot contains infinitely many units. While the lot is
always finite in practice, we shall assume that m is small as compared with the lot size so
that formula (5.1) can be used.



160 A. WALD

rather uneconomical and one is willing to take some risk of making a wrong
decision if this permits a reduction in the amount of inspection. Hence, recom-
mendations as to the proper choice of a sampling inspection plan can be made
only after the risks that can be tolerated have been stated.

If p is equal to the marginal value p’, we may say that it is indifferent to us
whether the lot is accepted or rejected. If p < p’ we prefer acceptance and
this preference is the stronger the smaller p. Similarly, if p > p’ we prefer
rejection of the lot and this preference increases as p increases. Thus, it will
be possible to select a value po < p’ and a value p; > p’ such that the error is
considered serious only if we accept the lot when p > p;, or we reject the lot
when p < p,.

After the two values p, and p; have been selected the risks that we are willing
to tolerate may reasonably be stated as follows: a sampling inspection plan is
required such that the probability of rejecting the lot is less than or equal to a
preassigned value « whenever p < o, and the probability of accepting the lot
is less than or equal to a preassigned value 8 whenever p > p:. Thus, the
tolerated risks are characterized by the four quantities ps, p1, « and 8. The
proper sampling plan can be determined after these four quantities have been
chosen.

5.2.3. The sequential probability ratio test corresponding to the quantities po,
p1, a and 8. Let H, be the hypothesis that p = p, and H, the hypothesis that
p = p;. Consider the sequential probability ratio test T for testing H, against
H, for which « is the probability of accepting H, when H, is true (error of the
first kind) and B is the probability of accepting Ho when H, is true (error of the
second kind). This probability ratio test will satisfy all our requirements, since
for this test the probability of accepting the lot (accepting H,) is <8 whenever
p > p1 and the probability of rejecting the lot (accepting H,) is <a whenever
P < po.

According to formulas (3.8), (3.9), (3.10) and section 3.3 the sequential test
T is given as follows: At each stage of the inspection, at the m-th observation
for each integral value of m, calculate the quantity

0 Pim _ PI"(1 — p)" "
(5‘ ) . —dm(1 __ .. \m—dm

Pom  po™(1 — po)
where d.. denotes the number of defectives found in the first m units inspected.
Reject the lot (accept H,) if

(m =1, 2,--)

(53) Py 18
Pom a
Accept the lot if
Pim B
. Pim P
(5.4) o ST a
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Take an additional observation if*

(5.5) B Pm 1-8

l1—a Dom a

For the purpose of practical computations it is useful to rewrite the inequalities
(5.3), (6.4) and (5.5) in a somewhat different form. Taking the logarithms of
both sides of the inequalities (5.3), (5.4) and (5.5) one can easily verify that
these inequalities are equivalent to

log 1-8 logi — Po
(5.6) dn > oo tm a
log 2 — 1 Pro og Pt _ g — P
og Ogl— ngo gl—po
log I B logi — P
(5.7) dn < . +m f‘ .
D1 1 P 1
log log i log P log =
and
log 2 log L= p
l—«a +m 1 —m
log 2 — log 1= m log 22 — og 1= m
0 1 Do 1 — po
(5.8) .
logl—'s logl:po
<dm < "‘1 +m f‘ .
4! P D1 — D
1 lo log = — lo,
0og g 1 g o g g

Using the inequalities (5.6), (5.7) and (5.8) the test procedure can easily be
carried out as follows: For each m we compute the acceptance number

log I E log i : Po
(5.9) An = ot " " .
P _ — D1 P _ — D
log 2 log — log po log —
and the rejection number
]og ].'_—_6 log i : Po
(5.10) R, = e = +m . f‘ _
D1 — D 1 — D
log = — log —— log = — log ——=
%o BT p, £ P T =p

14 There is a slight approximation involved in the formulas (5.3), (5.4) and (5.5). For
details see section 3.3.
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These acceptance numbers A, and rejection numbers R, are best tabulated
before inspection starts. Inspection is continued as long as Am < dm < R .
At the first time when d, does not lie between the acceptance and rejection
numbers, the sampling inspection is terminated. The lot is accepted if dm < Am
and the lot is rejected if dm > R .

The test procedure can also be carried out graphically as indicated in Figure 2.
The number m of observations made is measured along the abscissa axis. Since
A, is a linear funetion of m, the points (m, A,) will lie on a straight line Lo .
Similarly, the points (m, R») will lie on a straight line L;. We draw the lines
Lo and L; and the points (m, d.) are plotted as inspection goes on. At the first
time when the point (m, d..) does not lie between the lines L, and L, inspection

d

3 n
T T

T2 3 4 5 6578 90 101 12131415 ™
y \ot
pece?

Fi6. 2

— L]

o

is terminated. The lot is rejected if the point (m, d..) lies on L, or above, and the
lot is accepted if the point (m, d,) lies on L, or below.

5.2.4. The operating characteristic curve of the test. As mentioned in section
5.2.3 the test procedure defined by the inequalities (5.6), (5.7) and (5.8) will
satisfy the requirement that the probability of accepting the lot is < 8 when-
ever p > p; and the probability of rejecting the lot is <« whenever p < po.
Although this already describes the essential features of the test procedure, it
may be desirable to know the probability L, of accepting the lot for any possible
value p of the proportion of defectives in the lot. Clearly, L, will be a function
of p and can be plotted as shown in Figure 3. The curve L, is called the operat-
ing characteristic curve. The range of p is, of course, fromO0to 1. L, = 1
forp = 0and L, = 0 for p = 1. The value of L, decreases as p increases.
We already know that L,, = 1 — aand L, = 8. Now we shall give a method
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for computing the value of L, for any p. If p, is not far from Do , which will
usually be the case in practice, a good approximation to L, is given by (see

equation 3.35)
B 1 — 13)"
(1 = a) ( — !

(-

where h is equal to the non-zero root of the equation

(5.12) p(’f;f)" + (- p) G—:—’;)h -1

(611) L,~1—

Operating characteristic curve

F16.3

To plot the operating characteristic curve, it is not necessary to solve (5.12)
with respect to h. Instead we can proceed as follows: From (5.12) we express
p as a function of A, i.e.,

1— (1_;2 '
= 1 — po
p (&)h _ (l — Zh)h .
Do 1 — po
For any given value h we compute the value of p from (5.13) and the value of
L, from (5.11). The point (p, L,) obtained in this way will be a point of the
operating characteristic curve. Doing this for various values of h we can

obtain a sufficient number of points on the operating characteristic curve so
that the curve can be drawn.

(5.13)
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5.2.5. The average amount of inspection required by the test. Denote by E,(n)
the expected value of the number of observations required by the test. Clearly,
E,(n) is a function of p. According to (4.8) a good approximation to the value
of E,(n) is given by

Liog 2+ 1,187 F
(5.14) E,(n) ~ —a - @
log? + (1 — p) log — 2!
”ngo+( ») 3 —

where L,isgiven by (5.11). Plotting E,(n) as a function of p, the curve obtained
will, in general, be of the type shown in Fig. 4. The maximum will ordinarily
be reached between p, and p;. Furthermore, the curve will, in general, be
increasing as p increases from 0 to py, and decreasing as p increases from p,;
to 1.

EP(")

0] Py R ] p
Fic. 4

5.3. Sequential analysis of double dichotomies. 5.3.1. Formulation of the
problem. Suppose that we want to compare the effectiveness of two production
processes where the effectiveness of a production process is measured in terms
of the proportion of effective units in the sequence produced. We shall say that
a unit is effective if it has a certain desirable property, for example, if it with-
stands a certain strain. Let p; be the proportion of effectives if process 1 is
used, and p, the proportion of effectives if process 2 is used. In other words,
pi is the probability that a unit produced will be effective if process 1 is used,
and p is the probability that a unit produced will be effective if process 2 is
used. Suppose that the manufacturer does not know the values of p, and p,,
and that process 1 is in operation. If p; > p., then the manufacturer wants to
retain process 1. However, if p; < P2, especially if p, is substantially smaller
than p, , the manufacturer would like.to replace process 1 by process 2. Thus,
we are interested in testing the hypothesis that p; > p. against the alternative
that P1 < P2 .

A more general formulation of the problem can be given as follows: Consider
two binomial distributions. Let p; be the probability of a success in a single
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trial according to the first binomial distribution, and let p., be the probability
of a success in a single trial according to the second binomial distribution.
We shall use the symbol 1 for success and the symbol 0 for failure. Suppose
that the probabilities p;, and p, are unknown. We consider the problem of test-
ing the hypothesis that p, > p. on the basis of a sample consisting of N, observa-
tions from the first binomial distribution and N, observations from the second
binomial population. Since in many experiments the case N1 = N, is mainly
of interest, and since this case (as we shall see later) makes an exact and sim-
plified mathematical treatment of the problem possible, we shall assume in what
follows that Ny = N, = N (say).

Thus, on the basis of the outcome of the two series of N independent trials
we have to decide whether the hypothesis p, > p, should be accepted or rejected.

5.3.2. The classical method. The classical solution of the problem for large N
is given as follows: Let S; be the number of successes in the first set of N trials
(drawn from the first binomial population), and let S; be the number of suc-
cesses in the second set of N trials (drawn from the second binomial population).

Denote S 2-; Sy by pand 1 — p by g. Then for large N the expression
S — S
619 VN

is normally distributed with zero mean and unit variance if p, = p,. Suppose
that the level of significance we wish to choose is a. Let A, be the value for
which the probability that a normal variate with zero mean and unit variance
will exceed A, is equal to a. (For example, if « = .05, A, = 1.64). Thus, if
P1 = P2, the probability that the expression (5.15) will exceed A, is equal to a.
If p1 > p2, the probability that the expression (5.15) will exceed A, is less than a.
According to the classical method the hypothesis that p; > p, is rejected if the
observed value of (5.15) exceeds A\, . This method involves an approximation.
The distribution of the expression (5.15) is not exactly normal even for large N.
For small N this method cannot be used, since the distribution of (5.15) is far
from normal. For small N, R. A. Fisher has proposed an exact method which,
however, involves cumbersome calculations. In section 5.3.3. we shall suggest
another method which is exact (does not involve any approximations) and is
simple to apply as far as computations are concerned. The latter method has
the further advantage of being suitable for sequential analysis to which existing
methods are not readily adaptable.

5.3.3. An exact method. Let a,, -+, ay be the results in the first set of N

trials, and by, - - - , by the results in the second set of N trials. These results are
arranged in the order observed. Consider the sequence of N pairs
(5.16) (@1, by), - -+, (aw, bw).

Let t; be the number of pairs (1, 0) and {; the number of pairs (0, 1) in this
sequence. We consider only the pairs (0, 1) and (1, 0) and base the test on them.
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Let a be the outcome of an observation from the first population, and b the
outsome of an observation from the second population. The probability that
(a, b) = (1, 0) is equal to py(1 — p.), and the probability that (a, b) = (0, 1) is
equal to (1 — p))p.. Hence, knowing that (a, b) is equal to one of the pairs
(0, 1) and (1, 0), the (conditional) probability that it is equal to (0, 1) is given by

— 1 — p)p.
(5.17) P - Fmd—p)’

and the (conditional) probability that it is equal to (1, 0) is given by

= p(l — p,)
(5.18) R AN gy gy s

Hence, considering only the pairs (1, 0) and (0, 1) the variate £, is distributed like
the number of successes in a sequence of ¢ = ¢, + ¢, independent trials, the prob-
ability of a success in a single trial being equal to p. One can easily verify that
p=3ifpr=p:,p <%if p1 > psandp > 4if p1 < p,. Thus, the hypothesis
to be tested, i.e., the hypothesis that p; > p., is equivalent to the hypothesis
that p < 3. Thus, we can test the hypothesis that p, > p. by testing the
hypothesis that p < % on the basis of the observed value of ;. Since the dis-
tribution of ¢, is the same as the distribution of the number of successesin t = ¢; +
t, independent trials (¢ is treated as a constant and the probability of a success
in a single trial is equal to p), the test procedure can be carried out in the usual
manner. If we want a level of significance a, a critical value 7' is chosen so that
for p = § the probability that t; > T is equal to a. The hypothesis that p < 3
is rejected if and only if the observed f, is greater than or equal to the critical
value T. The value of T can be obtained from a table of the binomial distribu-
tion. If ¢ is large, ¢; is nearly normally distributed and the critical value 7' can
be obtained from a table of the normal distribution.

This procedure thus provides a simple test of the hypothesis that p, > p,.
The question arises whether the efficiency of this method is as high as that of the
classical method. It would seem that the method suggested here cannot be a
most efficient procedure, since the values of ¢, and #, depend on the order of the
elements in the sequences (a;, ---, ax) and (by, ---, by), and there is no
particular reason to arrange them in the order observed. However, it has been
shown in [7] that the loss in efficiency as compared with the classical method is
negligible if the number N of trials is large."

It should be pointed out that the procedure for testing the hypothesis that
P1 > P2 can be used also for testing the hypothesis that p, = p, if the alternative
hypotheses are restricted to p. > p; .

In addition to simplicity and exactness the present method seems superior to
the classical one in the following respect: Suppose that (contrary to the original

15 The author believes that the loss in efficiency is slight even when N is small, although
no exact investigation of this case has been made.
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assumption) the probability of a success varies from trial to trial. Denote by

p{? the probability of success in the i-th trial of the first set, and by p;” the prob-
ablhty of success in the ¢-th trial in the second set (: = 1, ,N). Assume that
that the probabilities p{” and p(0 are entirely miknown a.nd we wish to test the
hypothesis that p{® — pi? = ... = p{™ — p{™ = 0. In this case the classical
method is not applicable, but the present method provides a correct procedure.
Such a situation may arise, for instance, if we want to test the hypothesis that
the probability of a success (hitting the target) is the same for two different guns.
In the course of the experiments the probability of a hit may change due to ex-
ternal conditions such as wind, disposition of the gunner, etc. However, these
external conditions are likely to affect both guns equally if the trials are made
alternately (or approximately alterna.tely), so that if the two guns are equally
good we have p{® = p? 6 =1, ---, N).

5.3.4. Sequential test of the hypothesis thatp, 2 p2. Inorder to devise a proper
sequential test for testing the hypothesis that p; > p., we have to state first
what risks of making wrong decisions we are willing to tolerate. The efficiency
of the production process 1 may be measured by the ratio of effectives to in-

effectives produced, i.e., by k; = ip—l
iy
the more efficient the larger the value of k;. Similarly, the efficiency of produc-

tion process 2 may be measured by k, = l—-—f’-—

Production process 1 may be regarded

The relative superiority of

production process 2 over the process 1 can then reasonably be measured by the
ratio of k, to k; i.e., by

_ kep(1 — py)
(5.19) = =

If u = 1, the two processes are equally good. If u > 1, process 2 is superior to
process 1, and if v < 1, process 1 is superior to process 2. Thus, the manu-
facturer will, in general, be able to select two values of u, uo and u, say (uo < uy)
such that the rejection of process 1 in favor of process 2 is considered an error of
practical importance whenever the true value of u < uo, and the maintainance
of process 1 is considered an error of practical importance whenever u > u;.
If u lies between uo and u,; , the manufacturer does not care particularly which
decision is taken.

Clearly, we will always have 4, < u;. If the transition from production
process 1 to process 2 involves some cost or other inconveniences, it seems
reasonable to put uo = 1 (or % may even be slightly greater than one). This
choice of v, really means that we consider the rejection of process 1 a serious error
whenever this process is not inferior to process 2. On the other hand, if the
transition from process 1 to process 2 does not involve any inconveniences, the
rejection of process 1 in favor of 2 cannot be a serious error when the two processes
are equally efficient, i.e., when v = 1. Thus, in such a case, it seems reasonable
to choose uy somewhat below 1
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After the quantities up and u; have been chosen the risks that we are willing
to tolerate may reasonably be expressed in the following form: The probability
of rejecting process 1 should not exceed a preassigned value & whenever u < u,
and the probability of maintaining process 1 should not exceed a preassigned
value 8 whenever u > u;.

Thus, the risks that we are willing to tolerate are characterized by the four
quantities %o, u1, « and 8. After these four quantities have been chosen, a
proper sequential test can be carried out as follows: The (conditional) prob-
ability that we obtain a pair (0, 1), as given in (5.17), can be expressed as a func-
tion of u. In fact

a ) ¢ 1_ PP
- — u
N E =l _p;(ma B~ T

n(l — p2)
Let H, denote the hypothesis that p = I%o , and H,; the hypothesis that
P=j _1:_1 o A proper sequential test satisfying our requirements concerning

tolerated risks is the sequential probability ratio test of H, against H,. The
acceptance and rejection numbers for this sequential test can be obtained from
U

. . Uo
. 1
(5.9) and (5.10) by substituting iTw for po T
Thus, for each value of ¢ the acceptance number is given by

B L
- l—a l0g1-<|—uo
log u; — log uo log u; — log uo

for prand t = t; + ¢ for m.

log
(5.21) A4,

and the rejection number is given by

1081 — 8 log ——

’ _ a 1 + U
(5.22) R, = log w1 — log o log u; — log uo

1+u1

These acceptance numbers A, and rejection numbers R;(t = 1, 2, - - - ) are best
tabulated before experimentation starts. The sequential test is then carried out
as follows: The observations are taken in pairs where each pair consists of an
observation from the first process and an' observation from the second process.
We continue taking pairs as long as A, < t < R.. At the first time when ¢,
does not lie between the acceptance and rejection numbers, experimentation is
terminated. Process 1 is maintained if at this final stage t: < A, and process 1
is rejected in favor of 2if t, > R, .

The test procedure can also be carried out graphically as shown in Figure 5.
The total number m of pairs (0, 1) and (1, 0) is measured along the horizontal
axis. The points (¢, A;) will lie on a straight line Lo, since A, is a linear function
of ¢. The points (¢, R;) will lie on a parallel Yine L;. We draw the lines L, and
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L, and plot the points (¢, f;) as experimentation goes on. At the first time when
the point (¢, ¢,) is not within the lines Lo and L, experimentation is terminated.
Process 1 is maintained if at the final stage the point (¢, {») lies on Lo or below,
and process 1 is rejected if the point (¢, ¢;) lies on L, or above.
5.3.5. The operating characteristic curve of the test. For any value u of the ratio
kk2 we shall denote by L, the probability of maintaining process 1. Clearly, L
1
is a function of u. This function L, is called the operating characteristic curve
of the test. The operating characteristic curve can be determined from the

equations (5.11) and (5.13) by substituting

for Y and for po .

1+ +’uo

I

'/éé/‘iss?é'gl'onle'alhl'St

/

Fi1a. 5

(%) -
[+3

SYREN)
a 1
and

1_1+uo"

These equations are:

(5.23) Ly ~
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For any given value h we compute the values of  and L, from these equations.
The point (u, L,) obtained in this way will be a point of the operating character-
istic curve. Calculating the points (u, L,) for a sufficicntly large number of
values of h we can draw the operating characteristic curve.

5.3.6. The average amount of inspection required by the test. For any value u

of the ratio Iﬁ denote by E.(f) the expected value of the total number of pairs
(0, 1) and (1 0) required by the test. The value of Eu(t) can be obtained from
(5.14) by substituting E,(¢) for E,(n), L, for L,

for " and for

U

’1+ 1+ uw
Po . Thus

f_a+(1—L..)log

ui(l 4 uo) 1 14+ w

T¥u®ultuw T+u®itw

To compute the expected value of the total number of pairs (including also
the pairs (0, 0) and (1, 1)), we merely have to divide the right side expression in
(5.25) by pi(1 — p2) + po(1 — py).

In the rare event that no decision is yet reached at a number of pairs equal to
three times the expected value, we can truncate the test at that stage without
seriously affecting the probabilities of making a wrong decision (see section 4.6
in Part I).

5.3.7. Observations made in groups of r. In applications it may happen that at
each stage in the sequential process instead of drawing a single observation we
draw r observations from each of the binomial distributions. Hence, instead of
a single pair, we have two sets of r observations. If the order of observations
in each such set of r is recorded, we can establish the number of pairs (0, 1) and
the number of pairs (1, 0) for each pair of sets of r observations. In such a case
the test can be carried out as described in section 5.3.4, since after each pair of
sets of r observations we can compute ¢ and ¢,. The only effect of taking the
observations in groups of r is that more observations will generally be necessary
(approximately enough to fill out a group) and thereby the probability of making
an incorrect decision will be made somewhat smaller. However, if the order of
observations in such groups of r is not recorded, the difficulty arises that we are
not able to determine the values of ¢ and ¢; needed for the test procedure. It has
been shown in (7] that in such a case we may replace ¢ and ¢, by certain estimates
of t and ¢, without affecting seriously the probability of making an incorrect
decision. The estimates of ¢, and #, (and thereby also an estimate of ¢ = #, + t,)
are obtained as follows: Let r; be the number of successes in the group of r ob-
servations drawn from the first binomial distribution, and let r, be the number
of successes in the group of r observations drawn from the second binomial distri-
bution. Then for this pair of groups of r observations, we estimate the number

L, log i 1-8
(5.25) E.(t) ~ @
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of pairs (1,0) tobe r; — 7:%3 and the number of pairs (0, 1) to be r, — 7%'3 . Thus,

an estimate of ¢; is obtained by summing r;, — Zl;-rz over all pairs of groups ob-

served, and thkat of ¢, is obtained by summing r, — ﬁ? over all pairs of groups
observed. .

5.4. Application to testing the mean of a normal distribution with known stand-
ard deviation. 5.4.1. Formulation of the problem. Suppose that a measurable
quantity z is normally distributed with unknown mean 6 and known standard
deviation o. For example, £ may be some measurable quality characteristic
of a unit of a certain product where z is normally distributed with a known
standard deviation in the population of all units. The problem we shall con-
sider here is to test the hypothesis that the unknown mean 6 is less than a specified
value 6. This problem arises frequently, for example, in quality control.
Suppose that the quality of the product is considered the better the higher the
mean value of z. Thus, there will be a value ¢ such that the product is con-
sidered sub-standard if § < 6’ and the product is considered to meet specifications
if 8 > ¢’. Since 8is unknown, we are usually interested in testing the hypothesis
that 8 < ¢, i.e., that the product is sub-standard.

Since quality control is an important field of application for such test proce-
dures, the discussion will be continued in the terminology of quality control.
This, of course, should not be interpreted as a restriction upon the general
validity and applicability of the test procedure. The problem treated in section
5.4 can now be stated as follows: Let x be a measurable quality characteristic
of a unit of a certain product. The variable z is supposed to be normally
distributed with known standard deviation in the population of all units pro-
duced. The problem is to devise a sampling plan for testing the hypothesis
that the product is sub-standard. The product is said to be sub-standard, if
the mean 6 of z is less than a given specified value ¢'.

5.4.2. Tolerated risks for making a wrong decision. No sampling plan can
guarantee that the correct decision will always be made, i.e., that the product
will be declared sub-standard if and only if 8 < 6. The larger the amount: of
inspection, the smaller we can make the risks for making a wrong decision. If
inspection is costly, or destructive, we are willing to tolerate some risks of making
wrong decisions in order to reduce the necessary amount of inspection. Thus,
a proper sampling plan can be recommended only after the risks that can be
tolerated have been stated.

If the quality of the product is exactly on the margin, i.e., if § = ¢, then it
will make little difference whether the product is classified as sub-standard or
not. However, if 6 is considerably smaller than ', then the acceptance of the
hypothesis that the product meets specifications (rejection of the hypothesis
that the product is sub-standard) will usually be considered as a serious error.
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Similarly, if 6 is much larger than ¢, the acceptance of the hypothesis that the
product is sub-standard will generally be considered as a serious error. Thus,
the manufacturer will, in general, be able to select two values of 6, 6, and 6, say
(6, < ¢ and 6, > @) such that the classification of the product as satisfactory
(meeting specifications) is considered an error of practical importance whenever
6 < 6y, and the classification of the product as sub-standard is considered an
error of practical importance whenever 8 > 6,. If 0 lies between 6, and 6,, a
wrong classification of the product will not be viewed as a serious error, since
in this case 6 is near the marginal value ¢'.

After the two values 6, and 6; have been selected, the risks that we are willing
to tolerate can be stated in the following form: A sampling plan is required
such that the probability of classifying the product as satisfactory is less than
or equal to a preassigned quantity « whenever 8§ < 6,, and such that the prob-
ability of classifying the product as sub-standard is less than or equal to a
preassigned quantity 8 whenever 6 > 6,. Thus, the tolerated risks are char-
acterized by the four quantities 6y, 61, @ and 8. A proper sampling plan can
be devised after these four quantities have been selected.

5.4.3. A sequential test of the hypothesis that 8 < 6’ (the product is sub-standard).
Let H, be the hypothesis that 8§ = 6, and let H, be the hypothesis that 8 = 6, .
Let T be the sequential probability ratio test for testing H, against H, such that
a is the probability of accepting H, when H, is true and 8 is the probability of
accepting H, when H, is true. This sequential test will satisfy all our require-
ments, since for this test the probability of accepting H, (declaring the product
as sub-standard) is < 8 whenever 8 > 6:, and the probability of accepting H,
(declaring the product as satisfactory) is < « whenever 6 < 6, .

The sequential test T is given as follows: Denote the successive observations
onz by zi,x:, ---,ete. Accept the hypothesis that the product is satisfactory
at the m-th observation if

o2 §1 (za—81) 2
(5.26) log > log

m
—(1/202) 3 (2za—00)2
e a=1

1 -8
—

Accept the hypothesis that the product is sub-standard if

m
—(1/202) 3 (zq—01)2
e a=1

(5.27) log - < log

kil
—(1/202) % (za—00)2
€

a=1

B8

1 - a«a

Take an additional observation if

m
—(1/202) I (za—01)2
1

B e 1
(5.28) log < log < log

l -« n
—(1/%2) E (,a__oo)z
€ 1

_...6.
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The inequalities (5.26), (5.27) and (5.28) are equivalent to

m 2
(5.29) 2 Ta > — log1 il R el

a=1 0, — 6 o 2

m 2
5.30 <7 8 b + 6
(5:30) az.;x—ol—-oobgl—a"'m 2
and

a B 6 + 6,
6 B tT™ s
(5.31) ) ; 1 ;
<X za<—2 log ~B+mq‘i‘,
a=1 01"'00 o 2

respectively.
Using the inequalities (5.29), (5.30) and (5.31) the test procedure can easily
be carried out as follows: For each m compute the acceptance number

J* 8 6 + 61
(5.32) An == log1 _a+m 2
and the rejection number

e 1-8 b + 6,
(5.33) R, = e log - +m 5

These acceptance numbers A,. and rejection numbers R,. are best tabulated

before inspection starts. Inspection is continued as long as A, < Y z, <

’ a=1

R, . At the first time that ) x, does not lie between A, and R,, , inspection
a=1
is terminated. 1f at this final stage D z, < A,, the hypothesis that the
a=l1

product is sub-standard is accepted, and if ) z, > R,., the hypothesis that
a=1

the product is sub-standard is rejected.

The test procedure can also be carried out graphically as shown in Figure 6.
The number m of observations is measured along the horizontal axis. The
points (m, 4,) will lie in a straight line L, and the points (m, R..) will lie on a
parallel line L. We draw the parallel lines L, and L, and plot the points
<m, E xa) as inspection goes on. At the first time when the point (m, > xa)

a=1 a—1

does not lie between the lines Ly and L, inspection is terminated. The hypothe-

sis that the product is sub-standard is rejected if the point (m, E xa) lies on L,
a—1

)
1

M:

or above. The hypothesis in question is accepted if the point (m,

a

lies on L, or below.
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5.4.4. The operating characteristic curve of the test. For any value 8 denote by
Ly the probability that the hypothesis that the product is sub-standard is
accepted. Obviously, L, will be a function of 9 and is called the operating
characteristic curve of the test. The shape of the operating characteristic curve
will, in general, be of the type shown in Figure 7. L, approaches 1 as § — —
and L, approaches zero as # — . Furthermore, Ly is a decreasing function
of 8. We already know the values of L, for § = 6, and § = 6,. Now we shall

b= oy fairly small,

give a method for computing the value of L, for any 6. If

Zxe

N
 \ne “"’o IS

p\cce" T 500

} Il

é:’i‘i/s/é?ééton 515 14 15 6 17 m

F16. 6

which will usually be the case in practice, a good approximation to L, is given

by (see equation 3.35)
h h
()L (Y

l—a«a a

(5.34) Lo~1‘(1:ﬁ)"_(lﬁa)n=(l‘;"—ﬂ)h_ 1Ea>h

where the constant % is determined as follows: First we compute the character-
istic function ¢(f) of the variate

1
— (2~ 2
202(1 91)

(5.35) 2 =log———— = %2 [2(6, — b0}z + 65 — 63}

1
e—m(t—do)’
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2 — —
Thus, z is normally distributed with mean = b 5 a29§ + (6 020")0 and variance =
(0 — 6’ o
— Consequently, o(t) is given by
00—01, (01—00)077,  (01—00)% 4
(5.36) o) = e[—ﬂr"'_.t Jit—es 4%,

The value & is the non-zero real root of the equation ¢(f) = 1. Hence
_ (61 — 6)) — 2(8, — 60)0 _ 61 + 60 — 26
(91 - 00)2 01 - 00
The operating characteristic curve can be computed from (5.34) substituting

the right hand side member of (5.37) for A.
5.4.5. The average amount of inspeciion required by the test. Let Es(n) denote
the expected value of the number of observations required by the test when 6

(5.37) . h

Lo

—_—

A
eo el o

Fic. 7

is the true mean of z. According to (4.8) a good approximation to the value of
Ey(n) is given by
1 —
L+ a-ryigl = E
—a a,

6 — 6; + 2(6: — 60)8

log

Ey(n) ~ 24° L

where L, is given by (5.34).

In the rare event that the number of observations reaches three times the
expected value before the test is terminated, we can truncate the test at this
stage without seriously affecting the probabilities of making a wrong decision.

(See section 4.6 in Part I).

6. Outline of a General Theory of Sequential Tests of Hypotheses when No
Restrictions Are Imposed on the Alternative Values of the Unknown
Parameters

6.1. Sequentral test of a simple hypothesis with no restrictions on the alternative
values of the unknouwn parameters. Consider the following general case. Let
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Xy, --, X, be a set of p random variables and let f(z,, -+, Zp, 01, -, Ok)
be the joint probability density function of these random variables involving &
unknown parameters 6;, - -+, 6, . Suppose that we wish to test the hypothesis
Hythat 6, = 6}, - -, 6, = 6%, where 6], - - - , 6} are some given specified values.
Denote the set of all a prior: possible parameter points by €. Assume that
contains at least a finite k-dimensional sphere with the center (6}, --- , 6k).
Let Q* be the set of all possible alternative parameter points; i.e., @* is the
whole parameter space @ with the exception of the point 6° = (6}, -+, 7).
For any statistical procedure for testing H,, the probability of an error of the
first kind, will have a definite value, but the probability of an error of the second
kind will depend on the true alternative; i.e., it will be a single valued function
B(6) defined over all points 6 of Q*. Let w(6) be some non-negative function,

called weight function, such that f w(f) d0 = 1. Suppose that we wish to
Q*
construct a sequential test such that the probability of an error of the first kind
is equal to a given « and that the weighted average f w(6)B(6) d() of the
ﬂ‘

probabilities of errors of the second kind is equal to some given positive value 8.
This problem can easily be solved as follows: Let po. be equal to the product

Il f@ie, -+, %pa, 6, -+, 6)) where ;o denotes the ath observation on
a=1
z;¢t=1,---,p;a=1,---,n). Furthermore, let pi, be defined by

6.1) Pin = fm w(6) [fllf(xla‘. ey Zpa, O, ..., 0;,)] do.

The expression p;. can be interpreted as the probability density in the sample
space of m observations on the variates z,, ---, x,, if we assume that the
parameter point 6 in Q* has a probability distribution given by the density
function w(6) dé.

We shall denote by H; the hypothesis that the probability density function
in the sample space of n observations on X;, - -+, X, is given by p;, defined in
equation (6.1). The problem of testing H, against the single alternative H,
is not exactly of the type discussed in Part I, since p;, given in (6.1) cannot be
represented, in general, as a product of n factors where the ath factor depends
only on the observations i, - -, T« . However, it was pointed out in sec-
tion 3.2 that the fundamental inequalities derived in Section 3.2 remain valid
also when p,, is given by an expression of the type (6.1). Thus, we can use the
sequential probability ratio test for testing H, against the single alternative H, .
We reject H, if

6.2) Pu > 4,
( ~
we accept H, if

Pm
6.3 P < B,
(6.3) —
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and we make an additional observation if

(6.4) B <P 4,
Po

n

The expression p;, is given by (6.1) and the constants A and B are chosen so
that the probability of accepting H; when H, is true is o, and the probability
of accepting Ho when H, is true is 8. Thus, for practical purposes we may put
A = 1-86 and B = B .
a 1l - «a
Using the sequential process defined by the inequalities (6.2), (6.3), and (6.4)
we obviously have

(6.5) [ vos s = 5

where for each point 6 in Q* B(6) denotes the probability of accepting H, under
the assumption that 6 is the true parameter point.

Thus, the sequential test given by (6.2), (6.3), and (6.4) provides a satisfactory
solution of the problem if we want a test procedure such that the probability of

an error of the first kind is « and the weighted average f w(6)B(8) df of the
Q*

probabilities of errors of the second kind is 8. Practical problems, however,
do not always take this form. Many instances require a test procedure such
that 3(6) should be less than or equal to a given positive value 8 for all parameter
points 6 whose “distance” (defined in some sense) from 6° is greater than or
equal to some given positive value dy. The “distance’ of two parameter points
6" and 6° may be defined by some function 5(6', 6°) which is equal to zero if 6' = 6°
and is greater than zero if §' = 6°. Furthermore, for any three points 6, 6°, 6°
we have §(6", 6°) = (6%, 6") and 3(6', 6°) + 8(6°, 6°) > &(6, 6°). The distance
function will, in general, be chosen according to practical needs and mathe-
matical convenience.

Given the distance tunction (6", 6°) and given the requirements that the
probability of an error of the first kind be « and the probability of an error of
the second kind should not exceed 8 whenever the distance of the true parameter
point from 6° is greater than or equal to do, the aim is, of course, to construct
a sequential test which satisfies these requirements with a' minimum expected
number of observations.

While an exact solution of this problem has not yet been found, the following
approach seems reasonable: Let Q be the set of all parameter points 8 for which
5(6°, 60) > dy. We restrict ourselves to the class Cs of sequential tests based on

the ratio 22 where

n

(66) Pon = I_Ilf(xlar ***y Tpa, 0‘1): "'!02):

©.7) v = [ 0@ 117G, s pa, 01,0, ) 0
0 a=
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and w(6) may be any non-negative function of 6, called weight function, for
which

6.8) fn w(O)do =

For carrying out the sequential test two constants A and B are chosen. The
hypothesis H, is accepted if %’5 < B, H, is rejected if %‘ > A, and an additional

observatlon is made if B < P < A. The restriction to the class C; of sequen-

tial tests is suggested by the fact that we are led to these tests if it is require~
that some weighted average of the probabilities of errors of the second kind be
equal to a given value 8.

Accepting the restriction that the sequential test should be a member of the
class Cs, we still need a principle for choosing the weight function w(6). It is
clear that the maximum of 8(6) in Q depends on the quantities A, B, and the
weight function w(6). Denote this maximum. value by Bma.x[4, B, w(6)]. Since
it is desirable to make Bmax[4, B, w(0)] as small as possible, it is proposed to
determine w(6) so that the expression Bmax[4, B, w(8)] becomes a minimum with
respect to w(d). Since for given values A and B the value of the weighted

average f w(6)B(6) dé is practically independent of w(6) (it is nearly equal

B(A—-l)
A—-B

mizing the difference Bmax[4, B, w(8)] — f w(6)B(8) d6. For convenience we

to ) minimizing Bumax[A4, B, w(6)] is practically equivalent to mini-

determine w(6) so that Smax[4, B, w(0)] — f w(6) B(6) db becomes a minimum.

For this weight function the maximum of /3(0) in Qo will depend only on A and B.
Denote this value by 8(A, B). Finally we determine the values A and B so
that (4, B) = B and the probability of an error of the first kind becomes .
The determination of w(#) is a problem in the calculus of variations. In
some important cases, however, the solution can be obtained by the following
simple procedure: Let S(d) be the set of all parameter points 6 for which
8(6°, 6) = d. Let v(6) be a non-negative weight function defined over the
surface S(dy) so that the surface integral 3 )0(0) do = 1 (where dw de-
S(do
notes the infinitesimal surface element). Consider the following sequential
procedure: Reject H, if

-/.;(d)v(O) [Hf(xlﬂ, ) xl;ﬂg 01, Tty ok)]dw

(6.9)
Hf(xlﬂs *ty Tpay 0(1’7 ) 02)

is greater than or equal to A, accept H, if (6.9) is less than' or equal to B, and
make an additional observation if the value of (6.9) lies between A and B. The
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constants A and B are so chosen that the probability of an error of the first kind
is « and f B(0)v(6) dw = B. In many statistical problems it is possible to
8(do)

find a weight function »(6) such that for a conveniently chosen distance function
5(6", 6°) the probability 8(6) of an error of the second kind becomes constant on
the surface S(d) for any value d, and, furthermore, 8(6) decreases with increasing
d. For such a weight function »(8), the sequential test based on (6.9), will
provide a solution of the problem. In fact, the weight function »(6) over the
surface S(d,) can be considered a limiting case of a weight function w(6) defined
in @ which takes the value zero for any ¢ whose distance from ¢’ is greater than
dy + A with A approaching zero in the limit. For the weight function »(9) the
maximum of B(6) in Q is equal to the weighted integral of 8(6). Thus, for this
weight function the difference between the maximum of 8(6) and the weighted
integral of 8(6) is minimized.

We shall illustrate this procedure by a simple example. Let X;, ---, Xi
be k normally and independently distributed variates with unit variances. The
mean values 6;, - -, 6, are unknown. Suppose that it is required to test the
hypothesis Hy that 6, = --- = 6, = 0. Assume that the distance of two points
¢' and ¢* is equal to

+ Vo — )+ - + (6 — ).

Then S(d) is a sphere with center at the origin and radius d. Let v(8) be con-
stant-on S(dy) and equal to the reciprocal of the area of S(d,). We shall show
that for this weight function »(6), 8(6) is constant on the sphere S(d) and is
monotonically decreasing with increasing d. For this purpose we prove first
that (6.9) is a monotonically increasing function of Zi + --- + Z where 7
is the arithmetic mean of the observations on z;. In fact, the expression (6.9)
becomes

tm=] aml

1 1 k n .
* @T)km [q(a )exp[— 2 2 2 @ia — 6| dw
(6.10) o

(2%,".,2 exp [— $ZZzk]

= ¢ exp [— % ndj) f exp [nZZ;6;] dw
5(do)

where c; is the reciprocal of the area of S(dy) and Z; is the arithmetic mean of
the n observations 7o (@ = 1, «+- , n). Let r, denote | \/E.:if | and let
a(f) (0 < a < =) denote the angle between the vector (%, - - -, #x) and the
vector (6;, ---, 6;). Then (6.10) can be written

(6.11) i exp [—1 ndi) f o exp (nrzdy cos [a(6)])dw.

Because of the symmetry of the sphere, the value of (6.11) will not be changed
if we substitute y(8) for a(6) where v(6) (0 < v(8) < =) denotes the angle
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between the vector 8 and an arbitrarily chosen fixed vector u. From this it
follows that the value of (6.11) depends only on r, .

Now we shall show that (6.11) is a strictly increasing function of r, . For this
purpose we have merely to show that

(6.12) I(r;) = f exp (nrzdo cos [y(60)])dw
8(do)
is a strictly increasing function of r,. We have
(6.13) LAl f ndy cos [y(6)] exp (nrzdo cos [v(6)])dw.
drz S(dg)

Denote by w; the subset of S(dp) in which 0 < v(8) < g, and by w, the subset

in which g < v(6) < 7. Because of the symmetry of the sphere we have

f nd, cos [y(0)] exp (nr-do cos [y(6)]) dw

w2

f ndy cos [r — v(8)] exp (nr.dy cos [x — ¥(0)]) dw

—f ndy cos [y(6)] exp (—nrzdo cos [v(0)]) dw.

Hence

dI(r.)
6.14) 4

= ndy f cos [v(6)]

{exp (ndor: cos [y(0)]) — exp (—ndor; cos [y(6)])} dw

The right hand side of (6.14) is positive. Hence, we have proved that expres-
sion (6.11) (or (6.10)) is a strictly increasing function of r. .

To show that 8(6) is constant on S(d) and is monotonically decreasing with
increasing d, let y1, - - - , yx be an orthogonal linear transformation of x;, - - - , 2y
sothat E(y) = V& + --- + 62, E(y) = 0 (G = 2, --- , k). Since §% +
.o 4+ gt = & 4 --- + I and since (6.11) depends only on B4+ 3,
it is seen that. the sequence of expression (6.11) formed for any sequence of
integers n has a joint distribution which depends only on Vv 6 + - + 6;.
Hence 8(6) is constant on any sphere with center at the origin. Since (6.11)
is a strictly increasing function of r, , it can be shown that 8(6) is a monotonically
decreasing function of V' 6} 4+ --- + 6;. Hence, we can test the hypothesis

H, by the sequential process based on (6.10).
If & = 1—that is, if we test the mean value of a single normal variate—the
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sphere S(d) is a 0-dimensional sphere consisting of the two points 6, = +d and
0, = —d and expression (6.10) reduces to

1 1

3 @y (5P [~ 12u(ze — o)) + exp [~ $5u(ae + Ao

(6.15) (21%5 exp [—%Exi]

= } exp [—$ndg){exp [nZdo] + exp [—nzdo]}.

6.2. Sequential test of a composite hypothesis. We shall give only a brief
outline of the principles on which a sequential test of a composite hypothesis
can be based, since they are analogous to those for a simple hypothesis. Let
Xy, -+, X, be a set of p random variables and let f(z,, -+, Zp, 01, -+, 6i)
be the joint probability density function of these variables involving % unknown
parameters 6,, ---, 6. Denote the set of all possible parameter points 8§ =
(61, ---, 6:) By Q. Suppose that we wish to test the hypothesis H, that the
true parameter point 8 is contained in the subset w of @. Let & be the set of
all points of @ which are not contained in w. Furthermore, let wo(6) and w,(6)
be two non-negative functions of 6, called weight functions, such that

(6.16) f wo(0)dd = 1 and f wi(0)df = 1.

If w is a surface in the space @ then the integral over w is meant to be the surface
integral over w.

In testing a composite hypothesis the probability of an error of the first kind
need not necessarily be the same for all points 0 in w. It will, in general, be a
function a(6) of the true point 8 in w. Similarly the probability of an error of
the second kind is a function 8(6) of 6 defined for all points in @. Suppose that
we wish to construct a sequential test such that the weighted average

f w(0)a(6) d@ of the probabilities of errors of the first kind is a given value

a, and the weighted average f w(6)B(0) do of the probabilities of errors of

the second kind is a given value 8. Then the following sequential test can be
used: Denote by Hy the hypothe51s that the probablhty density in the sample
space of n observations on X, ---, X, is given by

61 o = [ O] S, -, 2, 1, -, 6] a0
and by H{ the hypothesis that the density in the sample space is given by

(6.18) P = [ 0O @, -+ 20, 1, -+, 0]

The sequential probability ratio test for testing Hy against the single alternative
HY provides a solution of our problem. If the constants A and B in this sequen-
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tial test are chosen so that the probability is a that we reJect H; when Hp is
true, and the probability is 8 that we accept Ho when H; is true, then for this
sequentxal test we have

f wo(0)a() df = «
and

[ w@8@ a0 = 5

This can be proved in the same way as the corresponding statement in the case
of a simple hypothesis.

Frequently we may require a sequential test procedure such that the least
upper bound of a(6) in w is equal to a given a and 8(6) is less than or equal to a
given g for all points 6§ whose ‘‘distance” (defined in some sense) from w is greater
than or equal to a given positive value dy. The ‘‘distance’” of a parameter
point 6 from w may be defined by some function 8(6, w) which is positive if 6
is not in w and is zero if isin w. The distance function will be chosen in general
according to practical needs and mathematical convenience. For reasons simi-
lar to those discussed in the case of a simple hypothesis, an appropriate sequential
test procedure with the desired properties can be found as follows: Let &(d)
be the set of all points 6 for which (6, w) > d. Let, furthermore, wy(6) and
wi(0) be two weight functions such that

6.19 wo(9) df = 6) do = 1.

(6.19) -/; o(6) -/a':(do) wi(®)

Denote by Hs the hypothesis that the probability density in the sample space
of n observations on X, ---, X, is given by

(6.20) Pon = f wo(o) [Hlf(xlay *tty Tpa, 0)] de (n = 17 21 o °)

and by H7 the hypothesis that the probability density in the sample space of n
observations on X, ---, X, is given by

(6-21) Pin = j’;(d w1(0) [ﬁf(xla, ***y Tpa, 0)] do. (n = ly 2y . )

Con51der the sequential probability ratlo test for testmg the simple hypothesis
Hg against the smgle alternative Hy . For any 0 in w let «(8) be the prob-
ability of accepting HY 1 when 6 is true, and for any 6 in & let 8(6) be the prob-
ability of accepting Hy when 8 is true. It is clear that «(8) and B(8) depend on
the constants A and B used in the sequential process and on the weight functions
wo(6) and wy(6). For given 4, B, wy(8) and w,(6) let B[A, B, wo(6), w1(8)] be the
least upper bound of 8(8) in &(do) and let a[A, B, wo(6), w1(6)] be the least upper
bound of «(6) in w. Consider the difference

Bald, B, wo(0), ws(®)] = old, B, wi®), w®] — [ w(@)a(o) do
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and

ABLA, B, wy(8), w:6)] = BIA, B, wo(6), wy(6)] — f o\, B0 .
wldo
Determine wy(6) and w;(6) so that Max [Aa, AS] is a minimum. For these
weight functions the least upper bound of a(8) in w and the least upper bound of
B(6) in &(do) will be functions of A and B only. Finally, we determine A and B
so that the least upper bound of «(6) in w becomes «, and the least upper bound
of 8(6) in @(dos) becomes 8.

The determination of wy(6) and w,(6) involves the solution of problems in
the calculus of variations. However, in some important cases the solution of
the problem can easily be derived, since weight functions wo(6) and w:(6) can be
found for which Ae = A8 = 0. Such a situation is given, for instance, in the
following case: Let S(d) be the set of all points 6 for which §(6, w) = d. Suppose

that we can find two weight functions vy(8) and »,(6) such that [ vo(6) df =

f ’ )01(0) dS = 1 (dS denotes the infinitesimal surface element of S(dy)) and
8(do,
the sequential probability ratio test based on

‘/‘s(do) 1)1(0)[1;1 f(xld y °° "y Tpa, 0)] as
f 00(0)[IaI f(@a, -, Tpa, 0)] dg

has the following properties: (1) «(6) is constant in w; (2) 8(6) is constant on
S(d) for any d > d,; (3) B(6) is strictly decreasing with increasing d in the
domain d > dy. Then for these weight functions we evidently have Aa =
A8 = 0.

Let us illustrate this by a simple example. Let X be a normally distributed
variate with unknown mean p and unknown variance ¢°. Suppose that we
want to test the hypothesis H, that 4 = 0 and that the distance of the point

!
g
The set S(dy) then consists of all points (i, o) for which u = +doo or p = —djo.

The set w consists of all points (0, ¢) where o can take any arbitrary positive
value. Let r be a positive value. We define the weight functions v, (¢s) and

(u, o) from the set w is defined by

v1-(o) as follows: ver(6) = % if 0 < ¢ < r and equals zero for all other values of

1
o. The weight function »:,(¢) is equal to o if 0 < ¢ < rand p = =*doo and equal

to zero otherwise.
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Then

_ 1 _ ‘1 E(za - “)2
Pin = fs “ v1r (@) (-——*2#),.,20,. exp[ 53— do

1 1 1 1 2(Ze — doo)’
(6.22) = em™or f,, {a" exp [“ 2 —T;r’“]

1 1 2(@a + doo)’
+ _n exp [— 5 —————a;——]} do

and
1 1f1 1 22
(6.23) Pon = (21r)"/2 p {‘L‘ ;7. exp [_ p) 7] d"}
Hence
1 (1 12(:1:,.—(100)]
&Jfo ;?e""[ 2 &
r 2
Pon f_l;exp[_lix_«]d,
(6.24) b o 2 o
' L[ e[ - 12t doo ]y,
+2 h o™ xp 2 a?

We consider the limiting case when r — . Then

2
171 exp[_ 13(za — doa')]da,

Pn _ 20 o 2 o2
P _ _ 4
o [ Lew[- 12 ]a
(6.25) n " 1[°1 1 2(%a + doo)’
Lo o
+§f. E»exp[“é———az ]d"

—1- exp| — } Eﬁ] do
b o" P 2 o*
The sequential test based on the ratio (6.25) provides a solution of the problem
if it can be shown to have the following three properties: (1) «(8) is constant in
; (8) B(0) is monotonically decreasing with
E Ta n

by % and 3, (z, — %)’ by 8°. Since the dis-

a=1

w; (2) B(0) is only a function of | £
. ag

increasing Denote 2

tribution of

AP

ol &

|
I depends only on , the first two properties are proved if we
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show that the ratio (6.25) is a single valued function of g ‘ .

First we show that the numerator of the ratio (6.25) is a homogenous function
of (xy, -+, x,) of degree —(n — 1). In fact, making the transformation
¢ = M\ we obtain

“f1 _ 12(0\&a — doa)2] 1 l:_ 120\ + doa)2]}
/ {; e"p[ 5 o T a3 %

_ /1 _12(@a — dot)’ 1 _ 1Z2@a + dot)®
= [aip o[- 2772+ o -5 2 Jpaow

_ 1 (N1 _13(2a —d(,t)2:| 1 B 12(x.,+dot)2_|}
=55k {7exp[ R — +t—nexp é————tg——_' dt.

This proves that the numerator of (6.25) is a homogenous function of —(n — 1)
degree. Similarly, it can be shown that the denominator of (6.25) is alse a
homogenous function of degree —(n — 1). Thus the ratio (6.25) is a homog-
enous function of zero degree in the variables z;, - -+ , . .

It can be seen that (6.25) is a function of the two expressions =22 and Tz,
only;i.e.,

(6.26) % = ¢(Zz%, Z2a).

Let v = I‘V >zl I . Since (6.26) is a homogenous function of zero degree, its

value is not changed by substituting ‘_”v: for z,. Hence,

2 -
pln = &l .x;.. = 12
om medpE)ng]-f
Since ¢(Z2% , —Zx.) = ¢(Zz% , Zz.), we see that
=2
pln - £
P [,,2]

I

S

=\2
Since (—2- is a single valued function of

valued function of %l

, we have proved that 1;—:" is a single

n

In order to prove property (3) of thé sequential test based on the ratio (6.25),

we have merely to show that (6.25) is a strictly increasing function of %!
=2 -
Since:-g is a strictly increasing function of % , we have only to show that

(6.25) is a strictly increasing function of :—2 . The latter statement is obviously

proved if we show that (6.25) increases with increasing value | £ | while keeping
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v fixed. For fixed value of v the denominator of (6.25) is censtant. Thus, we
have merely to show that the numerator of (6.25) increases with increasing
| | while keeping v fixed. This follows easily from the fact that

exp [(Ex:) do] + exp [—(E:-) do]

is a strictly increasing function of | Z | .
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