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Preface 

This textbook is intended for use in courses on linear control and filtering and 
estimation at a variety of advanced levels. It is reasonably self-contained, and is 
aimed primarily at advanced students and researchers in the areas of automatic 
control and communications. Among the special topics covered are realizations, 
least squares regulators, stability, stochastic modeling, and recursive estimation 
algorithms in communications and control. 

A major purpose of the book is an introduction to both deterministic and stochas­
tic control and estimation. The topics discussed have a wide range of applicability. 
In addition to the standard finite-dimensional linear regulator problems, we also 
discuss control of distributed parameter systems (systems governed by partial 
differential equations) based on the framework of linear-quadratic-Gaussian op­
timization problems. Our approach to these problems utilizes methods (based on 
Wiener-Ropf integral equations) that provide direct derivation of the basic results, 
and emphasize parallels between the finite- and infinite-dimensional versions of 
such control problems. 

Communications and stochastic control models have a common model basis, 
as both can be framed as state variable model estimation problems. Of course, for 
control purposes, the estimation is part of a larger objective to generate a system 
control design. For communication models, the estimate is the end in itself, as 
it typically represents the received message. Communications models can also 
(especially in the digital communications case) rely on models of a more discrete 
character than those encountered in the standard stochastic control context. 

State variables are the mathematical model for processes that exhibit "memory" 
in their sequential behavior. Such things occur in the control of systems subject to 
random disturbances, or tracking flight paths on the basis of noisy measurements. 
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Other models with a state variable character occur in various communication mod­
els. To say that a communication channel has memory essentially means that there 
is a state variable model for the behavior of the signals in the channel. Another 
source of state variable models in communications is the operation of encoders, 
particularly convolutional encoders. The "memory" of the encoder is the source 
of redundancy in the encoded source stream. 

The treatment of the material emphasizes vector space, and in particular inner 
product space, methods. The required analytical level is comparable to that of 
contemporary texts on stability theory (Feedback Systems: Input-Output Proper­
ties, by C. A. Desoer and M. Vidyasagar [25]) and optimization (Optimization By 
Vector Space Methods, by D. G. Luenberger [51]). 

The state-space modeling of distributed systems requires some familiarity with 
semigroups of operators and evolution equations. Our approach to infinite time lin­
ear regulators and stationary filtering problems is based on Wiener-Hopf methods, 
and is applicable to the distributed parameter case. The results can be construed 
as covering the finite-dimensional case by reading "semigroup generator" as the 
coefficient matrix. 

We also use results (due to Gohberg and Krein) on convolution and Wiener-Hopf 
integral equations. These are directly applicable to both input-output stability, and 
least squares control and estimation problems. The background and basic results 
of this theory are discussed. 

Topics are treated in both their continuous and discrete time versions throughout. 
It is useful to understand the extent to which the problems and answers are "the 
same", although the detailed formulas differ. Treating the problems through a 
linear mapping and inner product space framework leads naturally to covering 
both cases. 

The results presented rely for practical application on the availability of algo­
rithms for spectral factorization. In the final chapters we discuss iterative algo­
rithms which follow naturally from the methods employed in the earlier chapters. 

The book was produced using a variety of open source and freely available 
software, including fb.1EX2e, ghostview, and the GNU gpic and m4 programs, all 
running under GNUILinux. 

Thanks are finally due to my editor Ann Kostant and her staff at Birkhauser who 
handled the manuscript, and to my wife Susan who supported the project with 
good humor. 

Jon H. Davis 
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