Skip to main content

In Vivo Applications of Fiberoptic Chemical Sensors

  • Chapter

Part of the book series: Contemporary Instrumentation and Analysis ((CIA))

Abstract

As stated at the beginning of this volume, the term “biosensor” refers to sensors that use biomolecules in the molecular recognition or transduction processes. Although there have been many proposals to use fiberoptic biosensors in vivo, almost all the work to date has been in vitro. In the more general class of fiberoptic chemical sensors, in vivo applications have progressed further. Intravascular fiberoptic blood-gas chemical sensors have been developed and are currently undergoing clinical evaluation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson, M. and Vandenberg, E. T. (1986) In vivo probes: Problems and perspectives. Clin. Biochem. 19, 255–261.

    Article  PubMed  CAS  Google Scholar 

  2. Regnault, W. F. and Picciolo, G. L. (1987) Review of medical biosensors and associated materials problems. J. Biomed. Nater. Res.: Appl. Biomater. 21(A2), 163–180.

    CAS  Google Scholar 

  3. Yafuso, M., Arick, S. A., Hansmann, D., Holody, M., Miller, W. W., and Yan, C. F. (1989) Optical pH measurements in blood. Proc. SPIS-ont. Soc. Opt. Eng. 1067 (Optical Fibers in Medicine IV), 37–43.

    Google Scholar 

  4. Barker, S.J., Tremper, K. K., Hyatt, J., Zaccari, J., Heitzmann, H. A., Holman, B. M., Pike, K., Ring, L. S., Teope, M., andThaure, T. B. (1987) Continuous fiberoptic arterial oxygen tension measurements in dogs. J. Clin. Monit. 3, 48–52.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, S. W. and Feijen, J. (1985) Surface modification of polymers for improved blood compatibility. CRC Crit. Rev. Biocompat.1(3), 229–260.

    CAS  Google Scholar 

  6. Williams, D. F., ed. (1987) Blood Compatibility, vols. 1 and 2 (CRC Press, Boca Raton, FL).

    Google Scholar 

  7. Eberhart, R. C. (1985) Indwelling blood compatible chemical sensors. Surg. Clin. North Am. 65(4), 1025–1040.

    CAS  Google Scholar 

  8. Eberhart, R. C., Munro, M. S., Williams, G. B., Kulkarni, P. V., Shannon, W. A. Jr., and Brink, B. E. (1987) Albumin adsorption and recension on alkyl derivatized polyurethane vascular grafts. Artif. Organs 11, 375–382.

    Article  CAS  Google Scholar 

  9. Munro, M. S., Quattrone, A. J., Ellsworth, S. R., and Eberhart, R. C. (1985) Nonthrombogenic articles having enhanced albumin affinity. US Patent 4,530,974.

    Google Scholar 

  10. Shapiro, B. A., Cane, R. D., Chomka, C. M., Bandala, L. E., and Peruzzi, W. T. (1989) Preliminary evaluation of an intra-arterial blood gas system in dogs and humans. Crit. Care Med. 17(5), 455–460.

    Article  CAS  Google Scholar 

  11. Gehrich, J. L., Lubbers, D. W., Opitz, N., Hansmann, D. R., Miller, W. W., Tusa, J. K., and Yafuso, M. (1986) Optical fluorescence and its application to an intravascular blood gas monitoring system. IEEE Trans. Biomed. Eng. BME-33(2), 117–132.

    Article  Google Scholar 

  12. Miller, W. W., Gehrich, J. L., Hansmann, D. R., and Yafuso, M. (1988) Continuous in vivo monitoring of blood gases. Lab. Med.19(10), 629–635.

    Google Scholar 

  13. Gunther, M. and Rupp, L. (1990) Method for manufacturing a measuring probe. US Patent 4,900,381.

    Google Scholar 

  14. Friebele, E. J. (1979) Optical fiber waveguides in radiation environments. Opt. Eng. 18(6), 552–561.

    CAS  Google Scholar 

  15. Boiarski, A. A. (1989) Integrated optic system for monitoring blood gases. US Patent 4,854,321.

    Google Scholar 

  16. Marcuse, D. (1988) Launching light into fiber cores from sources located in the cladding. J. Lightwave Tech. 6(8),1273–1279.

    Article  Google Scholar 

  17. Hui, H. K., Divers, S., Lumsden, T., Wallner, T., and Weir, S. (1990) An accurate, low-cost, easily-manufacturable oxygen sensor. Proc. SPIET—Int. Soc. Opt. Eng. 1172 (Chemical, Biochemical, and Environmental Fiber Sensors), 233–238.

    Google Scholar 

  18. Blyler, L. L., Jr., Lieberman, R. A., Cohen, L. G., Ferrara, J. A., and Macchesney, J. B. (1989) Optical fiber chemical sensors utilizing dye-doped silicone polymer claddings. Polym. Eng. Sci. 29(17), 1215–1218.

    CAS  Google Scholar 

  19. David, D. J., Willson, M. C., and Ruffin, D. S. (1976) Direct measurement of ammonia in ambient air. Anal. Lett. 9(4), 389–404.

    CAS  Google Scholar 

  20. Louch, J. and Ingle, J. D., Jr. (1988) Experimental comparison of single-and double-fiber configurations for remote fiber-optic fluorescence sensing. Anal. Chem. 60, 2537–2540.

    CAS  Google Scholar 

  21. Wolfbeis, O. S., Weis, L. J., Leiner, M. J. P., and Ziegler, W. E. (1988) Fiber-optic fluorosensor for oxygen and carbon dioxide. Anal. Chem. 60, 2028–2030.

    CAS  Google Scholar 

  22. Rahn, H. and Prakash, O., eds. (1985) Acid Base Regulation and Body Ternperature (Developments in Critical Care Medicine and Anaesthesiology, vol. 10) (Kluwer Academic, Boston).

    Google Scholar 

  23. Siggaard-Andersen, O., Wimberley, P. D., Gothgen, I. H., Fogh-Andersen, N., and Rasmussen, J. P. (1988) Variability of the temperature coefficients for pH, pCO2, and p02 in blood. Scand. J. Clin. Lab. Invest. 48, 85–88.

    CAS  Google Scholar 

  24. Kelman, G. R. and Nunn, J. F. (1966) Nomograms for correction of blood pO2, pCO2, pH, and base excess for time and temperature. J. Appl. Physiol. 21(5), 1484–1490.

    PubMed  CAS  Google Scholar 

  25. Burnett, R. W., Christiansen, T. F., Durst, R. A., Evenson, R., Fallon, K., Komjathy, Z. L., Ladenson, J. H., Moran, R. F., Pulwer, E., Weisberg, H. F., and Zee, D. (1982) Tentative standard for definitions of quantities and conventions related to blood pH and gas analysis. National Committee for Clinical Laboratory Standards 2(10), 329–361.

    Google Scholar 

  26. Severinghaus, J. W. and Bradley, A. F. (1958) Electrodes for blood p02 and pCO2 determination. J. Appl. Physiol. 13, 515–520.

    PubMed  CAS  Google Scholar 

  27. Vurek, G. G., Feustel, P. J., and Severinghaus, J. W. (1984) A fiber optic pCO2 sensor. Ann. Biomed. Eng. 11, 499–510.

    Article  Google Scholar 

  28. Arnold, M. A. and Ostler, T. J. (1986) Fiber optic ammonia gas sensing probe. Anal. Chem. 58, 1137–1140.

    CAS  Google Scholar 

  29. Wolfbeis,O. S., Posch, H. E., and Kroneis, H. W. (1985) Fiber optical fluorosensor for determination of halothane and/or oxygen. Anal. Chem. 57, 2556–2561.

    CAS  Google Scholar 

  30. Lee, E. D., Werner, T. C., and Seitz, W. R. (1987) Luminescence Ratio Indicators for Oxygen. Anal. Chem. 59, 279–283.

    CAS  Google Scholar 

  31. Zhujun, Z. and Seitz, W. R. (1984) A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5. Anal. Chim. Acta 160, 47–55.

    Google Scholar 

  32. Lippitsch, M. E. and Wolfbeis, O. S. (1988) Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier. Anal. Chim. Acta 205, 1–6.

    CAS  Google Scholar 

  33. Khalil, Gamal-E., Gouterman, M. P., and Green, E. (1989) Method for measuring oxygen concentration. US Patent 4,810,655.

    Google Scholar 

  34. Culshaw, B., Foley, J., and Giles, I. P. (1984) A balancing technique for optical fibre intensity modulated transducers. Proc. SPIS-lnt. Soc. Opt. Eng. 574 (Proc. 2nd Int. Conf. Fibre Optic Sensors, Stuttgart), 117–120.

    Google Scholar 

  35. Bland, J. M. and Altman, D. G. (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet i, 307–310.

    Article  Google Scholar 

  36. Vaughan, W. M. and Weber, G. (1970) Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry 9(3), 464–473.

    Article  PubMed  CAS  Google Scholar 

  37. Wolfbeis, O. S. and Leiner, M. J. P. (1988) Recent progress in optical oxygen sensing. Proc. SPIE- Int. Soc. Opt. Eng. 906 (Optical Fibers in Medicine), 42–48.

    CAS  Google Scholar 

  38. Freeman, T. M. and Seitz, W. R. (1980) Oxygen probe based on tetrakis(alkylamino)ethylene chemiluminescence. Anal. Chem. 53(1), 98–102.

    Google Scholar 

  39. Zhujun, Z. and Seitz, W. R. (1985) Optical sensor for oxygen based on immobilized hemoglobin. Anal. Chem. 58, 220–222.

    Google Scholar 

  40. Wolfbeis, O. S., Offenbacher, H., Kroneis, H., and Marsoner, H. (1984) A fast responding fluorescence sensor of oxygen. Mikrochim. Acta I, 153–158.

    Article  Google Scholar 

  41. Lubbers, D. W. and Opitz, N. (1983) Optical fluorescence sensors for continuous measurement of chemical concentrations in biological systems. Sens. Actuators 4, 641–654.

    Article  Google Scholar 

  42. Lakowitz, J. R. (1983) Principles of Fluorescence Spectroscopy (Plenum, New York).

    Book  Google Scholar 

  43. Kroneis, H. W. and Marsoner, H. J. (1983) A fluorescence-based sterilizable oxygen probe for use in bioreactors. Sens. Actuators 4, 587–592.

    Article  CAS  Google Scholar 

  44. Barnikol, W. K. R., Gaertner, T., Weiler, N., and Burkhard, O. (1988) Microdetector for rapid changes of oxygen partial pressure (p02) during the respiratory cycle in small animals. Rev. Sci. Instrum. 59(7), 1204–1208.

    Article  CAS  Google Scholar 

  45. Peterson, J. I. and Fitzgerald, R. V. (1984) Fiber optic p02 probe. US Patent 4,476,870.

    Google Scholar 

  46. Peterson, J. I., Fitzgerald, R. V., and Buckhold, D. K. (1984) Fiber-optic probe for in vivo measurement of oxygen partial pressure. Anal. Chem. 56, 62–67.

    CAS  Google Scholar 

  47. Bergman, I. (1968) Improvements in or relating to gas detectors. UK Patent 1,190,583.

    Google Scholar 

  48. Stevens, B. (1971) Instrument for determining oxygen quantities by measuring oxygen quenching of fluorescent radiation. US Patent 3,612,866.

    Google Scholar 

  49. Hesse, Hans-C. (1974) Measuring Probe. GDR Patent 106,086.

    Google Scholar 

  50. Lubbers, D. W. and Opitz, N. (1985) Method and arrangement for measuring the concentration of gases. US Patent Re. 31,879.

    Google Scholar 

  51. Opitz, N. and Lubbers, D. W. (1987) Theory and development of f luorescencebased optochemical oxygen sensors: Oxygen optodes.Int. Anesth. Clin. 25(3), 177–179.

    Article  CAS  Google Scholar 

  52. Siggaard-Andersen, O., Gothgen, I. H., Wimberley, P. D., Rasmussen, J. P., and Fogh-Andersen, N. (1988) Evaluation of the Gas-STAT fluorescence sensors for continuous measurement of pH, pCO2, and p02 during cardiopulmonary bypass and hypothermia. Scand. J. Clin. Lab. Invest. 48, 77–84.

    CAS  Google Scholar 

  53. Buckles, R. G. (1982) Method for quantitative analysis using optical fibers. US Patent 4,321,057.

    Google Scholar 

  54. Buckles, R. G. (1983) Optical fiber apparatus for quantitative analysis. US Patent 4,399,099.

    Google Scholar 

  55. Bacon, J. R. and Demas, J. N. (1984) Method and apparatus for determining the presence of oxygen. UK Patent GB 2,132,348 A (Application).

    Google Scholar 

  56. Cox, M. E. and Dunn, B. (1985) Detection of oxygen by fluorescence quenching. Appl. Opt. 24(14), 2114–2120.

    CAS  Google Scholar 

  57. Yafuso, M., Yan, C. F., Hui, H. K., and Miller, W. W. (1989) Optical sensor. US Patent 4,849,172.

    Google Scholar 

  58. Marsoner, H., Kroneis, H., and Wolfbeis, O. (1987) Sensor element for determining the oxygen content and a method of preparing the same. US Patent 4,657,736.

    Google Scholar 

  59. Hsu, L. and Heitzmann, H. (1987) Dye containing silicone polymer composition. US Patent 4,712,865.

    Google Scholar 

  60. Klainer, S. M., Walt, D. R., and Gottlieb, A. J. (1988) Fibre optic sensing device and new polymer—useful as pH, oxygen, electrolyte or blood gas sensor. World Patent WO 8805533 A (Application).

    Google Scholar 

  61. Bacon, J. R. and Demas, J. N. (1987) Determination of oxygen concentration by luminescence quenching of a polymer-immobilized transition-metal complex. Anal. Chem. 59,2780–2785.

    CAS  Google Scholar 

  62. Murray, R. C. and Lefkowitz, S. M. (1988) Optical sensor for monitoring the partial pressure of oxygen. US Patent 4,752,115.

    Google Scholar 

  63. Nestor, J. R., Schiff, J. D., and Priest, B. H. (1990) Excitation and detection apparatus for remote sensor connected by optical fiber. US Patent 4,900,933.

    Google Scholar 

  64. Li, P. Y. F. and Narayanaswamy, R. (1989) Oxygen-sensitive reagent matrices for the development of optical fiber chemical transducers. Analyst 114, 663–666.

    Article  CAS  Google Scholar 

  65. Surgi, M. R. (1989) Design and evaluation of a reversible fiber optic sensor for determination of oxygen, in Applied Biosensors (Wise, D. L., ed.), Butterworths, Boston, pp. 249–290.

    Google Scholar 

  66. Marsoner, H. and Kroneis, H. (1986) Measuring device for deteriming the 02 content of a sample. US Patent 4,587,101.

    Google Scholar 

  67. Wolfbeis, O. S., Leiner, M. J. P., and Posch, H. E. (1986) A new sensing material for optical oxygen measurement, with the indicator embedded in an aqueous phase. Mikrochim. Acta 1986 III(5–6), 359–366.

    Google Scholar 

  68. Lubbers, D. W. and Opitz, N. (1981) Photometer including auxiliary indicator means. US Patent 4,255,053.

    Google Scholar 

  69. Stefansson, E., Peterson, J. I., and Wang, Y. H. (1989) Intraocular oxygen tension measured with a fiber-optic sensor in normal and diabetic dogs. Am. J. Physiol. 256, H1127–H1133.

    PubMed  CAS  Google Scholar 

  70. Larson, C. P., Jr., Riccitelli, S. D., Divers, S., Hui, H. K., Wallner, T. G., Boyles, J. V. C., and Lumsden, T. J. (1990) Evaluation of a continuous, in vivo blood gas monitoring system in patients. Abstracts of the Association of University Anesthetists Annual Meeting (Seattle, WA, May 3–5, 1990) (in press).

    Google Scholar 

  71. Shapiro, B., Cane, R., Chomka, C., and Gehrich, J. (1987) Evaluation of a new intra-arterial blood gas system in dogs and humans. Anesthesiology 67(3A), A640.

    Article  Google Scholar 

  72. Barker, S. J., Hyatt, J., Tremper, K. K., Gehrich, J. L., Arick, S. M., Gerschultz, S., and Safdari, K. (1989) Fiberoptic intraarterial pHa, Pa02, and PaCO2 in the operating room. Anesth. Analg. 68, S 16.

    Google Scholar 

  73. Miller, W. W., Yafuso, M., Yan, C. F., Hui, H. K., and Arick, S. (1987) Performance of an in-vivo continuous blood-gas monitor with disposable probe. Clin. Chem. 33(9), 1538–1542.

    CAS  Google Scholar 

  74. Barker, S. J., Tremper, K. K., and Heitzmann, H. A. (1987) Continuous fiberoptic arterial oxygen tension in dogs. Crit. Care Med. 15, 403.

    Google Scholar 

  75. Barker, S. J., Tremper, K. K., and Heitzmann, H. A. (1987) A clinical study of fiber-optic arterial oxygen tension. Crit. Care Med. 15, 403.

    Google Scholar 

  76. Kolthoff, I. M. and Laitinen, H. A. (1941) pH and Electro Titrations. The Colorimetric and Potentiometric Determination of pH, 2nd ed. (Wiley, New York).

    Google Scholar 

  77. Bates, R. G. (1973) Determination of pH. Theory and Practice, 2nd ed. (WileyInterscience, New York).

    Google Scholar 

  78. Peterson, J. I., Goldstein, S. R., Fitzgerald, R. V., and Buckhold, D. K. (1980) Fiber optic pH probe for physiological use. Anal. Chem. 52, 864–869.

    CAS  Google Scholar 

  79. Willard, H. H., Merritt, L. L., Dean, J. A., and Settle, F. A., Jr. (1981). Instrumental Methods of Analysis, 6th ed. (Wadsworth, Belmont, CA).

    Google Scholar 

  80. Wolfbeis, O. S., Furlinger, E., Kroneis, H., and Marsoner, H. (1983) Fluorimetric Analysis. I. A study on fluorescent indicators for measuring near neutral (physiological) pH-values. Fresenius Z. Anal. Chem. 314,119–124.

    CAS  Google Scholar 

  81. Junker, B. H., Wang, D. I. C., and Hatton, T. A. (1988) Fluorescence sensing of fermentation parameters using fiber optics. Biotech. Bioeng. 32, 55–63.

    Article  CAS  Google Scholar 

  82. Goldstein, S. R., Peterson, J. I., and Fitzgerald, R. V. (1980) A miniature fiber optic pH sensor for physiological use. J. Biomech. Eng. 102, 141–146.

    Article  PubMed  CAS  Google Scholar 

  83. Peterson, J. I. and Goldstein, S. R. (1980) Fiber optic pH probe. US Patent 4,200,110.

    Google Scholar 

  84. Tait, G. A., Young, R. B., Wilson, G. J., Steward, D. J., and MacGregor, D. C. (1982) Myocardial pH during regional ischemia: Evaluation of a fiber-optic photometric probe. Am. J. Physiol. 243, H1027—H1031.

    PubMed  Google Scholar 

  85. Takach, T. J., Glassman, L. R., Ribakove, G. H., and Clark, R. E. (1986) Continuous measurement of intramyocardial pH: Correlation to functional recovery following normothermic and hypothermic global ischemia. Ann. Thorac. Surg. 42, 31–36.

    Article  PubMed  CAS  Google Scholar 

  86. Watson, R. M., Markle, D. R., Ro, Y. M., Goldstein, S. R., McGuire, D. A., Peterson, J. I., and Patterson, R. E. (1984) Transmural pH gradient in canine myocardial isechmia. Am. J. Physiol. 246, H232–238.

    PubMed  CAS  Google Scholar 

  87. Watson, R. M., Markle, D. R., McGuire, D. A., Vitale, D., Epstein, S. E., and Patterson, R. E. (1985) Effect of verapamil on pH of ischemic canine myocardium. J. Am. Coll. Cardiol. 5(6), 1347–1354.

    Article  PubMed  CAS  Google Scholar 

  88. Takach, T. J., Glassman, L. R., Milewicz, A. L., and Clark, R. E. (1986) Continuous measurement of intramyocardial pH: Relative importance of hypothermia and cardioplegic perfusion pressure and temperature. Ann. Thorac. Surg. 42, 365–371.

    Article  PubMed  CAS  Google Scholar 

  89. Maturi, M. F., Greene, R., Speir, E., Burrus, C., Dorsey, L. M. A., Markle, D. R., Maxwell, M., Schmidt, W., Goldstein, S. R., and Patterson, R. E. (1989) Neuropeptide-Y. A peptide found in human coronary arteries constricts primarily small coronary arteries to produce myocardial ischemia in dogs. J. Clin. Invest. 83,1217–1224.

    Article  PubMed  CAS  Google Scholar 

  90. Ro, Y. M., Markle, D. R., Goldstein, S. R., Speir, E., Greene, R., Steadman, K., Aamodt, R., Epstein, S. E., and Patterson, R. E. (1989) Contrasting effects of verapamil and nifedipine on pH of ischemic myocardium in the dog. J. Pharmacol. Exp. Ther. 248(2), 654–660.

    CAS  Google Scholar 

  91. Kirkbright, G. F., Narayanaswamy, R., and Welti, N. A. (1984) Fibre-optic pH probe based on the use of an immobilised colorimetric indicator. Analyst 109,1025–1028.

    Article  CAS  Google Scholar 

  92. Markle, D. R., McGuire, D. A., Goldstein, S. R., Patterson, R. E., and Watson, R. M. (1981) A pH measurement system for use in tissue and blood employ-ing miniature fiber optic probes, in Advances in Bioengineering (Viano, D., ed.) American Society of Mechanical Engineering, New York, pp. 123–126.

    Google Scholar 

  93. Abraham, E., Markle, D. R., Fink, S., Ehrlich, H., Tsang, M., Smith, M., and Meyer, A. (1985) Continuous measurement of intravascular pH with a fiberoptic sensor. Anesth. Analg. 64,731–736.

    Article  CAS  Google Scholar 

  94. Costello, D. (1987) Fiber optic probe for quantification of colorimetric reactions. US Patent 4,682,895.

    Google Scholar 

  95. Chatterjee, M. S., Hetzel, F., and Kaminetzky, H. K. (1984) Fetal tissue pH—continuous monitoring. Int. J. Gynaecol. Obstet. 22(1), 41–46.

    Article  PubMed  CAS  Google Scholar 

  96. Hochberg, H. M., Roby, P. V., Snell, H. M., Smith, W. D., and Chatterjee, M. S. (1988) Continuous intrapartum fetal scalp tissue pH and ECG monitoring by a fiberoptic probe. J. Perinat. Med. 16, 71–86.

    Article  PubMed  Google Scholar 

  97. Grattan, K. T. V., Mouaziz, Z., and Palmer, A. W. (1987) Dual wavelength optical fiber sensor for pH measurement. Biosensors 17–25.

    Google Scholar 

  98. Guthrie, A. J., Narayanaswamy, R., and Welti, N. A. (1988) Solid-state instrumentation for use with optical-fibre chemical-sensors. Talanta 35(2),157–159.

    Article  PubMed  CAS  Google Scholar 

  99. Boisde, G. and Perez, J. J. (1987) Miniature chemical optical fiber sensors for pH measurements. Proc. SPIE—Int. Soc. Opt. Eng. 798 (Fiber optic Sensors II), 238–245.

    CAS  Google Scholar 

  100. Besar, S. S. A., Kelly, S. W., and Greenhalgh, P. A. (1989) Simple fibre optic spectrophotometric cell for pH determination. J. Biomed. Eng. 11,151–156.

    Article  PubMed  CAS  Google Scholar 

  101. Coleman, J. T., Eastham, J. F., and Sepaniak, M. J. (1984) Fiber optic based sensor for bioanalytical absorbance measurements. Anal. Chem. 56, 2246–2249.

    CAS  Google Scholar 

  102. Skogerboe, K. J. and Yeung, E. S. (1987) Stray light rejection in fiber-optic probes. Anal. Chem. 59,1812–1815.

    CAS  Google Scholar 

  103. Yasuso, M. and Hui, H. K. (1989) Micro Sensor. US Patent 4,798,738.

    Google Scholar 

  104. Bacci, M., Baldini, F., and Scheggi, A. M. (1988) Spectophotometric investigations on immobilized acid-base indicators. Anal. Chim. Acta 207, 343–348.

    CAS  Google Scholar 

  105. Jones, T. P. and Porter, M. D. (1988) Optical pH sensor based on the chemical modification of a porous polymer film. Anal. Chem. 60, 404–406.

    CAS  Google Scholar 

  106. Moreno, M. C., Marinez, A., Millan, P., and Camara, C. (1986) Study of a pH sensitive optical fibre sensor based on the use of cresol red. J. Mol. Struct. 143, 553–556.

    Article  CAS  Google Scholar 

  107. Guilbault, G. G. (1973) Practical Fluorescence (Marcel Dekker, New York).

    Google Scholar 

  108. Lubbers, D. W., Opitz, N., Speiser, P. P., and Bisson, H. J. (1977) Nanoencapsulated fluorescence indicator molecules measuring pH and pO2 down to submicroscopical regions on the basis of the optode-principle. Z. Naturforsch. 32c, 133–134.

    Google Scholar 

  109. Lubbers, D. W. and Opitz, N. (1983) Blood gas analysis with fluorescence dyes as an example of their usefulness as quantitative chemical sensors, in Proceedings of the International Meeting on Chemical Sensors, Analytical Chemistry Symposia, 17 (Seiyama, T., Fueki, K., Shiokawa, J., and Suzuki, S., eds.), Elsevier, New York, pp. 609–619.

    Google Scholar 

  110. Offenbacher, H., Wolfbeis, O. S., and Furlinger, E. (1986) Fluorescence optical sensors for continuous determination of near-neutral pH values. Sens. Actuators 9,73–84.

    Article  CAS  Google Scholar 

  111. Seitz, W. R. and Zhujun, Z. (1985) Fluorescent fluid determination method and apparatus. US Patent 4,548,907.

    Google Scholar 

  112. Saari, L. A. and Seitz, W. R. (1982) pH sensor based on immobilized fluoresceinamine. Anal. Chem. 54, 821–823.

    Article  CAS  Google Scholar 

  113. Munkholm, C., Walt, D. R., Milanovich, F. P., and Klainer, S. M. (1986) Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurement. Anal. Chem. 58,1427–1430.

    CAS  Google Scholar 

  114. Lutty, G. A. (1978) The acute intravenous toxicity of biological stains, dyes, and other fluorescent substances. Toxicol. Appl. Pharmacol. 44, 225–249.

    CAS  Google Scholar 

  115. Haugland, R. P. (1989) Handbook of Fluorescent Probes and Research Chemicals (Molecular Probes, Eugene, OR).

    Google Scholar 

  116. Opitz, N. and Lubbers, D. W. (1985) The applicability of fluorescence indicators to measure hydrogen ion activities by optimizing accuracy and minimizing the influence of ionic strength, in Ion Measurements in Physiology and Medicine (Kessler, M., Harrison, D. K., and Hoper, J., eds.), Springer-Verlag, Berlin, Heidelberg, pp. 122–127.

    Chapter  Google Scholar 

  117. Zhujun, Z., Zhang, Y., Wangbai, M., Russell, R., Shakhsher, Z. M., Grant, C. L., Seitz, W. R., and Sundberg, D. C. (1989) Poly(vinyl alcohol) as a substrate for indicator immobilization for fiberoptic chemical sensors. Anal. Chem. 61, 202–205.

    Google Scholar 

  118. Wolfbeis, O., Kroneis, H., and Offenbacher, H. (1986) Sensor element for fluorescence-optical measurement. US Patent 4,568,518.

    Google Scholar 

  119. Opitz, N. and Lubbers, D. W. (1983) New fluorescence photometrical techniques for simultaneous and continuous measurements of ionic strength and hydrogen ion activities. Sens. Actuators 4, 473–479.

    Article  CAS  Google Scholar 

  120. Wolfbeis, O. S. and Offenbacher, H. (1986) Fluorescence sensor for monitoring ionic strength and physiological pH values. Sens. Actuators 9, 85–91.

    Article  CAS  Google Scholar 

  121. Janata, J. (1987) Do optical sensors really measure pH? Anal. Chem. 59,1351–1356.

    CAS  Google Scholar 

  122. Edmonds, T. E., Flatters, N.J., Jones, C. F., and Miller, J. N. (1988) Determination of pH with acid-base indicators: Implications for optical fibre probes. Talanta 25(2), 103–107.

    Article  Google Scholar 

  123. Seitz, W. R. (1987) Optical sensors based on immobilized reagents, in Biosensors. Fundamentals and Applications (Turner, A. P. F., Karube, I., and Wilson, G. S., eds.) Oxford University Press, New York, pp. 599–617.

    Google Scholar 

  124. Takach, T. J., Glassman, L. R., Rodriguez, E. R., Falcone, J. T., Ferrans, V. J., and Clark, R. E. (1986) Acute rejection after cardiac transplantation: Detection by interstitial myocardial pH. Ann. Thorac. Surg. 42, 619–626.

    Article  PubMed  CAS  Google Scholar 

  125. Abraham, E., Fink, S. E., Markle, D. R., Pinholster, G., and Tsang, M. (1985) Continuous monitoring of tissue pH with a fiberoptic conjuctival sensor. Ann. Emerg. Med. 14(9), 840–844.

    Article  PubMed  CAS  Google Scholar 

  126. Leader, M. J. and Kamiya, T. (1989) Sensor system. US Patent 4,833,091.

    Google Scholar 

  127. Lubbers, D. W. and Opitz, N. (1975) The pCO2-/p02 Optode: A new probe for measurement of pCO2 or p02 in fluids and gases. Z. Naturforsch. 30c, 532–533.

    Google Scholar 

  128. Zhujun, Z. and Seitz, W. R. (1984) A carbon dioxide sensor based on fluorescence. Anal. Chim. Acta 160, 305–309.

    Google Scholar 

  129. Munkholm, C., Walt, D. R., and Milanovich, F. P. (1988) A Fiber-optic sensor for CO2 measurement. Talanta 35(2), 109–112.

    Article  PubMed  CAS  Google Scholar 

  130. Abraham, E., Markle, D. R., Pinholster, G., and Fink, S. (1986) Noninvasive measurement of conjunctival pCO2 with a fiberoptic sensor. Crit. Care Med. 14 (2), 138–141.

    Article  PubMed  CAS  Google Scholar 

  131. Kram, H. B., Fink, S., Tsang, M., Markle, D., Appel, P. L., and Shoemaker, W. (1988) Noninvasive measurement of tissue carbon dioxide tension using a fiberoptic conjunctival sensor. Effects of respiratory and metabolic alkalosis and acidosis. Crit. Care Med. 16(3), 280–284.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gottlieb, A., Divers, S., Hui, H.K. (1991). In Vivo Applications of Fiberoptic Chemical Sensors. In: Wise, D.L., Wingard, L.B. (eds) Biosensors with Fiberoptics. Contemporary Instrumentation and Analysis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0483-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0483-1_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6782-9

  • Online ISBN: 978-1-4612-0483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics