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Preface 
These days there are dozens of wavelet books on the market, some of which 
are destined to be classics in the field. So a natural question to ask is: 
Why another one? In short, I wrote this book to supply the particular 
needs of students in a graduate course on wavelets that I have taught 
several times since 1991 at George Mason University. As is typical with such 
offerings, the course drew an audience with widely varying backgrounds and 
widely varying expectations. The difficult if not impossible task for me, the 
instructor, was to present the beauty, usefulness, and mathematical depth 
of the subject to such an audience. 

It would be insane to claim that I have been entirely successful in this 
task. However, through much trial and error, I have arrived at some basic 
principles that are reflected in the structure of this book. I believe that this 
makes this book distinct from existing texts, and I hope that others may 
find the book useful. 

(1) Consistent assumptions of mathematical preparation. In some 
ways, the subject of wavelets is deceptively easy. It is not difficult to under­
stand and implement a discrete wavelet transform and from there to analyze 
and process signals and images with great success. However, the underly­
ing ideas and connections that make wavelets such a fascinating subject 
require some considerable mathematical sophistication. There have been 
some excellent books written on wavelets emphasizing their elementary 
nature (e.g., Kaiser, A Friendly Guide to Wavelets; Strang and Nguyen, 
Wavelets and Filter Banks; Walker, Primer on Wavelets and their Scien­
tific Applications; Frazier, Introduction to Wavelets through Linear Alge­
bra; Nievergelt, Wavelets Made Easy; Meyer, Wavelets: Algorithms and 
Applications). For my own purposes, such texts required quite a bit of 
"filling in the gaps" in order to make some connections and to prepare the 
student for more advanced books and research articles in wavelet theory. 

This book assumes an upper-level undergraduate semester of advanced 
calculus. Sufficient preparation would come from, for example, Chapters 1-
5 of Buck, Advanced Calculus. I have tried very hard not to depart from this 
assumption at any point in the book. This has required at times sacrificing 
elegance and generality for accessibility. However, all proofs are completely 
rigorous and contain the gist of the more general argument. In this way, 
it is hoped that the reader will be prepared to tackle more sophisticated 
books and articles on wavelet theory. 

(2) Proceeding from the continuous to the discrete. I have always 
found it more meaningful and ultimately easier to start with a presenta-
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tion of wavelets and wavelet bases in the continuous domain and use this 
to motivate the discrete theory, even though the discrete theory hangs to­
gether in its own right and is easy to understand. This can be frustrating 
for the student whose primary interest is in applications, but I believe that 
a better understanding of applications can ultimately be achieved by doing 
things in this order. 

(3) Prepare readers to explore wavelet theory on their own. Wave­
lets is too broad a subject to cover in a single book and is most interesting to 
study when the students have a particular interest in what they are study­
ing. In choosing what to include in the book, I have tried to ensure that 
students are equipped to pursue more advanced topics on their own. I have 
included an appendix called Excursions in Wavelet Theory (Appendix B) 
that gives some guidance toward what I consider to be the most readable 
articles on some selected topics. The suggested topics in this appendix can 
also be used as the basis of semester projects for the students. 

Structure of the Book 

The book is divided into five parts: Preliminaries, The Haar System, Mul­
tiresolution Analysis and Orthonormal Wavelet Bases, Other Wavelet Con­
structions, and Applications. 

Preliminaries 

Wavelet theory is really very hard to appreciate outside the context of the 
language and ideas of Fourier Analysis. Chapters 1-4 of the book provide 
a background in some of these ideas and include everything that is sub­
sequently used in the text. These chapters are designed to be more than 
just a reference but less than a "book-within-a-book" on Fourier analysis. 
Depending on the background of the reader or of the class in which this 
book is being used, these chapters are intended to be dipped into either 
superficially or in detail as appropriate. 

Naturally there are a great many books on Fourier analysis that cover the 
same material better and more thoroughly than do Chapters 1-4 and at the 
same level (more or less) of mathematical sophistication. I will list some of 
my favorites below. Walker, Fourier Analysis; Kammler, A First Course in 
Fourier Analysis; Churchill and Brown, Fourier Series and Boundary Value 
Problems; Dym and McKean, Fourier Series and Integrals; Korner, Fourier 
Analysis; and Benedetto, Harmonic Analysis and Applications. 

The Haar System 

Chapters 5 and 6 provide a self-contained exposition of the Haar system, 
the earliest example of an orthonormal wavelet basis. These chapters could 
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be presented as is in a course on advanced calculus, or an undergraduate 
Fourier analysis course. In the context of the rest of the book, these chap­
ters are designed to motivate the search for more general wavelet bases 
with different properties, and also to illustrate some of the more advanced 
concepts such as multiresolution analysis that are used throughout the rest 
of the book. Chapter 5 contains a description of the Haar basis on [0, 1] 
and on R, and Chapter 6 shows how to implement a discrete version of the 
Haar basis in one and two dimensions. Some examples of images analyzed 
with the Haar wavelet are also included. 

Multiresolution Analysis and Orthonormal Wavelet Bases 

Chapters 7-9 represent the heart of the book. Chapter 7 contains an expo­
sition of the general notion of a multiresolution analysis (MRA) together 
with several examples. Next, we describe the recipe that gives the construc­
tion of a wavelet basis from an MRA, and then construct corresponding 
examples of wavelet orthonormal bases. Chapter 8 describes the passage 
from the continuous domain to the discrete domain. First, properties of 
MRA are then used to motivate and define the quadrature mirror filter 
(QMF) conditions that any orthonormal wavelet filter must satisfy. Then 
the discrete wavelet transform (DWT) is defined for infinite signals, pe­
riodic signals, and for finite sets of data. Finally the techniques used to 
pass from discrete filters satisfying the QMF conditions to continuously 
defined wavelet functions are described. Chapter 9 presents the construc­
tion of compactly supported orthornomal wavelet bases due to Daubechies. 
Daubechies's approach is motivated by a lengthy discussion of the impor­
tance of vanishing moments in the design of wavelet filters. 

Other Wavelet Constructions 

Chapters 10 and 11 contain a discussion of two important variations on 
the theme of the construction of orthonormal wavelet bases. The first, 
in Chapter 10, shows what happens when you allow yourself to consider 
nonorthogonal wavelet systems. This chapter contains a discussion of Riesz 
bases, and describes the semi-orthogonal wavelets of Chui and Wang, as 
well as the notion of dual MRA and the fully biorthogonal wavelets of 
Daubechies, Cohen, and Feauveau. Chapter 11 discusses wavelet packets, 
another natural variation on orthonormal wavelet bases. The motivation 
here is to consider what happens to the DWT when the "full wavelet tree" 
is computed. Waveletpacket functions are described, their time and fre­
quency localization properties are discussed, and necessary and sufficient 
conditions are given under which a collection of scaled and shifted wavelet­
packets constitutes an orthonormal basis on R. Finally, the notion of a best 
basis is described, and the so-called best basis algorithm (due to Coifman 
and Wickerhauser) is given. 
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Applications 

Many wavelet books have been written emphasizing applications of the 
theory, most notably, Strang and Nguyen, Wavelets and Filter Banks, and 
Mallat's comprehensive, A Wavelet Tour of Signal Processing. The book 
by Wickerhauser, Applied Wavelet Analysis from Theory to Software, also 
contains descriptions of several applications. The reader is encouraged to 
consult these texts and the references therein to learn more about wavelet 
applications. 

The description of applications in this book is limited to a brief de­
scription of two fundamental examples of wavelet applications. The first, 
described in Chapter 12, is to image compression. The basic components 
of a transform image coder as well as how wavelets fit into this picture are 
described. Chapter 13 describes the Beylkin-Coifman-Rokhlin (BCR) algo­
rithm, which is useful for numerically estimating certain integral operators 
known as singular integral operators. The algorithm is very effective and 
uses the same basic properties of wavelets that make them useful for image 
compression. Several examples of singular integral operators arising in ordi­
nary differential equations, complex variable theory, and image processing 
are given before the BCR algorithm is described. 

Acknowledgments 

I want to express my thanks to the many folks who made this book possible. 
First and foremost, I want to thank my advisor and friend John Benedetto 
for encouraging me to take on this project and for graciously agreeing 
to publish it in his book series. Thanks also to Wayne Yuhasz, Lauren 
Schultz, Louise Farkas, and Shoshanna Grossman at Birkhauser for their 
advice and support. I want to thank Margaret Mitchell for LaTeX advice 
and Jim Houston and Clovis L. Tondo for modifying some of the figures to 
make them more readable. All of the figures in this book were created by 
me using MATLAB and the Wavelet ToolBox. Thanks to the Math Works 
for creating such superior products. 

I would like also to thank the National Science Foundation for its support 
and to the George Mason University Mathematics Department (especially 
Bob Sachs) for their constant encouragement. I also want to thank the 
students in my wavelets course who were guinea pigs for an early version 
of this text and who provided valuable feedback on organization and found 
numerous typos in the text. Thanks to Ben Crain, James Holdener, Amin 
Jazaeri, Jim Kelliher, Sami Nefissi, Matt Parker, and Jim Timper. 

I also want to thank Bill Heller, Joe Lakey, and Paul Salamonowicz 
for their careful reading of the text and their useful comments. Special 
thanks go to David Weiland for his willingness to use the manuscript in an 
undergraduate course at Swarthmore College. The book is all the better 



Preface xvii 

for his insights, and those of the unnamed students in the class. 
I want give special thanks to my Dad, with whom I had many conversa­

tions about book-writing. He passed away suddenly while this book was in 
production and never saw the finished product. He was pleased and proud 
to have another published author in the family. He is greatly missed. 

Finally, I want to thank my wife Megan for her constant love and support, 
and my delightful children John and Genna who will someday read their 
names here and wonder how their old man actually did it. 

Fairfax, Virginia David F. Walnut 



Albrecht Durer (1471-1528), Melencholia I (engraving). Courtesy of the 
Fogg Art Museum, Harvard University Art Museums, Gift of William Gray 
from the collection of Francis Calley Gray. Photograph by Rick Stafford, 
©President and Fellows of Harvard College. A detail of this engraving, 
a portion of the magic square, is used as the sample image in 22 figures 
in this book. The file processed is a portion of the image file detail.mat 
packaged with MATLAB version 5.0. 


