Graduate Texts in Mathematics 151

Editorial Board S. Axler F.W. Gehring K.A. Ribet

Springer Science+Business Media, LLC

Graduate Texts in Mathematics

- 1 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
- 2 OXTOBY. Measure and Category. 2nd ed.
- 3 SCHAEFER. Topological Vector Spaces. 2nd ed.
- 4 HILTON/STAMMBACH. A Course in Homological Algebra. 2nd ed.
- 5 MAC LANE. Categories for the Working Mathematician. 2nd ed.
- 6 HUGHES/PIPER. Projective Planes.
- 7 SERRE. A Course in Arithmetic.
- 8 TAKEUTI/ZARING. Axiomatic Set Theory.
- 9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory.
- 10 COHEN. A Course in Simple Homotopy Theory.
- 11 CONWAY. Functions of One Complex Variable I. 2nd ed.
- 12 BEALS. Advanced Mathematical Analysis.
- 13 ANDERSON/FULLER. Rings and Categories of Modules. 2nd ed.
- 14 GOLUBITSKY/GUILLEMIN. Stable Mappings and Their Singularities.
- 15 BERBERIAN. Lectures in Functional Analysis and Operator Theory.
- 16 WINTER. The Structure of Fields.
- 17 ROSENBLATT. Random Processes. 2nd ed.
- 18 HALMOS. Measure Theory.
- 19 HALMOS. A Hilbert Space Problem Book. 2nd ed.
- 20 HUSEMOLLER. Fibre Bundles. 3rd ed.
- 21 HUMPHREYS. Linear Algebraic Groups.
- 22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic.
- 23 GREUB. Linear Algebra. 4th ed.
- 24 HOLMES. Geometric Functional Analysis and Its Applications.
- 25 HEWITT/STROMBERG. Real and Abstract Analysis.
- 26 MANES. Algebraic Theories.
- 27 KELLEY. General Topology.
- 28 ZARISKI/SAMUEL. Commutative Algebra. Vol.I.
- 29 ZARISKI/SAMUEL. Commutative Algebra. Vol.II.
- 30 JACOBSON. Lectures in Abstract Algebra I. Basic Concepts.
- 31 JACOBSON. Lectures in Abstract Algebra II. Linear Algebra.
- 32 JACOBSON. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.

- 33 HIRSCH. Differential Topology.
- 34 SPITZER. Principles of Random Walk. 2nd ed.
- 35 ALEXANDER/WERMER. Several Complex Variables and Banach Algebras. 3rd ed.
- 36 KELLEY/NAMIOKA et al. Linear Topological Spaces.
- 37 MONK. Mathematical Logic.
- 38 GRAUERT/FRITZSCHE. Several Complex Variables.
- 39 ARVESON. An Invitation to C*-Algebras.
- 40 KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed.
- APOSTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
- 42 SERRE. Linear Representations of Finite Groups.
- 43 GILLMAN/JERISON. Rings of Continuous Functions.
- 44 KENDIG. Elementary Algebraic Geometry.
- 45 LOÈVE. Probability Theory I. 4th ed.
- 46 LOÈVE. Probability Theory II. 4th ed.
- 47 MOISE. Geometric Topology in Dimensions 2 and 3.
- 48 SACHS/WU. General Relativity for Mathematicians.
- 49 GRUENBERG/WEIR. Linear Geometry. 2nd ed.
- 50 EDWARDS. Fermat's Last Theorem.
- 51 KLINGENBERG. A Course in Differential Geometry.
- 52 HARTSHORNE. Algebraic Geometry.
- 53 MANIN. A Course in Mathematical Logic.
- 54 GRAVER/WATKINS. Combinatorics with Emphasis on the Theory of Graphs.
- 55 BROWN/PEARCY. Introduction to Operator Theory I: Elements of Functional Analysis.
- 56 MASSEY. Algebraic Topology: An Introduction.
- 57 CROWELL/FOX. Introduction to Knot Theory.
- 58 KOBLITZ. *p*-adic Numbers, *p*-adic Analysis, and Zeta-Functions. 2nd ed.
- 59 LANG. Cyclotomic Fields.
- 60 ARNOLD. Mathematical Methods in Classical Mechanics. 2nd ed.
- 61 WHITEHEAD. Elements of Homotopy Theory.

(continued after index)

Joseph H. Silverman

Advanced Topics in the Arithmetic of Elliptic Curves

With 17 Illustrations

Joseph H. Silverman Mathematics Department Brown University Providence, RI 02912 USA jhs@math.brown.edu

Editorial Board

S. Axler Department of Mathematics San Francisco State University San Francisco, CA 94132 USA F.W. Gehring Mathematics Department East Hall University of Michigan Ann Arbor, MI 48109 USA K.A. Ribet Department of Mathematics University of California at Berkeley Berkeley, CA 94720-3840 USA

Mathematics Subject Classifications (1991): 14-01, 11Gxx, 14Gxx, 14H52

Library of Congress Cataloging-in-Publication Data Silverman, Joseph H., 1955– Advanced topics in the arithmetic of elliptic curves / Joseph H. Silverman. p. cm. – (Graduate texts in mathematics; v. 151) Includes bibliographical references and index. ISBN 978-0-387-94328-2 ISBN 978-1-4612-0851-8 (eBook) DOI 10.1007/978-1-4612-0851-8 1. Curves, Elliptic. 2. Curves, Algebraic. 3. Arithmetic. I. Title. II. Series. QA567.S442 1994 516.3'52-dc20 94-21787

Printed on acid-free paper.

© 1994 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc in 1994

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC,

except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Hal Henglein; manufacturing supervised by Vincent Scelta. Photocomposed copy prepared from the author's TeX file.

9 8 7 6 5 4 3 2 (Corrected second printing, 1999)

ISBN 978-0-387-94328-2

For Susan

Preface

In the introduction to the first volume of *The Arithmetic of Elliptic Curves* (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume.

Unfortunately, it turned out that even those ten topics would not fit into a single book, so I was forced to make some choices. The following material is covered in this book:

- I. Elliptic and modular functions for the full modular group.
- II. Elliptic curves with complex multiplication.
- III. Elliptic surfaces and specialization theorems.
- IV. Néron models, Kodaira-Néron classification of special fibers,

Tate's algorithm, and Ogg's conductor-discriminant formula.

- V. Tate's theory of *q*-curves over *p*-adic fields.
- VI. Néron's theory of canonical local height functions.

So what's still missing? First and foremost is the theory of modular curves of higher level and the associated modular parametrizations of elliptic curves. There is little question that this is currently the hottest topic in the theory of elliptic curves, but any adequate treatment would seem to require (at least) an entire book of its own. (For a nice introduction, see Knapp [1].) Other topics that I have left out in order to keep this book at a manageable size include the description of the image of the ℓ -adic representation attached to an elliptic curve and local and global duality theory. Thus, at best, this book covers approximately half of the material described in the appendix to the first volume. I apologize to those who may feel disappointed, either at the incompleteness or at the choice of particular topics.

In addition to the complete areas which have been omitted, there are several topics which might have been naturally included if space had been available. These include a description of Iwasawa theory in Chapter II, the analytic theory of p-adic functions (rigid analysis) in Chapter V, and Arakelov intersection theory in Chapter VI.

It has now been almost a decade since the first volume was written. During that decade the already vast mathematical literature on elliptic curves has continued to explode, with exciting new results appearing with astonishing rapidity. Despite the many omissions detailed above, I am hopeful that this book will prove useful, both for those who want to learn about elliptic curves and for those who hope to advance the frontiers of our knowledge. I offer all of you the best of luck in your explorations!

Computer Packages

There are several computer packages now available for performing computations on elliptic curves. PARI and SIMATH have many built-in elliptic curve functions, there are packages available for commercial programs such as Mathematica and Maple, and the author has written a small stand-alone program which runs on Macintosh computers. Listed below are addresses, current as of March 1994, where these packages may be acquired via anonymous ftp.

PARI (includes many elliptic curve functions)	
math.ucla.edu	128.97.4.254
megrez.ceremab.u-bordeaux.fr	147.210.16.17
(directory pub/pari)	
(unix, mac, msdos, amiga versi	ons available)
SIMATH (includes many elliptic curve f	unctions)
ftp.math.orst.edu	
ftp.math.uni-sb.de	
apecs (arithmetic of plane elliptic curves	s, Maple package)
$\mathrm{math.mcgill.ca}$	132.206.1.20
$(directory \ pub/apecs)$	
Elliptic Curve Calculator (Mathematica	package)
Elliptic Curve Calculator (stand-alone M	facintosh program)
gauss.math.brown.edu	128.148.194.40
(directory dist/EllipticCurve)	

A description of many of the algorithms used for doing computations on elliptic curves can be found in H. Cohen [1, Ch. 7] and Cremona [1].

Acknowledgments

I would like to thank Peter Landweber and David Rohrlich for their careful reading of much of the original draft of this book. My thanks also go to the many people who offered corrections, suggestions, and encouragement, including Michael Artin, Ian Connell, Rob Gross, Marc Hindry, Paul Lockhart, Jonathan Lubin, Masato Kuwata, Elisabetta Manduchi, Michael Rosen, Glenn Stevens, Felipé Voloch, and Siman Wong.

As in the first volume, I have consulted a great many sources while writing this book. Citations have been included for major theorems, but

viii

Preface

many results which are now considered "standard" have been presented as such. In any case, I claim no originality for any of the unlabeled theorems in this book, and apologize in advance to anyone who may feel slighted. Sources which I found especially useful included the following:

Chapter IApostol [1], Lang [1,2,3], Serre [3], Shimura [1]Chapter IILang [1], Serre [6], Shimura [1]Chapter IVArtin [1], Bosch-Lütkebohmert-Raynaud [1], Tate [2]Chapter VRobert [1], Tate [9]Chapter VILang [3,4], Tate [3]

I would like to thank John Tate for providing me with a copy of his unpublished manuscript (Tate [9]) containing the theory of q-curves over complete fields. This material, some of which is taken verbatim from Professor Tate's manuscript, forms the bulk of Chapter V, Section 3. In addition, the description of Tate's algorithm in Chapter IV, Section 9, follows very closely Tate's original exposition in [2], and I appreciate his allowing me to include this material.

Portions of this book were written while I was visiting the University of Paris VII (1992), IHES (1992), Boston University (1993), and Harvard (1994). I would like to thank everyone at these institutions for their hospitality during my stay.

Finally, and most importantly, I would like to thank my wife Susan for her constant love and understanding, and Debby, Danny, and Jonathan for providing all of those wonderful distractions so necessary for a truly happy life.

> Joseph H. Silverman March 27, 1994

Acknowledgments for the Second Printing

I would like to thank the following people who kindly provided corrections which have been incorporated in this second revised printing: Andrew Baker, Brian Conrad, Guy Diaz, Darrin Doud, Lisa Fastenberg, Benji Fisher, Boris Iskra, Steve Harding, Sharon Kineke, Joan-C. Lario, Yihsiang Liow, Ken Ono, Michael Reid, Ottavio Rizzo, David Rohrlich, Samir Siksek, Tonghai Yang, Horst Zimmer.

Providence, Rhode Island

February, 1999

Contents

Pref	ace	vii
	Computer Packages	viii
	Acknowledgments	viii
Intro	oduction	1
CHA	APTER I	
Ellip	otic and Modular Functions	5
$\S1.$	The Modular Group	6
§2.	The Modular Curve $X(1)$	14
§3.	Modular Functions	23
§4.	Uniformization and Fields of Moduli	34
§5.	Elliptic Functions Revisited	38
§6.	q-Expansions of Elliptic Functions	47
§7.	q-Expansions of Modular Functions	55
§8.	Jacobi's Product Formula for $\Delta(\tau)$	62
§9.	Hecke Operators	67
§10.	Hecke Operators Acting on Modular Forms	74
§11.	L-Series Attached to Modular Forms	80
	Exercises	85
CHA	APTER II	
Con	plex Multiplication	95
$\S1.$	Complex Multiplication over $\mathbb C$	96
§2.	Rationality Questions	104
§3.	Class Field Theory — A Brief Review	115
§4.	The Hilbert Class Field	121
$\S5.$	The Maximal Abelian Extension	128
§6.	Integrality of j	140
§7.	Cyclotomic Class Field Theory	151
§8.	The Main Theorem of Complex Multiplication	157
§9.	The Associated Grössencharacter	165
§10.	The L -Series Attached to a CM Elliptic Curve	171
	Exercises	178

Contents

CHAPTER III

Ellip	tic Surfaces	187
$\S1.$	Elliptic Curves over Function Fields	188
§2.	The Weak Mordell-Weil Theorem	191
§3.	Elliptic Surfaces	200
§4.	Heights on Elliptic Curves over Function Fields	212
§5.	Split Elliptic Surfaces and Sets of Bounded Height	220
§6.	The Mordell-Weil Theorem for Function Fields	230
§7.	The Geometry of Algebraic Surfaces	231
§8.	The Geometry of Fibered Surfaces	236
§9.	The Geometry of Elliptic Surfaces	245
§10.	Heights and Divisors on Varieties	255
§11.	Specialization Theorems for Elliptic Surfaces	265
§12.	Integral Points on Elliptic Curves over Function Fields	274
-	Exercises	278

CHAPTER IV

The	Néron Model	289
$\S1.$	Group Varieties	290
$\S2.$	Schemes and S-Schemes	297
§3.	Group Schemes	306
§4.	Arithmetic Surfaces	311
$\S5.$	Néron Models	318
§6.	Existence of Néron Models	325
§7.	Intersection Theory, Minimal Models, and Blowing-Up	338
§8.	The Special Fiber of a Néron Model	350
§9.	Tate's Algorithm to Compute the Special Fiber	361
§10.	The Conductor of an Elliptic Curve	379
§11.	Ogg's Formula	389
-	Exercises	396

CHAPTER V

Elli	ptic Curves over Complete Fields	408
§1.	Elliptic Curves over $\mathbb C$	408
§2.	Elliptic Curves over \mathbb{R}	413
§3.	The Tate Curve	422
§4.	The Tate Map Is Surjective	429
§5.	Elliptic Curves over <i>p</i> -adic Fields	438
§6.	Some Applications of <i>p</i> -adic Uniformization	445
-	Exercises	448

Contents

CHAPTER VI

Loc	al Height Functions	454
§1.	Existence of Local Height Functions	455
$\S2.$	Local Decomposition of the Canonical Height	461
§3.	Archimedean Absolute Values — Explicit Formulas	463
§4.	Non-Archimedean Absolute Values — Explicit Formulas	469
	Exercises	476
AP	PENDIX A	
Son	ne Useful Tables	481

§1. Bernoulli Numbers and $\zeta(2k)$ §2. Fourier Coefficients of $\Delta(\tau)$ and $j(\tau)$ §3. Elliptic Curves over \mathbb{Q} with Complex Multiplicat	481 482 Xion 483
Notes on Exercises	484
References	488
List of Notation	498
Index	504