Skip to main content

Combined Sedimentation and Filtration Process for Cellulase Recovery During Hydrolysis of Lignocellulosic Biomass

  • Chapter
Biotechnology for Fuels and Chemicals

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

  • 861 Accesses

Abstract

A combined sedimentation and ultrafiltration process was investigated for recovering cellulase enzymes during the hydrolysis of lignocellulosic biomass. Lignocellulosic particles larger than approx 50 µm in length were first removed via sedimentation using an inclined settler. Ultrafiltration was then used to retain the remaining lignocellulosic particles and the cellulose enzymes, while transmitting fermentable sugars and other small molecules. The permeate flux from the ultrafiltration step for a feed consisting of 0.22 w/v% cellulase is 64 ± 5 L/m2-h, while that for a feed consisting of the settler overflow from a mixture 0.22 w/v% cellulase and 10 wt% lignocellulose fed to the settler is 130 ± 20 L/m2-h. The higher permeate flux in the latter case is presumably due to binding of a portion of the cellulase enzymes to the lignocellulosic particles during hydrolysis and filtration, preventing the enzymes from fouling the membrane. A filter paper activity assay shows little loss in enzymatic activity throughout the combined sedimentation/ultrafiltration separation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lynd, L. R., Wyman, C. E., and Gerngross, T. U. (1999), Biotechnol. Prog. 15, 777–793.

    Article  PubMed  CAS  Google Scholar 

  2. McCoy, M. (1998), Chemical Engineering News 76, 29–32.

    Google Scholar 

  3. Lee, J. (1997), J. Biotechnol. 56, 1–24.

    Article  PubMed  CAS  Google Scholar 

  4. Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Madjeski, H., and Galvez, A. (1999), Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios, National Renewable Energy Laboratory, Golden, CO.

    Book  Google Scholar 

  5. Mores, W. D., Knutsen, J. S., and Davis, R. H. (2001), Appl. Biochem. Biotech. 91–93, 297–309.

    Article  Google Scholar 

  6. Nguyen, Q. A., Keller, F. A., Tucker, M. P., Lombard, C. K., Jenkins, B. M., Yomogida, D. E., and Tiangco, V. M. (1999), Appl. Biochem. Biotech. 77–79, 455–472.

    Article  Google Scholar 

  7. Davis, R. H. and Gecol, H. (1996), J. Multiphase Flow 22, 563–574.

    Article  CAS  Google Scholar 

  8. Acrivos, A. and Herbolzheimer, E. (1979), J. Fluid Mechanics 92, 435–457.

    Article  Google Scholar 

  9. Hill, W. D., Rothfus, R. R., and Li, K. (1977), Int. J. Multiphase Flow 3, 561–583.

    Article  CAS  Google Scholar 

  10. Batt, B. C., Davis, R. H., and Kompala, D. S. (1990), Biotechnol. Prog. 6, 458–464.

    Article  PubMed  CAS  Google Scholar 

  11. Henry, K. L., Davis, R. H., and Taylor, A. L. (1990), Biotechnol. Prog. 6, 7–12.

    Article  PubMed  CAS  Google Scholar 

  12. Davis, R. H. and Parnham, C. S. (1989), Biotech. Bioengr. 33, 767–776.

    Article  CAS  Google Scholar 

  13. Stephanopoulos, G., San, K. Y., and Davison, B. H. (1985), Biotechnol. Prog. 1, 250–259.

    Article  PubMed  CAS  Google Scholar 

  14. Davis, R. H. and Acrivos, A. (1985), Ann. Rev. Fluid Mech. 17, 91–118.

    Article  Google Scholar 

  15. Ziegler, M. T., Thomas, S. R., and Danna, K. J. (2000), Molecular Breeding 6, 37–46.

    Article  CAS  Google Scholar 

  16. Wu, Z. W. and Lee, Y. Y. (1998), Appl. Biochem. Biotech. 70–72, 479–492.

    Article  Google Scholar 

  17. Ladisch, M. R., Lin, K. W., Voloch, M., and Tsao, G. T. (1983), Enzyme Microbial Tech. 5, 82–102.

    Article  CAS  Google Scholar 

  18. Saddler, J. N. (1986), Microbiol. Sci. 3, 84–87.

    PubMed  CAS  Google Scholar 

  19. Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. (1990), Biotech. Bioengr. 36, 275–287.

    Article  CAS  Google Scholar 

  20. Ishihara, M., Uemura, S., Hayashi, N., and Shimizu, K. (1991), Biotech. Bioeng. 37, 948–954.

    Article  CAS  Google Scholar 

  21. Tan, L. U. L., Yu, E. K. C., Mayers, P., and Saddler, J. N. (1986), Appl. Microbiol. Biotech. 25, 256–261.

    CAS  Google Scholar 

  22. Henley, R. G., Yang, R. Y. K., and Greenfield, P. F. (1980), Enzyme Microbial Tech. 2, 206–208.

    Article  CAS  Google Scholar 

  23. Ohlson, I., Tragardh, G., and Hahnhagerdal, B. (1984), Biotech. Bioeng. 26, 647–653.

    Article  CAS  Google Scholar 

  24. Ramos, L. P., Breuil, C., and Saddler, J. N. (1993), Enzyme Microbial Tech. 15, 19–25.

    Article  CAS  Google Scholar 

  25. Himmel, M. E., Adney, W. S., Baker, J. O., Elander, R., McMillan, J. D., Nieves, R. A., Sheehan, J. J., Thomas, S. R., Vinzant, T. B., and Zhang, M. (1997), Fuels Chemicals from Biomass 666, 2–45.

    Article  CAS  Google Scholar 

  26. Ganesh, K., Joshi, J. B., and Sawant, S. B. (2000), Biochem. Eng. J. 4, 137–141.

    Article  CAS  Google Scholar 

  27. Kaya, F., Heitmann, J. A., and Joyce, T. W. (1996), Cellulose Chem. Technol. 30, 49–56.

    CAS  Google Scholar 

  28. Kim, M. H., Lee, S. B., Ryu, D. D. Y., and Reese, E. T. (1982), Enzyme Microbial Tech. 4, 99–103.

    Article  CAS  Google Scholar 

  29. Reese, E. T. and Ryu, D. Y. (1980), Enzyme Microbial Tech. 2, 239–240.

    Article  CAS  Google Scholar 

  30. Roseiro, J. C., Conceicao, A. C., and Amaralcollaco, M. T. (1993), Bioresour. Technol. 43, 155–160.

    Article  CAS  Google Scholar 

  31. McMillan, J. D., Dowe, N., Mohagheghi, A., and Newman, M. (1999), Reducing the Cost of Saccharification and Fermentation by Decreasing the Cellulase Enzyme Loading Required for Cellulose Conversion, National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  32. Porter, M. C. (1972), Ind. Eng. Chem. Prod. Res. Dev. 11, 233–248.

    Article  Google Scholar 

  33. Ooshima, H., Burns, D. S., and Converse, A. O. (1990), Biotech. Bioeng. 36, 446–452.

    Article  CAS  Google Scholar 

  34. Kuberkar, V. T. and Davis, R. H. (1999), Biotechnol Prog. 15, 472–479.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knutsen, J.S., Davis, R.H. (2002). Combined Sedimentation and Filtration Process for Cellulase Recovery During Hydrolysis of Lignocellulosic Biomass. In: Finkelstein, M., McMillan, J.D., Davison, B.H. (eds) Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0119-9_94

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0119-9_94

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6621-1

  • Online ISBN: 978-1-4612-0119-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics