Skip to main content

Chemistry and Technology of Evanescent Wave Biosensors

  • Chapter
Book cover Biosensors with Fiberoptics

Abstract

The purpose of this chapter is to describe fiberoptic biosensors, particularly in relation to the evanescent wave. The basic optical properties of fibers, the configurations of fiberoptic biosensors, the means of attaching biomolecules to optical surfaces, advances in fiberoptics, and related fields of interest are described. More detailed discussions of some of the topics are found in other chapters in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Polanyi, M. L., and Hehir, R. M. (1962) In vivo oximeter with fast dynamic response. Rev. Sci. Instrum. 33, 1050–1054.

    Article  CAS  Google Scholar 

  2. Hirschfeld, T. (1965) Total reflection fluorescence. Can. J. Spectr. 10, 128.

    CAS  Google Scholar 

  3. Lee, S. H. (ed.) (1981) Optical Information Processing (Springer-Verlag, NY).

    Book  Google Scholar 

  4. Stetter, J. R., Jurs, P. C., and Rose, S. L. (1986) Detection of hazardous gases and vapors: Pattern recognition analysis of data from an electrochemical sensor. Anal. Chem. 58, 860–866.

    Article  CAS  Google Scholar 

  5. Carey, W. P., Beebe, K. R., and Kowalski, B. R. (1987) Multicompartment analysis using an array of piezoelectric crystal sensors. Anal. Chem. 59,1529–1534.

    Article  CAS  Google Scholar 

  6. Axelrod, D., Burghardt, T. P., and Thompson, N. L. (1984) Total internal reflection fluorescence. Ann. Rev. Biophys. Bioeng. 13, 247–268.

    Article  CAS  Google Scholar 

  7. Harrick, N. J. (1979) Internal Reflection Spectroscopy (Harrick Scientific, Ossinning, NY).

    Google Scholar 

  8. Anonymous. (1986) Projects in Fiberoptics (Newport Research, Mountain View, CA).

    Google Scholar 

  9. Snyder, A. W. and Love, J. D. (1983) Optical Wave guide Theory (Chapman and Hall, London).

    Google Scholar 

  10. Schulman, S. G. (ed.) (1985) Molecular Luminescence Spectroscopy (Part I) (Wiley, NY).

    Google Scholar 

  11. Udenfriend, S. (1962,1969) Fluorescence Assay in Biology and Medicine (2 vols.) (Academic, NY).

    Google Scholar 

  12. Hercules, D. M. (ed.) (1965) Fluorescence and Phosphorescence Analysis (Wiley-Interscience, NY).

    Google Scholar 

  13. Harrick, N. J. and Loeb, G. I. (1973) Multiple internal reflection fluorescence spectrometry. Anal. Chem. 45, 687–691.

    CAS  Google Scholar 

  14. Kronick, M. N. and Little, W. A. (1975) A new immunoassay based on fluorescence excitation by internal reflection spectroscopy. J. Immun. Methods 8, 235–240.

    Article  CAS  Google Scholar 

  15. Kronick, M. N. and Little, W. A. (1976) Fluorescent immunoassay employing total reflection for activation. US Patent 3,939,350.

    Google Scholar 

  16. Woodhead, J. S., Addison, G. M., and Hales, C. N. (1974) The immunoradiometric assay and related techniques. Br. Med. Bull. 29, 44–49.

    Google Scholar 

  17. Hirschfeld, T. E. (1984) Fluorescent immunoassay employing optical fiber in capillary tube. US Patent 4,447,546.

    Google Scholar 

  18. Andrade, J. D. and Van Wagenen, R. A. (1983) Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection. US Patent 4,368,047.

    Google Scholar 

  19. Andrade, J. D., Van Wagenen, R. A., Gregonis, D. E., Newby, K., and Lin, J. N. (1985) Remote fiber-optic biosensors based on evanescent-excited fluoroimmunoassay: Concept and progress. IEEE Trans. Elec. Dev. 32, 1175–1179.

    Article  Google Scholar 

  20. Zhujun, Z. and Seitz, W. R. (1986) Optical sensor for oxygen based on immobilized hemoglobin. Anal. Chem. 58, 220–222.

    CAS  Google Scholar 

  21. Arnold, M. A. (1985) Enzyme-based fiberoptic sensor. Anal. Chem. 57, 565,566.

    Google Scholar 

  22. Peterson, J. I. and Vurek, G. G. (1984) Fiber-optic sensors for biomedical applications. Science 224, 123–127.

    Article  PubMed  CAS  Google Scholar 

  23. Angel, S. M. (1987) Optrodes: Chemically selective fiber-optic sensors. Spectroscopy 2 (4), 38.

    CAS  Google Scholar 

  24. Seitz, W. R. (1984) Chemical sensors based on fiberoptics. Anal. Chem. 56, 16A–34A.

    Google Scholar 

  25. Thompson, R. B., Levine, M., and Kondracki, L. (1990) Component selection for fiberoptic fluorometry. Appl. Spectrosc. 44,117–122.

    Article  CAS  Google Scholar 

  26. Thompson, R. B. Fluorescence-based fiberoptic sensors, in Fluorescence Spectroscopy, vol. II: Biochemical Applications (Lakowicz, J. R.,ed.), Plenum, New York, in press.

    Google Scholar 

  27. Lee, E.-H., Benner, R. E., Fenn, J. B., and Chang, R. K (1979) Singular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation. Appl. Opt. 18, 862–868.

    Article  CAS  Google Scholar 

  28. Thompson, R. B. and Kondracki, L. (1989) Waveguide parameter for waveguide-binding fiberoptic biosensors, in Proceedings of the Eleventh International Conference of the IEEE Engineering in Medicine and Biology Society, Kim, Y. and Spelman, F. A., eds., (Institute of Electrical and Electronic Engineers, NY), p. 1102,1103.

    Google Scholar 

  29. Marcuse, D. (1988) Launching light into fiber cores from sources in the cladding. IEEE J. Lightwave Technol. LT-6, 1273–1279.

    Article  Google Scholar 

  30. Weber, G. (1975) Energetics of ligand binding to proteins. Adv. Prot. Chem. 29, 1–83.

    CAS  Google Scholar 

  31. Green, N. M. (1963) Avidin: 1. The use of 14C-biotin for kinetic studies and for assay. Biochem. J. 89, 585–591.

    PubMed  CAS  Google Scholar 

  32. Voller, A., and Bidwell, D. E. (1985) Enzyme immunoassays, in Alternative Immunoassays (Collins, W. P., ed.), Wiley, NY, chap. 6.

    Google Scholar 

  33. Bador, R., Dechaud, H., Claustrat, F., Desuzinges, C. (1987) Eu and Sm as labels in time-resolved immunofluorimetric assay of follitropin. Clin. Chem. 33, 48–51.

    CAS  Google Scholar 

  34. Haugland, R. P. (1983) Covalent fluorescent probes, in Excited States of Biopolymers (Steiner, R. F., ed.), Plenum, NY, pp. 29–58.

    Google Scholar 

  35. Hlady, V., Reinecke, D. R., and Andrade, J.D. (1986) Fluorescence of absorbed protein layers. J. Coll. Interface Sci. 111, 555–569.

    Article  CAS  Google Scholar 

  36. Newby, K., Andrade, J. D., Benner, R. E., and Reichert, W. M. (1986) Remote sensing of protein adsorption using a single optical fiber. J. Coll. Interface Sci. 111, 280–282.

    Article  CAS  Google Scholar 

  37. Soini, E., and Hemmila, I. (1979) Fluoroimmunoassay: Present status and key problems. Clin. Chem. 25, 353–361.

    CAS  Google Scholar 

  38. Lovgren, T., Hemmila, I., Pettersson, K., and Halonen, P. (1985) Time-resolved fluorometry in immunoassay, in Alternative Immunoassays, (Collins, W. P., ed.), Wiley, NY, chap. 12.

    Google Scholar 

  39. Oi, V. T., Glazer, A. N., and Stryer, L. (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J. Cell Biol. 93, 981–986.

    Article  PubMed  CAS  Google Scholar 

  40. Tromberg, B. J., Sepaniak, M. J., Vo-Dinh, T., and Griffin, G. D. (1987) Fiber-optic chemical sensors for competitive binding fluoroimmunoassay. Anal. Chem. 59,1226–1230.

    CAS  Google Scholar 

  41. Weetall, H. H. and Filbert, A. M. (1974) Porous glass for affinity chromatography applications. Methods Enzymol. 34, 59–72.

    Article  PubMed  CAS  Google Scholar 

  42. Wilchek, M., Miron, T., Kohn, J. (1984) Affinity chromatography. Methods Enzymol. 104, 3–55.

    Article  PubMed  CAS  Google Scholar 

  43. Scouten, W. H. (1983) Solid Phase Biochemistry: Analytical and Synthetic Aspects (Wiley, NY).

    Google Scholar 

  44. Ji, T. II. (1983) Bifunctional reagents. Methods Enzymol. 91, 580-.

    Article  PubMed  CAS  Google Scholar 

  45. Bhatia, S., Shriver-Lake, L., Prior, KJ., Georger, J. H., Calvert, J. M., Bredehorst, R., and Ligler, F. S. (1989) Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Anal. Biochem. 178, 408–413.

    CAS  Google Scholar 

  46. Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy (Plenum, NY), chap. 5.

    Book  Google Scholar 

  47. Lacovara, P., Esterowitz, L., and Allen, R. (1985) Flash-lamp pumped Ti:Al203 laser using fluorescent conversion. Opt. Lett. 10, 273–275.

    Article  PubMed  CAS  Google Scholar 

  48. Villarruel, C. A., Dominguez, D. D., and Dandridge, A. (1987) Evanescent wave fiberoptic chemical sensor. Proc. SPIE 798, 225–229.

    CAS  Google Scholar 

  49. Bosseimann, T., Reule, A., and Schroder, J. (1984) Fiber-optic temperature sensor using fluorescence decay time, in Proceedings of the Second International Conference on Optical Fiber Sensors, Stuttgart (VDE-Verlag, Berlin), pp. 151–154.

    Google Scholar 

  50. Bertil, H. and Jonsson, L. (1984) Pressure sensor with fluorescence decay as information carrier, in Proceedings of the Second International Conference on Optical Fiber Sensors, Stuttgart (VDE-Verlag, Berlin), pp. 391–394.

    Google Scholar 

  51. Thompson, R. B. and Vallarino, L. (1988) Novel fluorescent label for time-resolved immunoassay. Proc. SPIE 909, 426–433.

    CAS  Google Scholar 

  52. Muller, F. and Schmidt, D. (1986) Ruthenium complexes useful as carriers for immunologically active materials. US Patent 4,745,076.

    Google Scholar 

  53. Newby, K., Reichert, W. M., Andrade, J. D., and Benner, R. E. (1984) Remote spectroscopic sensing of chemical adsorption using a single multimode optical fiber. Appl. Opt. 23,1812–1815.

    Article  PubMed  CAS  Google Scholar 

  54. Dakin, J. P. and King, A. J. (1983) Limitations of a single optical fiber fluorimeter system due to background fluorescence, in Proceedings of the First International Conference on Optical Fibre Sensors (Institute of Electrical Engineers, London), p. 195.

    Google Scholar 

  55. Schwab, S. D., McCreery, R. L., and Gamble, F. T. (1986) Normal and resonance Raman spectroelectrochemistry with fiberoptic light collection. Anal. Chem. 58, 2486–2492.

    CAS  Google Scholar 

  56. Jordan, D. M., Walt, D. R., and Milanovich, F. P. (1987) Physiological pH fiber-optic chemical sensors based on energy transfer. Anal. Chem. 59, 437–439.

    CAS  Google Scholar 

  57. Neal, S.L., Patonay, G., Thomas, M. P., and Warner, I. M. (1986) Data analysis in multidimensional luminescence spectroscopy. Spectroscopy 1(3), 22.

    CAS  Google Scholar 

  58. Giuliani, J. F. and Bey, P. P. (1987) Multielement optical waveguide sensor, in Digest of Papers of the Fourth International Conference on Solid-State Sensors and Actuators (Institute of Electrical Engineers of Japan, Tokyo), p. 195.

    Google Scholar 

  59. Chan, K., Ito, H., and Inaba, H. (1984) An optical-fiber-based gas sensor for remote absorption measurement of low-level CH4 gas in the near-infrared region. IEEE J. Lightwave Technol. 2 (3), 234–237.

    Article  Google Scholar 

  60. Kersey, A. D., Dandridge, A., Tsveten, A. B., and Giallorenzi, T. G. (1985) Single-mode fiber Fourier transform spectrometer. Electronics Lett. 21, 463,464.

    Google Scholar 

  61. Musikant, S. (1985) Optical Materials (Marcel Dekker, New York), chaps. 3 and 4.

    Google Scholar 

  62. Tran, D. C., Sigel, G. H., and Bendow, B. (1984) Heavy metal fluoride glasses and fibers: A review. IEEE J. Lightwave Technol. 2(5), 566–586.

    Article  Google Scholar 

  63. van Hell, H., Leuvering, J. H. W., and Gribnau, T. C. J. (1985) Particle im-munoassays, in Alternative Immunoassays, (Collins, W. P., ed.), Wiley, New York, chap. 4.

    Google Scholar 

  64. Williams, D. J. (ed.) (1983) Nonlinear Optical Properties of Organic and Polymeric Materials, American Chemical Society Symposium Series No. 233, Washington, DC.

    Google Scholar 

  65. Anderson, B. E., Jones, R. D., Rehms, A. A., Ilich, P., and Callis, P. R. (1986) Polarized two-photon fluorescence excitation spectra of indole and benzimidazole. Chem. Phys. Lett. 125, 106–112.

    Article  CAS  Google Scholar 

  66. Butler, M. A. (1984) Optical fiber hydrogen sensor. Appl. Phys. Lett. 45, 1007–1009.

    Article  CAS  Google Scholar 

  67. Freeman, T. M. and Seitz, W. R. (1978) Chemiluminescence fiberoptic probe for hydrogen peroxide based on the luminol reaction. Anal. Chem. 50, 1242–1246.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thompson, R.B., Ligler, F.S. (1991). Chemistry and Technology of Evanescent Wave Biosensors. In: Wise, D.L., Wingard, L.B. (eds) Biosensors with Fiberoptics. Contemporary Instrumentation and Analysis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0483-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0483-1_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6782-9

  • Online ISBN: 978-1-4612-0483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics