Skip to main content

Limits of Conventional Lithography

  • Chapter
Nanotechnology

Abstract

Lithography is a key element in a cadre of planar processing methods used in advanced semiconductor manufacturing. Technology sectors, such as integrated circuits, flat panel displays, optoelectronic components, and advanced electronic packaging, all especially rely on it. Lithography as discussed in this chapter is used to pattern layered materials and is akin to the photographic process. In photography an imaging system is used to record an image in a silver-containing emulsion. In conventional lithography the emulsion is replaced by a thin radiation sensitive layer, usually a polymer, known as a resist. A pattern of radiation exposes the resist in order to alter its solubility in a chemical developer. The process relies on the highly non-linear response of the resist to produce well defined patterns after development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broers A.N., et al, Appl Phys. Lett. 29, 596 (1976)

    Article  Google Scholar 

  2. Howard R.E., et al., Appl Phys. Lett. 36, 598 (1980)

    Google Scholar 

  3. Beaumont S.P., et al, Appl Phys. Lett. 38, 436 (1981)

    Article  Google Scholar 

  4. Lee K.L., and Ahmed H., J Vac. Sci. Technol. 19, 946 (1981)

    Article  Google Scholar 

  5. Dagata J.A., et al, Appl Phys. Lett. 56, 2001 (1990)

    Article  Google Scholar 

  6. Snow E.S., Campbell P.M., and McCarr P.J., Appl Phys. Lett. 63, 749 (1993)

    Article  Google Scholar 

  7. Snow E.S., and Campbell P.M., Appl Phys. Lett. 64, 1932 (1994)

    Article  Google Scholar 

  8. Smith H.I., et al, Microelectronics Engineering, “Special Issue on Nanotechnology”, to be published

    Google Scholar 

  9. A number of individual cases were calculated for the various lithography methodslisted, then generous shaded figures were drawn to include those sets of points. The power law fit was performed using the individually plotted points.

    Google Scholar 

  10. Smith H.I., J. Vac. ScL Technol. B 4, 148 (1986)

    Article  Google Scholar 

  11. Hector S.D., and Smith H.I., OSA Proceedings on SXPL, Hawryluk A.M., and Stuhlen R.H., eds., 18, 202 (1993)

    Google Scholar 

  12. For an assessment of various electron proximity correction methods see: Owen G., J. Vac. Sci. Technol B 8, 1889 (1990)

    Google Scholar 

  13. Goldstein J.I., et al, Practical Scanning Electron Microscopy, Goldstein J.I., and Yakowitz H., eds., New York: Plenum Press, 1977, pp. 21–47

    Google Scholar 

  14. Wilson R.G., and Brewer G.R., Ion Beams with Applications to Ion Implantation, Huntington, NY: Krieger Publishing Company, (1979), pp.129–260

    Google Scholar 

  15. Kyser D.F. J. Vac. Sci. Technol. B 1, 1391 (1983)

    Article  Google Scholar 

  16. Howard R.E., et al, J. Vac. Sci. Technol. B 1, 1101 (1983)

    Article  Google Scholar 

  17. Tennant D.M., et al, J. Vac. Sci. Technol. B 12, 3689 (1994)

    Article  Google Scholar 

  18. Chapman B., “Glow Discharge Processes”, John Wiley & Sons, (1980), (especially Chapters 5 and 7)

    Google Scholar 

  19. Yan R.H., et al, IEEE Elec. Dev. Lett., 13, 256–258 (1992)

    Article  Google Scholar 

  20. Fiegna C, et al., IEEE Trans. Electron Dev. 41, 941–950 (1994)

    Article  Google Scholar 

  21. Ono M., et al., J. Vac. Sci. Tech B 13, 1740 (1995)

    Article  Google Scholar 

  22. Eugster C.C., Nuytkens P.R., and del Alamo J.A., IEEE IEDM Tech. Digest 495–499 (1992)

    Google Scholar 

  23. Tiwari S., and Woodall J.M., Appl. Phys. Lett. 64, 2211 (1994)

    Article  Google Scholar 

  24. Tiwari S., et al., Tech. Dig. IEDM 1992 859 (1992)

    Google Scholar 

  25. Simhony S., et al., Appl. Phys. Lett. 59, 2225 (1991)

    Article  Google Scholar 

  26. Tsukamoto S., et al. Appl. Phys. Lett. 63, 355 (1993)

    Article  Google Scholar 

  27. Tsuchiya M., et al. Phys. Rev. Lett. 62, 466 (1989)

    Article  Google Scholar 

  28. Weisbuch C, and Vinter B., Quantum Semiconductor Structures, San Diego: Academic Press (1991)

    Google Scholar 

  29. Ferrera J., et al., J. Vac. Sci. Technol. B 11, 2342 (1993)

    Article  Google Scholar 

  30. Hawryluk A.M., Smith H.I., Ehrlich D.J., J. Vac. Sci. Technoi B 1, 1200 (1983)

    Article  Google Scholar 

  31. Kirz J., J. Opt. Soc. Am. 64, 301–309 (1974)

    Article  Google Scholar 

  32. Anderson E.H., and Kern D., in X-Ray Microscopy III, Michette A., Morrison G., and Buckley C, eds., Berlin: Sringer-Verlag (1992)

    Google Scholar 

  33. Thieme J., et al., “X-Ray Optics and Microanalysis” Inst. of Physics Conf. Ser. 130, Bristol, 1993, 527–530

    Google Scholar 

  34. Tennant D.M., et al., Optics Lett. 16, 621 (1991)

    Article  Google Scholar 

  35. Tennant D.M., et al., J. Vac. Sci. Technol. B 6, 1970 (1990)

    Article  Google Scholar 

  36. Thieme J., et al., in X-Ray Microscopy IV, Erko A.I., and Aristov V.V., eds., Bogorodski Pechantnik: Chernogolvka (1995)

    Google Scholar 

  37. Windt D.L., private communication

    Google Scholar 

  38. Hartley J., Groves T., and Pfeiffer H., J. Vac. Sci. Technoi B 9, 3015 (1991)

    Article  Google Scholar 

  39. Pfeiffer H.C., et al., J. Vac. Sci. Technol. B 11, 2332 (1993)

    Article  Google Scholar 

  40. Chou S.Y., Smith H.I., and Antoniadis D.A., J. Vac. Sci. Technol. B 3, 1587 (1985)

    Article  Google Scholar 

  41. Chou S.Y. Sith H.I. and Antoniadis D.A. J. Vac. Sci. Techl. B 40 253 1986

    Google Scholar 

  42. Flanders D.C., Appl. Phys. Lett. 36, 93 (1980)

    Article  Google Scholar 

  43. Liddle J.A., J. Vac. Sci. Technoi B 9, 3003 (1991)

    Article  Google Scholar 

  44. Mauger P.E., et al., J. Vac. Sci. Technol. B 10, 2819 (1992)

    Article  Google Scholar 

  45. Tennant D.M., et al., J. Vac. Sci. Technol. B 8, 1975 (1990)

    Article  Google Scholar 

  46. MacDowell A.A., et al., J. Vac. Sci. Technol. B 9, 3193 (1991)

    Article  Google Scholar 

  47. “The National Technology Roadmap for Semiconductors ”, San Jose: The Semiconductor Industry Association (1994)

    Google Scholar 

  48. Tiberio R.C., et al., J. Vac. Sci. Technol B 9, 2842 (1991)

    Article  Google Scholar 

  49. Zah C.E., et al. Electron. Lett. 25, 650 (1989)

    Article  Google Scholar 

  50. Tennant D.M., et al., J. Vac. Sci. Technol. B 10, 2530 (1992)

    Article  Google Scholar 

  51. Kjellberg T., Schatz R., J. Lightwave Technol. 10, 1256 (1992)

    Article  Google Scholar 

  52. Tennant D.M., et al., J. Vac Sci Technol. B 11, 2509 (1993)

    Article  Google Scholar 

  53. Levenson M.D., Japan. J. Appl. Phys. 33, 6765 (1994)

    Article  Google Scholar 

  54. Hattori K., et al., J. Vac. Sci. Technol. B 11, 2346 (1993)

    Article  Google Scholar 

  55. Nakayama Y., Okazaki S., and Saitou N., J. Vac. Sci. Technol. B 8, 1836 (1990)

    Article  Google Scholar 

  56. Heritage M.B., J. Vac. Sci. Technol. 12, 1135 (1975)

    Article  Google Scholar 

  57. Frosien J., Lischke B., and Anger K., J. Vac. Sci. Technol. 16, 1827 (1979)

    Article  Google Scholar 

  58. Nakasuji, Suzuki and Shimizu, Rev. Sci. Inst. 64, 446 (1993)

    Article  Google Scholar 

  59. Berger S., et al., Proc. SPIE 2322, 434 (1994)

    Article  Google Scholar 

  60. Koops H.W.P. and Grob J., Springer Series in Optical Sciences: X-ray Microscopy 43, Berlin: Springer-Verlag, 1984

    Google Scholar 

  61. Heuberger A., J. Vac Sci Technol. B 6, 107 (1988)

    Article  Google Scholar 

  62. Warlaumont J., J. Vac Sci Technol. B 7, 1634 (1989)

    Article  Google Scholar 

  63. Fay B., in Microcircuit Engineering, Ahmed H., and Nixon W.C., eds., Cambridge: Cambridge University Press, 1980, 323–353

    Google Scholar 

  64. Early K., Schattenburg M.L, and Smith H.I., Microelectron. Eng. 11, 317 (1990)

    Article  Google Scholar 

  65. Archie C.N., et al., J. Vac. Sci. Technol. B 10, 3224 (1992)

    Article  Google Scholar 

  66. Frackoviak J., et al., J. Vac Sci Technol. B 9, 3198 (1991)

    Article  Google Scholar 

  67. Stengl G., et al., J. Vac Sci Technol. 16, 1883 (1979)

    Article  Google Scholar 

  68. Finkelstein W., and Mondelli A. A., Semiconductor International 55, (1995)

    Google Scholar 

  69. Brunger W.H., et al., Microelectronic Eng. 27, 323–326 (1995)

    Article  Google Scholar 

  70. Kinoshita H., et al., J. Vac Sci Technol. B 7, 1648 (1989)

    Article  Google Scholar 

  71. Bjorkholm J.E., et al., J. Vac. Sci. Technol. B 8, 1509 (1990)

    Article  Google Scholar 

  72. Kubiak G.D., et al., J. Vac. Sci. Technol. B 12, 3820 (1994)

    Article  Google Scholar 

  73. Hawryluk A.M., et al., Proc. OSA 12, 45 (1991)

    Google Scholar 

  74. Tennant D.M., et al., Appl. Optics 32, 7007 (1993)

    Article  Google Scholar 

  75. Ngyugen K.G., et al., J. Vac. Sci. Technol. B 12, 3833 (1994)

    Article  Google Scholar 

  76. Koek B.H., et al., J. Vac. Sci. Technol. B 12, 3409 (1994)

    Article  Google Scholar 

  77. McCord M.A., et al., J. Vac. Sci. Technol. B 10, 2764 (1992)

    Article  Google Scholar 

  78. Thorns S., Beaumont S.P., and Wilkinson C.D.W., J. Vac. Sci. Technol. B 7, 1823 (1989)

    Google Scholar 

  79. Hiroshima H., et al., J. Vac. Sci. Technol. B 13, 2514 (1995)

    Article  Google Scholar 

  80. Wilbertz C, et al.., Nuclear Instrum. & Methods in Phys. Section B 63, Issue 1-2, 120 (1992)

    Article  Google Scholar 

  81. Harriott L.R., J. Vac. Sci. Technol. B 11, 2200 (1993)

    Article  Google Scholar 

  82. Binnig B., et al., Phys. Rev. Lett. 49, 47 (1982)

    Article  Google Scholar 

  83. Minne S.C., Manalis S.R., and Quate C.F., Appl. Phys. Lett. 67, 3918 (1995)

    Article  Google Scholar 

  84. Zhang Z.L., and MacDonald N.C., J. Vac. Sci. Technol. B 11, 2538 (1993)

    Article  Google Scholar 

  85. Chang T.H.P., et al.., SPIE 10, 127(1993)

    Google Scholar 

  86. Kratschmer E., et al.., J. Vac. Sci. Technol. B 13, 2498 (1995)

    Article  Google Scholar 

  87. MacDonald N.C., Chapter 3, this volume

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tennant, D.M. (1999). Limits of Conventional Lithography. In: Timp, G. (eds) Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0531-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0531-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6805-5

  • Online ISBN: 978-1-4612-0531-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics