Skip to main content

Perioperative Anesthesia Management in Secondary Mitral Regurgitation and Heart Failure

  • Chapter
  • First Online:
Secondary Mitral Valve Regurgitation
  • 1047 Accesses

Abstract

This chapter provides an overview of the anesthesia and perioperative intensive care management of patients undergoing surgery for secondary mitral regurgitation (SMR).

Evidence-based medicine has led to an unprecedented growth in the scientific approach to decision making in the belief that it will translate into benefits for patients to decrease their risk and improve outcomes (Cheng and Martin, Semin Cardiothoracic Vasc Anesth 9:1–4, 2005). However, clinicians must apply innumerable, complex, and dynamic interventions to the perioperative care of these challenging patients, interventions that are adjusted to achieve a number of physiologic and clinical goals by selecting, titrating, and timely applying many pharmacologic and nonpharmacologic therapies. In doing so clinicians are of course driven by the available evidence, but also by inductive pathophysiologic reasoning, local culture and policies, resource and technology availability, various concerns, beliefs, bias, and random events. While it is clear that outcome of major surgery is affected greatly by surgical prowess and volume (Birkmeyer et al., N Engl J Med 349:2117–2127, 2003), in addition, part of the variance in surgical mortality relates to factors beyond surgical skills, namely to all of that complex activity that is the perioperative medicine (Grocott and Pearse Br J Anaesth 108:723–726, 2012). Therefore, albeit only a few nonsurgical interventions have randomized evidence to support their effect in reducing mortality in patients undergoing cardiac surgery (CS) (Landoni et al., Acta Anaesthesiol Scand 5:259–266, 2011), it is believed that perioperative medicine matters.

Perioperative management of patients with SMR is accordingly outlined in the text hereafter, with a main focus on hemodynamics along with hints stemming from an integrative approach of the heart interacting with other organ systems. An extensive review of the body of knowledge relevant to the cardiac anesthesiologist and of all the challenges and details of anesthesia and perioperative management in cardiac surgical candidates is beyond the scope of this chapter and can be found in reference cardiac anesthesia and CS texts. Preoperative and intraoperative echocardiographic imaging, as well as minimally invasive mitral valve (MV) surgery and percutaneous Mitra Clip procedures are covered elsewhere in this book (see Chaps. 6, 7, 8, 11, 18, 20, and 21).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim YH, Czer LS, Soukiasian HJ, De Robertis M, Magliato KE, Blanche C, et al. Ischemic mitral regurgitation: revascularization alone versus revascularization and mitral valve repair. Ann Thorac Surg. 2005;79:1895–901.

    PubMed  Google Scholar 

  2. Mihaljevic T, Lam BK, Rajeswaran J, Takagaki M, Lauer MS, Gillinov AM, et al. Impact of mitral valve annuloplasty combined with revascularization in patients with functional ischemic mitral regurgitation. J Am Coll Cardiol. 2007;49:2191–201.

    PubMed  Google Scholar 

  3. Fattouch K, Guccione F, Sampognaro R, Panzarella G, Egle C, Navarra E, et al. POINT: efficacy of adding mitral valve restrictive annuloplasty to coronary artery bypass grafting in patients with moderate ischemic mitral valve regurgitation: a randomized trial. J Thor Cardiovasc Surg. 2009;138:278–85.

    Google Scholar 

  4. Trento A, Goland S, De Robertis MA, Czer LSC. COUNTERPOINT: efficacy of adding mitral valve restrictive annuloplasty to coronary artery bypass grafting in patients with moderate ischemic mitral valve regurgitation. J Thorac Cardiovasc Surg. 2009;138:286–8.

    PubMed  Google Scholar 

  5. Penicka M, Linkova H, Lang O, Fojt R, Kocka V, Vanderheyden M, et al. Predictors of improvement of unrepaired moderate ischemic mitral regurgitation in patients undergoing elective isolated coronary artery bypass graft surgery. Circulation. 2009;120:1474–81.

    PubMed  Google Scholar 

  6. Romano MA, Bolling SF. Mitral valve repair as an alternative treatment for heart failure patients. Heart Fail Monit. 2003;4:7–12.

    PubMed  Google Scholar 

  7. Bax JJ, Braun J, Somer ST, Klautz RJ, Holman ER, Versteegh MI, et al. Restrictive annuloplasty and coronary revascularization in ischemic mitral regurgitation results in reverse left ventricular remodeling. Circulation. 2004;110 Suppl 11:II103–8.

    PubMed  Google Scholar 

  8. Braun J, van de Veire NR, Klautz RJ, Versteegh MI, Holman ER, Westenberg JJ, et al. Restrictive mitral annuloplasty cures ischemic mitral regurgitation and heart failure. Ann Thorac Surg. 2008;85:430–6.

    PubMed  Google Scholar 

  9. Ten Brinke EA, Klautz RJ, Tulner SA, Verwey HF, Bax JJ, Delgado V, et al. Clinical and functional effects of restrictive mitral annuloplasty at midterm follow-up in heart failure patients. Ann Thorac Surg. 2010;90:1913–20.

    PubMed  Google Scholar 

  10. Hausmann H, Ennker J, Topp H, Schüler S, Schiessler A, Hempel B, et al. Coronary artery bypass grafting and heart transplantation in end-stage coronary artery disease: a comparison of hemodynamic improvement and ventricular function. J Card Surg. 1994;9:77–84.

    CAS  PubMed  Google Scholar 

  11. Bondarenko O, Beek AM, Nijveldt R, McCann GP, van Dockum WG, Hofman MB, et al. Functional outcome after revascularization in patients with chronic ischemic heart disease: a quantitative late gadolinium enhancement CMR study evaluating transmural scar extent, wall thickness and periprocedural necrosis. J Cardiovasc Magn Reson. 2007;9:815–21.

    PubMed  Google Scholar 

  12. Liao L, Cabell CH, Jollis JG, Velazquez EJ, Smith 4th WT, Anstrom KJ, et al. Usefulness of myocardial viability or ischemia in predicting long-term survival for patients with severe left ventricular dysfunction undergoing revascularization. Am J Cardiol. 2004;93:1275–9.

    PubMed  Google Scholar 

  13. Nashef SAM, Roques F, Michael P, Gauducheau E, Lemeshow S, Salamon R. European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardiovasc Surg. 1999;16:9–13.

    CAS  Google Scholar 

  14. Nashef SAM, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, et al. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41:1–12.

    Google Scholar 

  15. Shroyer AL, Grover FL, Edwards FH. 1995 coronary artery bypass risk model: the Society of Thoracic Surgeons Adult Cardiac National Database. Ann Thorac Surg. 1998;65:879–84.

    CAS  PubMed  Google Scholar 

  16. O’Brien SM, Shahian DM, Filardo G, Ferraris VA, Haan CK, Rich JB, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 2—isolated valve surgery. Ann Thorac Surg. 2009;88 Suppl 1:S23–42.

    PubMed  Google Scholar 

  17. Shahian DM, O’Brien SM, Filardo G, Ferraris VA, Haan CK, Rich JB, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 3—valve plus coronary artery bypass grafting surgery. Ann Thorac Surg. 2009;88 Suppl 1:S43–62.

    PubMed  Google Scholar 

  18. Ranucci M, Castelvecchio S, Menicanti L, Frigiola A, Pelissero G. Risk of assessing mortality risk in elective cardiac operations: age, creatinine, ejection fraction, and the law of parsimony. Circulation. 2009;119:3053–61.

    PubMed  Google Scholar 

  19. Ranucci M, Castelvecchio S, Conte M, Megliola G, Speziale G, Fiore F, et al. The easier, the better: ACEF score for operative mortality risk stratification in a series of 29,659 elective cardiac surgery patients. J Thorac Cardiovasc Surg. 2011;142:581–6.

    PubMed  Google Scholar 

  20. Topkara VK, Cheema FH, Kesavaramanujam S, Mercando ML, Cheema AF, Namerow PB, et al. Coronary artery bypass grafting in patients with low ejection fraction. Circulation. 2005;112 Suppl 9:I344–50.

    PubMed  Google Scholar 

  21. Filsoufi F, Rahmanian PB, Castillo JG, Chikwe J, Kini AS, Adams DH. Results and predictors of early and late outcome of coronary artery bypass grafting in patients with severely depressed left ventricular function. Ann Thorac Surg. 2007;84:808–16.

    PubMed  Google Scholar 

  22. Royster RL, Butterworth 4th JF, Prough DS, Johnston WE, Thomas JL, Hogan PE, et al. Preoperative and intraoperative predictors of inotropic support and long-term outcome in patients having coronary artery bypass grafting. Anesth Analg. 1991;72:729–36.

    CAS  PubMed  Google Scholar 

  23. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J. 2000;21:1387–96.

    CAS  PubMed  Google Scholar 

  24. Pujadas S, Reddy GP, Weber O, Lee JJ, Higgins JB. MR imaging assessment of cardiac function. J Magn Reson Imaging. 2004;19:789–99.

    PubMed  Google Scholar 

  25. McKinlay KH, Schinderle DB, Swaminathan M, Podgoreanu MV, Milano CA, Messier RH, et al. Predictors of inotrope use during separations from cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2004;18:404–8.

    PubMed  Google Scholar 

  26. Phillip B, Pastor D, Bellows W, Leung JM. The prevalence of preoperative diastolic filling abnormalities in geriatric surgical patients. Anesth Analg. 2003;97:1214–21.

    PubMed  Google Scholar 

  27. Apostolakis EE, Baikoussis NG, Parissis H, Siminelakis SN, Papadopoulos GS. Left ventricular diastolic dysfunction of the cardiac surgery patient; a point of view for the cardiac surgeon and cardio-anesthesiologist. J Cardiothorac Surg. 2009;4:67–76.

    PubMed Central  PubMed  Google Scholar 

  28. McKenney PA, Apstein CS, Mendes LA, Connely GP, Aldea GS, Shemin RJ, et al. Increased left ventricular diastolic chamber stiffness immediately after coronary artery bypass surgery. J Am Coll Cardiol. 1994;24:1189–94.

    CAS  PubMed  Google Scholar 

  29. Skarvan K, Filipovic M, Wang J, Brett W, Seeberger M. Use of myocardial tissue Doppler imaging for intraoperative monitoring of left ventricular function. Br J Anaesth. 2003;91:473–80.

    CAS  PubMed  Google Scholar 

  30. Bernard F, Denault A, Babin D, Goyer C, Couture P, Couturier A, et al. Diastolic dysfunction is predictive of difficult weaning from cardiopulmonary bypass. Anesth Analg. 2001;92:291–8.

    CAS  PubMed  Google Scholar 

  31. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease. I. Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.

    PubMed  Google Scholar 

  32. Maslow AD, Regan MM, Panzica P, Heindel S, Mashikian J, Comunale ME. Precardiopulmonary bypass right ventricular function is associated with poor outcome after coronary artery bypass grafting in patients with severe left ventricular systolic dysfunction. Anesth Analg. 2002;95:1507–18.

    PubMed  Google Scholar 

  33. Haddad F, Denault AY, Couture P, Cartier R, Pellerin M, Levesque S, et al. Right ventricular myocardial performance index predicts perioperative mortality or circulatory failure in high-risk valvular surgery. J Am Soc Echocardiogr. 2007;20:1065–72.

    PubMed  Google Scholar 

  34. Eagle KA, Guyton RA, Davidoff R, Edwards FH, Ewy GA, Gardner TJ, et al. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee to update the 1999 guidelines for coronary artery bypass graft surgery). Circulation. 2004;110:e340–437.

    PubMed  Google Scholar 

  35. Mogelvang J, Stubgaard M, Thomsen C, Henriksen O. Evaluation of right ventricular volumes measured by magnetic resonance imaging. Eur Heart J. 1988;9:529–33.

    CAS  PubMed  Google Scholar 

  36. Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennel DJ. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J. 2004;147:218–23.

    PubMed  Google Scholar 

  37. Simonneau G, Robbins IM, Beghetti M, Simonneau G, Robbins IM, Beghetti M, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54(Suppl):S43–54.

    PubMed  Google Scholar 

  38. Hoeper MM, Barberà JA, Channick RN, Hassoun PM, Lang IM, Manes A, et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Coll Cardiol. 2009;54(Suppl):S85–96.

    PubMed  Google Scholar 

  39. Teo YW, Greenleigh DL. Update on anaesthetic approach to pulmonary hypertension. Eur J Anaesthesiol. 2010;27:317–23.

    CAS  PubMed  Google Scholar 

  40. Pritts CD, Pearl RG. Anesthesia for patients with pulmonary hypertension. Curr Opin Anaesthesiol. 2010;23:411–6.

    PubMed  Google Scholar 

  41. Shah RV, Semigran MJ. Pulmonary hypertension secondary to left ventricular systolic dysfunction: contemporary diagnosis and management. Curr Heart Fail Rep. 2008;5:226–32.

    PubMed Central  PubMed  Google Scholar 

  42. Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53:1119–26.

    PubMed Central  PubMed  Google Scholar 

  43. Chin KM, Rubin LJ. Pulmonary arterial hypertension. J Am Coll Cardiol. 2008;51:1527–38.

    PubMed  Google Scholar 

  44. Haddad F, Kudelko K, Mercier O, Vrtovec B, Zamanian RT, De Jesus Perez V. Pulmonary hypertension associated with left heart disease: characteristics, emerging concepts, and treatment strategies. Prog Cardiovasc Dis. 2011;54:154–67.

    PubMed  Google Scholar 

  45. Morrell NW, Adnot S, Archer SL, Dupuis J, Lloyd Jones P, MacLean MR, et al. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54 Suppl 1:S20–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Dadfarmay S, Berkowitz R, Kim B, Manchikalapudi RB. Differentiating pulmonary arterial and pulmonary venous hypertension and the implications for therapy. Congest Heart Fail. 2010;16:287–91.

    PubMed  Google Scholar 

  47. Abramson SV, Burke JF, Kelly Jr JJ, Kitchen 3rd JG, Dougherty MJ, Yih DF, et al. Pulmonary hypertension predicts mortality and morbidity in patients with dilated cardiomyopathy. Ann Intern Med. 1992;116:888–95.

    CAS  PubMed  Google Scholar 

  48. Bernstein AD, Parsonnet V. Bedside estimation of risk as an aid for decision-making in cardiac surgery. Ann Thorac Surg. 2000;69:823–8.

    CAS  PubMed  Google Scholar 

  49. Ghoreishi M, Evans CF, DeFilippi CR, Hobbs G, Young CA, Griffith BP, et al. Pulmonary hypertension adversely affects short- and long-term survival after mitral valve operation for mitral regurgitation: implications for timing of surgery. J Thorac Cardiovasc Surg. 2011;142:1439–52.

    PubMed  Google Scholar 

  50. Tumminello G, Lancellotti P, Lempereur M, D’Orio V, Pierard LA. Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. Eur Heart J. 2007;28:569–74.

    PubMed  Google Scholar 

  51. Bonow RO, Carabello BA, Kanu C, de Leon Jr AC, Faxon P, Freed MD, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation. 2006;114:e84–231.

    PubMed  Google Scholar 

  52. Maisel A, Mueller C, Adams Jr K, Anker SD, Aspromonte N, Cleland JG, et al. State of the art: using natriuretic peptide levels in clinical practice. Eur J Heart Fail. 2008;10:824–39.

    CAS  PubMed  Google Scholar 

  53. Eliasdottir SB, Klemenzson G, Torfason B, Valsson F. Brain natriuretic peptide is a good predictor for outcome in cardiac surgery. Acta Anaesthesiol Scand. 2008;52:182–7.

    CAS  PubMed  Google Scholar 

  54. Kortekaas KA, Lindeman JH, Versteegh MI, Stijnen T, Dion RA, Klautz RJ. Preexisting heart failure is an underestimated risk factor in cardiac surgery. Neth Heart J. 2012;20:202–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Landis C. Why the inflammatory response is important to the cardiac surgical patient. J Extra Corpor Technol. 2007;39:281–4.

    PubMed  Google Scholar 

  56. Leavitt BJ, Ross CS, Spence B, Surgenor SD, Olmstead EM, Clough RA, et al. Long-term survival of patients with chronic obstructive pulmonary disease undergoing coronary artery bypass surgery. Circulation. 2006;114 Suppl 1:I430–4.

    PubMed  Google Scholar 

  57. McAllister DA, Wild SH, MacLay JD, Robson A, Newby DE, MacNee W, et al. Forced expiratory volume in one second predicts length of stay and in-hospital mortality in patients undergoing cardiac surgery: a Retrospective Cohort Study. PLoS One. 2013;8:e64565. doi:10.1371/journal.pone.0064565.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Lee DH, Buth KJ, Martin B-J, Yip AM, Hirsch GM. Frail patients are at increased risk for mortality and prolonged institutional care after cardiac surgery. Circulation. 2010;121:973–8.

    PubMed  Google Scholar 

  59. Afilalo J, Mottillo S, Eisenberg MJ, Alexander KP, Noiseux NM, Perrault LP, et al. Addition of frailty and disability to cardiac surgery risk scores identifies elderly patients at high risk of mortality or major morbidity. Circ Cardiovasc Qual Outcomes. 2012;5:222–8.

    PubMed  Google Scholar 

  60. Sündermann S, Dademasch A, Praetorius J, Kempfert J, Dewey T, Falk V, et al. Comprehensive assessment of frailty for elderly high-risk patients undergoing cardiac surgery. Eur J Cardiothorac Surg. 2011;39:33–7.

    PubMed  Google Scholar 

  61. Kuduvalli M, Grayson AD, Oo AY, Fabri BM, Rashid A. Risk of morbidity and in-hospital mortality in obese patients undergoing coronary artery bypass surgery. Eur J Cardiothorac Surg. 2002;22:787–93.

    PubMed  Google Scholar 

  62. Higgins TL, Estafanous FG, Loop FD, Beck GJ, Blum JM, Paranandi L. Stratification of morbidity and mortality outcome by preoperative risk factors in coronary artery bypass patients. A clinical severity score. JAMA. 1992;267:2344–8.

    CAS  PubMed  Google Scholar 

  63. Roques F, Nashef SA, Michel P, Gauducheau E, de Vincentiis C, Baudet E, et al. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur J Cardiothorac Surg. 1999;15:816–22.

    CAS  PubMed  Google Scholar 

  64. Cooper WA, O’Brien SM, Thourani VH, Guyton RA, Bridges CR, Szczech LA, et al. Impact of renal dysfunction on outcomes of coronary artery bypass surgery: results from the Society of Thoracic Surgeons National Adult Cardiac Database. Circulation. 2006;113:1063–70.

    PubMed  Google Scholar 

  65. Ranucci M, Ballotta A, Kunkl A, De Benedetti D, Kandil H, Conti D, et al. Influence of the timing of cardiac catheterization and the amount of contrast media on acute renal failure after cardiac surgery. Am J Cardiol. 2008;101:1112–8.

    PubMed  Google Scholar 

  66. Bertrand M, Godet G, Meersschaert K, Brun L, Salcedo E, Coriat P. Should the angiotensin II antagonists be discontinued before surgery? Anesth Analg. 2001;92:26–30.

    CAS  PubMed  Google Scholar 

  67. Oosterga M, Voors AA, Pinto YM, Buikema H, Grandjean JG, Kingma JH, et al. Effects of quinapril on clinical outcome after coronary artery bypass grafting (The QUO VADIS Study). QUinapril on Vascular Ace and Determinants of Ischemia. Am J Cardiol. 2001;87:542–6.

    CAS  PubMed  Google Scholar 

  68. Lazar HL. Role of angiotensin-converting enzyme inhibitors in the coronary artery bypass patient. Ann Thorac Surg. 2005;79:1081–9.

    PubMed  Google Scholar 

  69. Benedetto U, Sciarretta S, Roscitano A, Fiorani B, Refice S, Angeloni E, et al. Preoperative angiotensin-converting inhibitors and acute kidney injury after coronary artery bypass grafting. Ann Thorac Surg. 2008;86:1160–5.

    PubMed  Google Scholar 

  70. Brabant SM, Bertrand M, Eyraud D, Darmon PL, Coriat P. The hemodynamic effects of anesthetic induction in vascular surgical patients chronically treated with angiotensin II receptor antagonists. Anesth Analg. 1999;89:1388–92.

    CAS  PubMed  Google Scholar 

  71. Coriat P, Richer C, Douraki T, Gomez C, Hendricks K, Giudicelli JF, et al. Influence of chronic angiotensin-converting enzyme inhibition on anesthetic induction. Anesthesiology. 1994;81:299–307.

    CAS  PubMed  Google Scholar 

  72. Tuman KJ, McCarthy RJ, O’Connor CJ, Holm WE, Ivankovich AD. Angiotensin-converting enzyme inhibitors increase vasoconstrictor requirements after cardiopulmonary bypass. Anesth Analg. 1995;80:473–9.

    CAS  PubMed  Google Scholar 

  73. Pigott DW, Nagle C, Allman K, Westaby S, Evans RD. Effect of omitting regular ACE inhibitor medication before cardiac surgery on haemodynamic variables and vasoactive drug requirements. Br J Anaesth. 1999;83:715–20.

    CAS  PubMed  Google Scholar 

  74. Deakin CD, Dalrymple-Hay MJ, Jones P, Monro JL. Effects of angiotensin converting enzyme inhibition on systemic vascular resistance and vasoconstrictor requirements during hypothermic cardiopulmonary bypass. Eur J Cardiothorac Surg. 1998;13:546–50.

    CAS  PubMed  Google Scholar 

  75. Levin M, Lin HM, Castillo JG, Adams DH, Reich DL, Fischer GW. Early on-cardiopulmonary bypass hypotension and other factors associated with vasoplegic syndrome. Circulation. 2009;120:1664–71.

    PubMed  Google Scholar 

  76. Miceli A, Capoun R, Fino C, Narayan P, Bryan AJ, Angelini GD, et al. Effects of angiotensin-converting enzyme inhibitor therapy on clinical outcome in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol. 2009;54:1778–84.

    CAS  PubMed  Google Scholar 

  77. Ferguson TB, Coombs LP, Peterson ED. Preoperative beta-blocker use and mortality and morbidity following CABG surgery in North America. JAMA. 2002;287:2221–7.

    CAS  PubMed  Google Scholar 

  78. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999;353:9–13.

    Google Scholar 

  79. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol heart failure study group. N Engl J Med. 1996;334:1349–55.

    CAS  PubMed  Google Scholar 

  80. Hjalmarson A, Goldstein S, Fagerberg B, Wedel H, Waagstein F, Kjekshus J, et al. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the metoprolol CR/XL randomized intervention trial in congestive heart failure (MERIT-HF). MERIT- HF study group. JAMA. 2000;283:1295–302.

    CAS  PubMed  Google Scholar 

  81. Metra M, Nodari S, D’Aloia A, Muneretto C, Robertson AD, Bristow MR, et al. Beta-blocker therapy influences the hemodynamic response to inotropic agents in patients with heart failure: a randomized comparison of dobutamine and enoximone before and after chronic treatment with metoprolol or carvedilol. J Am Coll Cardiol. 2002;40:1248–58.

    CAS  PubMed  Google Scholar 

  82. Bollano E, Tang MS, Hjalmarson A, Waagstein F, Andersson B. Different responses to dobutamine in the presence of carvedilol or metoprolol in patients with chronic heart failure. Heart. 2003;89:621–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Beck-da-Silva L, de Bold A, Davies R, Chow B, Ruddy T, Fraser M, et al. Effect of bisoprolol on right ventricular function and brain natriuretic peptide in patients with heart failure. Congest Heart Fail. 2004;10:127–32.

    CAS  PubMed  Google Scholar 

  84. Tatli E, Kurum T, Aktoz M, Buyuklu M. Effects of carvedilol on right ventricular ejection fraction and cytokines levels in patients with systolic heart failure. Int J Cardiol. 2008;125:273–6.

    PubMed  Google Scholar 

  85. Desai RV, Guichard JL, Mujib M, Ahmed MI, Feller MA, Fonarow GC, et al. Reduced right ventricular ejection fraction and increased mortality in chronic systolic heart failure patients receiving beta-blockers: insights from the BEST trial. Int J Cardiol. 2013;163:61–7.

    PubMed Central  PubMed  Google Scholar 

  86. Collard CD, Body SC, Shernan SK, Wang S, Mangano DT, Multicenter Study of Perioperative Ischemia (MCSPI) Research Group, Inc; Ischemia Research and Education Foundation (IREF) Investigators. Preoperative statin therapy is associated with reduced cardiac mortality after coronary artery bypass graft surgery. J Thorac Cardiovasc Surg. 2006;132:392–400.

    CAS  PubMed  Google Scholar 

  87. Ferraris VA, Ferraris SP, Moliterno DJ, Camp P, Walenga JM, Messmore HL, et al. The Society of Thoracic Surgeons practice guideline series: aspirin and other antiplatelet agents during operative coronary revascularization (executive summary). Ann Thorac Surg. 2005;79:1454–61.

    PubMed  Google Scholar 

  88. Sun JC, Whitlock R, Cheng J, Eikelboom JW, Thabane L, Crowther MA, et al. The effect of pre-operative aspirin on bleeding, transfusion, myocardial infarction, and mortality in coronary artery bypass surgery: a systematic review of randomized and observational studies. Eur Heart J. 2008;29:1057–71.

    PubMed  Google Scholar 

  89. Grines CL, Bonow RO, Casey Jr DE, Gardner TJ, Lockhart PB, Moliterno DJ, et al. Prevention of premature discontinuation of dual antiplatelet therapy in patients with coronary artery stents. A science advisory from the American Heart Association, American College of Cardiology, Society for Cardiovascular Angiography and Interventions, American College of Surgeons, and American Dental Association, with representation from the American College of Physicians. J Am Coll Cardiol. 2007;49:734–9.

    CAS  PubMed  Google Scholar 

  90. Savonitto S, D’Urbano M, Caracciolo M, Barlocco F, Mariani G, Nichelatti M, et al. Urgent surgery in patients with a recently implanted coronary drug-eluting stent: a phase II study of “bridging” antiplatelet therapy with tirofiban during temporary withdrawal of clopidogrel. Br J Anaesth. 2010;104:285–91.

    CAS  PubMed  Google Scholar 

  91. Holman WL, Li Q, Kiefe CI, McGiffin DC, Peterson ED, Allman RM, et al. Prophylactic value of pre-incision intra-aortic balloon pump: analysis of a statewide experience. J Thorac Cardiovasc Surg. 2000;120:1112–9.

    CAS  PubMed  Google Scholar 

  92. Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans. J Appl Physiol. 1994;77:2740–7.

    CAS  PubMed  Google Scholar 

  93. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SH, Brampton W, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2, CD003408. doi:10.1002/14651858.CD003408.pub3.

    PubMed  Google Scholar 

  94. Vincent JL, Pinsky M. Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med. 2005;33:1119–22.

    PubMed  Google Scholar 

  95. Connors AF, Speroff T, Dawson NV, Thomas C, Harrel Jr FE, Wagner D, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA. 1996;276:889–97.

    PubMed  Google Scholar 

  96. Ho KM, Harding R, Chamberlain J, Bulsara M. A comparison of central and mixed venous oxygen saturation in circulatory failure. J Cardiothorac Vasc Anesth. 2010;24:434–9.

    PubMed  Google Scholar 

  97. Varpula M, Karlsson S, Ruokonen E, Pettilä V. Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med. 2006;32:1336–43.

    PubMed  Google Scholar 

  98. Ranucci M. Which cardiac surgical patients can benefit from placement of a pulmonary artery catheter? Crit Care. 2006;10 Suppl 3:S6.

    PubMed Central  PubMed  Google Scholar 

  99. Thys DM, Abel MD, Brooker RF, Cahalan MK, Connis RT, Duke PG, et al. Practice guidelines for perioperative transesophageal echocardiography. An updated report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on transesophageal echocardiography. Anesthesiology. 2010;112:1084–96.

    Google Scholar 

  100. Thys DM, Abel MD, Bollen PA, Cahalan MK, Curling P, Dean RJ, et al. Practice guidelines for perioperative transesophageal echocardiography. A report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on transesophageal echocardiography. Anesthesiology. 1996;84:986–1006.

    Google Scholar 

  101. Savage RM, Lytle BW, Aronson S, Navia JL, Licina M, Stewart WJ, et al. Intraoperative echocardiography is indicated in high-risk coronary artery bypass grafting. Ann Thorac Surg. 1997;64:368–73.

    CAS  PubMed  Google Scholar 

  102. Zhu F, Lee A, Chee YE. Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database Syst Rev. 2012;10, CD003587. doi:10.1002/14651858.CD003587.pub2.

    PubMed  Google Scholar 

  103. Wong DT, Cheng DC, Kustra R, Tibshirani R, Karski J, Carroll-Munro J, et al. Risk factors of delayed extubation, prolonged length of stay in the intensive care unit, and mortality in patients undergoing coronary artery bypass graft (CABG) with fast-track cardiac anesthesia: a new cardiac risk score. Anesthesiology. 1999;91:936–44.

    CAS  PubMed  Google Scholar 

  104. Bolli R. Mechanism of myocardial “stunning”. Circulation. 1990;82:723–38.

    CAS  PubMed  Google Scholar 

  105. Khuri SF. Evidence, sources, and assessment of injury during and following cardiac surgery. Ann Thorac Surg. 2001;72:S2205–7.

    CAS  PubMed  Google Scholar 

  106. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest. 1985;76:1713–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Opie LH. Reperfusion injury and its pharmacologic modification. Circulation. 1989;80:1049–62.

    CAS  PubMed  Google Scholar 

  108. Hearse DJ, Bolli R. Reperfusion-induced injury: manifestations, mechanisms, and clinical relevance. Cardiovasc Res. 1992;26:101–8.

    CAS  PubMed  Google Scholar 

  109. Park JL, Lucchesi BR. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg. 1999;68:1905–12.

    CAS  PubMed  Google Scholar 

  110. Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 2003;75:S715–20.

    PubMed  Google Scholar 

  111. Warltier DC, al-Wathiqui MH, Kampine JP, Schmeling WT. Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology. 1988;69:552–65.

    CAS  PubMed  Google Scholar 

  112. Kersten JR, Schmeling TJ, Hettrick DA, Pagel PS, Gross GJ, Warltier DC. Mechanism of myocardial protection by isoflurane: Role of adenosine triphosphate-regulated potassium (KATP) channels. Anesthesiology. 1996;85:794–807.

    CAS  PubMed  Google Scholar 

  113. Kersten JR, Schmeling TJ, Pagel PS, Gross GJ, Warltier DC. Isoflurane mimics ischemic preconditioning via activation of KATP channels: reduction of myocardial infarct size with an acute memory phase. Anesthesiology. 1997;87:361–70.

    CAS  PubMed  Google Scholar 

  114. Toller WG, Kersten JR, Pagel PS, Hettrick DA, Warltier DC. Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning in dogs. Anesthesiology. 1999;91:1437–46.

    CAS  PubMed  Google Scholar 

  115. Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC. Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial KATP channels via multiple signaling pathways. Anesthesiology. 2002;97:4–14.

    CAS  PubMed  Google Scholar 

  116. Du Toit EF, Muller CA, McCarthy J, Opie LH. Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart. J Pharmacol Exp Ther. 1999;290:505–14.

    CAS  PubMed  Google Scholar 

  117. De Hert SG, ten Broecke PW, Mertens E, Van Sommeren EW, De Blier IG, Stockman BA, et al. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology. 2002;97:42–9.

    PubMed  Google Scholar 

  118. De Hert SG, Cromheecke S, ten Broecke PW, Mertens E, De Blier IG, Stockman BA, et al. Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology. 2003;99:314–23.

    PubMed  Google Scholar 

  119. De Hert SG, Turani F, Mathur S, Stowe DF. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg. 2005;100:1584–93.

    PubMed  Google Scholar 

  120. Landoni G, Biondi-Zoccai GG, Zangrillo A, Bignami E, D’Avolio S, Marchetti C, et al. Desflurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth. 2007;21:502–11.

    CAS  PubMed  Google Scholar 

  121. Frässdorf J, De Hert S, Schlack W. Anaesthesia and myocardial ischaemia/reperfusion injury. Br J Anaesth. 2009;103:89–98.

    PubMed  Google Scholar 

  122. Tritapepe L, De Santis V, Vitale D, Guarracino F, Pellegrini F, Pietropaoli P, et al. Levosimendan pre-treatment improves outcomes in patients undergoing coronary artery bypass graft surgery. Br J Anaesth. 2009;102:198–204.

    CAS  PubMed  Google Scholar 

  123. Zangrillo A, Biondi-Zoccai G, Mizzi A, Bruno G, Bignami E, Gerli C, et al. Levosimendan reduces cardiac troponin release after cardiac surgery: a meta-analysis of randomized controlled studies. J Cardiothorac Vasc Anesth. 2009;23:474–8.

    CAS  PubMed  Google Scholar 

  124. Feng J, Lucchinetti E, Ahuja P, Pasch T, Perriard JC, Zaugg M. Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3β. Anesthesiology. 2005;103:987–95.

    CAS  PubMed  Google Scholar 

  125. Slogoff S, Keats AS. Randomized trial of primary anesthetic agents on outcome of coronary artery bypass operations. Anesthesiology. 1989;70:179–88.

    CAS  PubMed  Google Scholar 

  126. Tuman KJ, McCarthy RJ, Spiess BD, Da Valle M, Dabir R, Ivankovich AD. Does choice of anesthetic agent significantly affect outcome after coronary artery surgery? Anesthesiology. 1989;70:189–98.

    CAS  PubMed  Google Scholar 

  127. Biondi JW, Schulman DS, Matthay RA. Effects of mechanical ventilation on right and left ventricular function. Clin Chest Med. 1988;9:55–71.

    CAS  PubMed  Google Scholar 

  128. Konstadt SN, Louie EK, Shore-Lesserson L, Black S, Scanlon P. The effects of loading changes on intraoperative Doppler assessment of mitral regurgitation. J Cardiothorac Vasc Anesth. 1994;8:19–23.

    CAS  PubMed  Google Scholar 

  129. Bach DS, Deeb GM, Bolling SF. Accuracy of intraoperative transesophageal echocardiography for estimating the severity of functional mitral regurgitation. Am J Cardiol. 1995;76:508–12.

    CAS  PubMed  Google Scholar 

  130. Grewal KS, Malkowski MJ, Piracha AR, Astbury JC, Kramer CM, Dianzumba S, et al. Effect of general anesthesia on the severity of mitral regurgitation by transesophageal echocardiography. Am J Cardiol. 2000;85:199–203.

    CAS  PubMed  Google Scholar 

  131. Gisbert A, Soulière V, Denault AY, Bouchard D, Couture P, Pellerin M, et al. Dynamic quantitative echocardiographic evaluation of mitral regurgitation in the operating department. J Am Soc Echocardiogr. 2006;19:140–6.

    PubMed  Google Scholar 

  132. Mebazaa A, Pitsis AA, Rudiger A, Toller W, Longrois D, Ricksten SE, et al. Clinical review: practical recommendations on the management of perioperative heart failure in cardiac surgery. Crit Care. 2010;14:201–14.

    PubMed Central  PubMed  Google Scholar 

  133. Alla F, Zannad F, Fillippatos G. Epidemiology of acute heart failure syndromes. Heart Fail Rev. 2007;12:91–5.

    PubMed  Google Scholar 

  134. Vánky F, Håkansson E, Svedjeholm R. Long-term consequences of postoperative heart failure after surgery for aortic stenosis compared with coronary surgery. Ann Thorac Surg. 2007;83:2036–43.

    PubMed  Google Scholar 

  135. Nieminen MS, Böhm M, Cowie MR, Drexler H, Filippatos GS, Jondeau G, et al. Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J. 2005;26:384–416.

    PubMed  Google Scholar 

  136. Davila-Roman VG, Waggoner AD, Hopkins WE, Barzilai B. Right ventricular dysfunction in low output syndrome after cardiac operations: assessment by transesophageal echocardiography. Ann Thorac Surg. 1995;60:1081–6.

    CAS  PubMed  Google Scholar 

  137. Thygesen K, Alpert JS, White HD, on behalf of the Joint ESC/ACCF/AHA/WHF. Task force for the redefinition of myocardial infarction. Universal definition of myocardial infarction. Eur Heart J. 2007;28:2525–38.

    Google Scholar 

  138. Muehlschlegel JD, Perry TE, Liu K, Nascimben L, Fox AA, Collard CD, et al. Troponin is superior to electrocardiogram and creatinine kinase MB for predicting clinically significant myocardial injury after coronary artery bypass grafting. Eur Heart J. 2009;30:1574–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Mohammed AA, Agnihotri AK, van Kimmenade RRJ, Martinez-Rumayor A, Green SM, Quiroz R, et al. Prospective, comprehensive assessment of cardiac troponin T testing after coronary artery bypass graft surgery. Circulation. 2009;120:843–50.

    CAS  PubMed  Google Scholar 

  140. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502.

    CAS  PubMed  Google Scholar 

  141. Preisman S, Kogan S, Berkenstadt H, Perel A. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth. 2005;95:746–55.

    CAS  PubMed  Google Scholar 

  142. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89:1313–21.

    CAS  PubMed  Google Scholar 

  143. Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31:1399–404.

    PubMed  Google Scholar 

  144. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–73.

    CAS  PubMed  Google Scholar 

  145. Cavallaro F, Sandroni C, Antonelli M. Functional hemodynamic monitoring and dynamic indices of fluid responsiveness. Minerva Anestesiol. 2008;74:123–35.

    CAS  PubMed  Google Scholar 

  146. Sander M, Spies CD, Berger K, Grubitzsch H, Foer A, Kramer M, et al. Prediction of volume response under open-chest conditions during coronary artery bypass surgery. Crit Care. 2007;11:R121.

    PubMed Central  PubMed  Google Scholar 

  147. Fellahi JL, Parienti JJ, Hanouz JL, Plaud B, Riou B, Ouattara A. Perioperative use of dobutamine in cardiac surgery and adverse cardiac outcome: propensity-adjusted analyses. Anesthesiology. 2008;108:979–87.

    CAS  PubMed  Google Scholar 

  148. Thackray S, Easthaugh J, Freemantle N, Cleland JG. The effectiveness and relative effectiveness of intravenous inotropic drugs acting through the adrenergic pathway in patients with heart failure-a meta-regression analysis. Eur J Heart Fail. 2002;4:515–29.

    CAS  PubMed  Google Scholar 

  149. Hernandez AF, Li S, Dokholyan RS, O’Brien SM, Bruce Ferguson T, Peterson ED. Variation in perioperative vasoactive therapy in cardiovascular surgical care: data from the Society of Thoracic Surgeons. Am Heart J. 2009;158:47–52.

    PubMed  Google Scholar 

  150. Bastien O, Vallet B, French Study Group AGIR. French multicentre survey on the use of inotropes after cardiac surgery. Crit Care. 2005;9:241–2.

    PubMed Central  PubMed  Google Scholar 

  151. Gillies M, Bellomo R, Doolan L, Buxton B. Bench-to-bedside review: inotropic drug therapy after adult cardiac surgery – a systematic literature review. Crit Care. 2005;9:266–79.

    PubMed Central  PubMed  Google Scholar 

  152. Rathmell JP, Prielipp RC, Butterworth JF, Williams E, Villamaria F, Testa L, et al. A multicenter, randomized, blind comparison of amrinone with milrinone after elective cardiac surgery. Anesth Analg. 1998;86:683–90.

    CAS  PubMed  Google Scholar 

  153. Zerkowski HR, Gunnicker M, Freund U, Dieterich HA, Dressler HT, Doetsch N, et al. Low-output syndrome after heart surgery: is a monotherapy with phosphodiesterase-III inhibitors feasible? A comparative study of amrinone and enoximone. Thorac Cardiovasc Surg. 1992;40:371–7.

    CAS  PubMed  Google Scholar 

  154. Dupuis JY, Bondy R, Cattran C, Nathan HJ, Wynands JE. Amrinone and dobutamine as primary treatment of low cardiac output syndrome following coronary artery surgery: a comparison of their effects on hemodynamics and outcome. J Cardiothorac Vasc Anesth. 1992;6:542–53.

    CAS  PubMed  Google Scholar 

  155. Feneck RO, Sherry KM, Withington PS, Oduro-Dominah A. Comparison of the hemodynamic effects of milrinone with dobutamine in patients after cardiac surgery. J Cardiothorac Vasc Anesth. 2001;15:306–15.

    CAS  PubMed  Google Scholar 

  156. Tarr TJ, Moore NA, Frazer RS, Shearer ES, Desmond MJ. Haemodynamic effects and comparison of enoximone, dobutamine and dopamine following mitral valve surgery. Eur J Anaesthesiol. 1993;8(Suppl):15–24.

    CAS  Google Scholar 

  157. Gunnicker M, Brinkmann M, Donovan TJ, Freund U, Schieffer M, Reidemeister JC. The efficacy of amrinone or adrenaline on low cardiac output following cardiopulmonary bypass in patients with coronary artery disease undergoing preoperative beta-blockade. Thorac Cardiovasc Surg. 1995;43:153–60.

    CAS  PubMed  Google Scholar 

  158. Jennings DL, Thompson ML. Use of combination therapy with a beta-blocker and milrinone in patients with advanced heart failure. Ann Pharmacother. 2009;43:1872–6.

    CAS  PubMed  Google Scholar 

  159. Labriola C, Siro-Brigiani M, Carrata F, Santangelo E, Amantea B. Hemodynamic effects of levosimendan in patients with low-output heart failure after cardiac surgery. Int J Clin Pharmacol Ther. 2004;42:204–11.

    CAS  PubMed  Google Scholar 

  160. Michaels AD, McKeown B, Kostal M, Vakharia KT, Jordan MV, Gerber IL, et al. Effects of intravenous levosimendan on human coronary vasomotor regulation, left ventricular wall stress, and myocardial oxygen uptake. Circulation. 2005;111:1504–9.

    CAS  PubMed  Google Scholar 

  161. Jorgensen K, Bech-Hanssen O, Houltz E, Ricksten SE. Effects of levosimendan on left ventricular relaxation and early filling at maintained preload and afterload conditions after aortic valve replacement for aortic stenosis. Circulation. 2008;117:1075–81.

    PubMed  Google Scholar 

  162. Sonntag S, Sundberg S, Lehtonen LA, Kleber FX. The calcium sensitizer levosimendan improves the function of stunned myocardium after percutaneous transluminal coronary angioplasty in acute myocardial ischemia. J Am Coll Cardiol. 2004;43:2177–82.

    CAS  PubMed  Google Scholar 

  163. Bergh CH, Andersson B, Dahlström U, Forfang K, Kivikko M, Sarapohja T, et al. Intravenous levosimendan vs. dobutamine in acute decompensated heart failure patients on beta-blockers. Eur J Heart Fail. 2010;12:404–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Dunser MW, Mayr AJ, Ulmer H, Ritsch N, Knotzer H, Pajk W, et al. The effects of vasopressin on systemic hemodynamics in catecholamine-resistant septic and postcardiotomy shock: a retrospective analysis. Anesth Analg. 2001;93:7–13.

    CAS  PubMed  Google Scholar 

  165. Morales DL, Garrido MJ, Madigan JD, Helman DN, Faber J, Williams MR, et al. A double-blind randomized trial: prophylactic vasopressin reduces hypotension after cardiopulmonary bypass. Ann Thorac Surg. 2003;75:926–30.

    PubMed  Google Scholar 

  166. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.

    PubMed  Google Scholar 

  167. De Hert SG, Rodrigus IE, Haenen LR, De Mulder PA, Gillebert TC. Recovery of systolic and diastolic left ventricular function early after cardiopulmonary bypass. Anesthesiology. 1996;85:1063–75.

    PubMed  Google Scholar 

  168. Crawford MH, Souchek J, Oprian CA, Miller DC, Rahimtoola S, Giacomini JC, et al. Determinants of survival and left ventricular performance after mitral valve replacement. Department of Veterans Affairs cooperative study on valvular heart disease. Circulation. 1990;81:1173–81.

    CAS  PubMed  Google Scholar 

  169. Walls MC, Cimino N, Bolling SF, Bach DS. Persistent pulmonary hypertension after mitral valve surgery: does surgical procedure affect outcome? J Heart Valve Dis. 2008;17:1–9.

    PubMed  Google Scholar 

  170. Haddad F, Couture P, Tousignant C, Denault AY. The right ventricle in cardiac surgery, a perioperative perspective: I. Anatomy, physiology, and assessment. Anesth Analg. 2009;108:407–21.

    PubMed  Google Scholar 

  171. Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121:1269–77.

    PubMed  Google Scholar 

  172. Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;98:390–403.

    CAS  PubMed  Google Scholar 

  173. Lejeune P, Brimioulle S, Leeman M, Hallemans R, Melot C, Naeije R. Enhancement of hypoxic pulmonary vasoconstriction by metabolic acidosis in dogs. Anesthesiology. 1990;73:256–64.

    CAS  PubMed  Google Scholar 

  174. Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol. 2003;94:1543–51.

    PubMed  Google Scholar 

  175. Denault AY, Chaput M, Couture P, Hebert Y, Haddad F, Tardif JC. Dynamic right ventricular outflow tract obstruction in cardiac surgery. J Thorac Cardiovasc Surg. 2006;132:43–9.

    PubMed  Google Scholar 

  176. Kaul TK, Fields BL. Postoperative acute refractory right ventricular failure: incidence, pathogenesis, management and prognosis. Cardiovasc Surg. 2000;8:1–9.

    CAS  PubMed  Google Scholar 

  177. Cotter G, Moshkovitz Y, Kaluski E, Milo O, Nobikov Y, Schneeweiss A, et al. The role of cardiac power and systemic vascular resistance in the pathophysiology and diagnosis of patients with acute congestive heart failure. Eur J Heart Fail. 2003;5:443–51.

    PubMed  Google Scholar 

  178. Guarracino F, Baldassarri R, Pinsky MR. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit Care. 2013;17:213.

    PubMed Central  PubMed  Google Scholar 

  179. Kaul S, Tei C, Hopkins JM, et al. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984;107:526–31.

    CAS  PubMed  Google Scholar 

  180. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174:1034–41.

    PubMed  Google Scholar 

  181. Ristow B, Schiller NB. Stepping away from ritual right heart catheterization into the era of noninvasively measured pulmonary artery pressure. J Am Soc Echocardiogr. 2009;22:820–2.

    PubMed  Google Scholar 

  182. Gordon C, Collard CD, Pan W. Intraoperative management of pulmonary hypertension and associated right heart failure. Curr Opin Anaesthesiol. 2010;23:49–56.

    PubMed  Google Scholar 

  183. Simon MA, Pinsky MR. Right ventricular dysfunction and failure in chronic pressure overload. Cardiol Res Pract. 2011;2011:568095.

    PubMed Central  PubMed  Google Scholar 

  184. Subramaniam K, Yared JP. Management of pulmonary hypertension in the operating room. Semin Cardiothorac Vasc Anesth. 2007;11:119–36.

    PubMed  Google Scholar 

  185. Fattouch K, Sbraga F, Bianco G, Speziale G, Gucciardo M, Sampognaro R, et al. Inhaled prostacyclin, nitric oxide, and nitroprusside in pulmonary hypertension after mitral valve replacement. J Card Surg. 2005;20:171–6.

    PubMed  Google Scholar 

  186. Mehta RH, Grab JD, O’Brien SM, Glower DD, Haan CK, Gammie JS, et al., on Behalf of the Society of Thoracic Surgeons National Cardiac Database Investigators. Clinical characteristics and in-hospital outcomes of patients with cardiogenic shock undergoing coronary artery bypass surgery. Insights from the Society of Thoracic Surgeons National Cardiac Database. Circulation. 2008;117:876–85.

    Google Scholar 

  187. Steg G, James SK, Atar D, Badano LP, Blomsrtom Lundqvist C, Borger MA, et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC). Eur Heart J. 2012;33:2569–619.

    CAS  PubMed  Google Scholar 

  188. Samuels LE, Kaufman MS, Thomas MP, Holmes EC, Brockman SK, Wechsler AS. Pharmacological criteria for ventricular assist device insertion following postcardiotomy shock: experience with the Abiomed BVS system. J Card Surg. 1999;14:288–93.

    CAS  PubMed  Google Scholar 

  189. Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367:1287–96.

    CAS  PubMed  Google Scholar 

  190. Ferraris VA, Brown JR, Despotis GJ, Hammon JW, Brett Reece T, Saha SP, et al. 2011 update to The Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91:944–82.

    PubMed  Google Scholar 

  191. Price LC, Wort SJ, Finney SJ, Marino PS, Brett SJ. Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review. Crit Care. 2010;14:R169.

    PubMed Central  PubMed  Google Scholar 

  192. Bouferrache K, Vieillard-Baron A. Acute respiratory distress syndrome, mechanical ventilation, and right ventricular dysfunction. Curr Opin Crit Care. 2011;17:30–5.

    PubMed  Google Scholar 

  193. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Google Scholar 

  194. Pinsky MR. Clinical applications of cardiopulmonary interactions. J Physiol Pharmacol. 1997;48:587–603.

    CAS  PubMed  Google Scholar 

  195. Monnet X, Teboul JL, Richard C. Cardiopulmonary interactions in patients with heart failure. Curr Opin Crit Care. 2007;13:6–11.

    PubMed  Google Scholar 

  196. Landoni G, Zangrillo A, Cabrini L. Noninvasive ventilation after cardiac and thoracic surgery in adult patients: a review. J CardiothorVasc Anesth. 2012;26:917–22.

    Google Scholar 

  197. Weissman C. Pulmonary complications after cardiac surgery. Semin Cardiothorac Vasc Anesth. 2004;8:185–211.

    PubMed  Google Scholar 

  198. Canver CC, Chanda J. Intraoperative and postoperative risk factors for respiratory failure after coronary bypass. Ann Thorac Surg. 2003;75:853–7.

    PubMed  Google Scholar 

  199. Gramlich L, Kichian K, Pinilla J, Rodych NJ, Dhaliwal R, Heyland DK. Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature. Nutrition. 2004;20:843–8.

    PubMed  Google Scholar 

  200. Cangelosi MJ, Auerbach HR, Cohen JT. A clinical and economic evaluation of enteral nutrition. Curr Med Res Opin. 2011;27:413–22.

    PubMed  Google Scholar 

  201. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–17.

    CAS  PubMed  Google Scholar 

  202. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.

    PubMed  Google Scholar 

  203. Lazar HL, Chipkin SR, Fitzgerald CA, Bao Y, Cabral H, Apstein CS. Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events. Circulation. 2004;109:1497–502.

    CAS  PubMed  Google Scholar 

  204. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    PubMed  Google Scholar 

  205. Griesdale DE, de Souza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A, et al. Intensive insulin therapy and mortality among critically ill patients: a meta- analysis including NICE-SUGAR study data. Can Med Assoc J. 2009;180:821–7.

    Google Scholar 

  206. Marik PE, Preiser JC. Toward understanding tight glycemic control in the ICU: a systematic review and metaanalysis. Chest. 2010;137:544–51.

    CAS  PubMed  Google Scholar 

  207. Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al., for the Acute Dialysis Quality Initiative (ADQI) consensus group. Cardio-renal syndromes: report from the consensus conference of the Acute Dialysis Quality Initiative. Eur Heart J. 2010;31:703–11.

    Google Scholar 

  208. The ad-hoc working group of ERBP, Fliser D, Laville M, Covic A, Fouque D, Vanholder R, Juillard L, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;0:1–10.

    Google Scholar 

  209. Brienza N, Giglio MT, Marucci M, Fiore T. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med. 2009;37:2079–90.

    PubMed  Google Scholar 

  210. Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29:1526–31.

    CAS  PubMed  Google Scholar 

  211. Friedrich JO, Adhikari N, Herridge MS, Bevene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142:510–24.

    CAS  PubMed  Google Scholar 

  212. Ho KM, Sheridan DJ. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ. 2006;333:420–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Sampath S, Moran JL, Graham PL, Rockliff S, Bersten AD, Abrams KR. The efficacy of loop diuretics in acute renal failure: assessment using Bayesian evidence synthesis techniques. Crit Care Med. 2007;35:2516–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Conte MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Conte, M. (2015). Perioperative Anesthesia Management in Secondary Mitral Regurgitation and Heart Failure. In: Fattouch, K., Lancellotti, P., Angelini, G. (eds) Secondary Mitral Valve Regurgitation. Springer, London. https://doi.org/10.1007/978-1-4471-6488-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6488-3_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6487-6

  • Online ISBN: 978-1-4471-6488-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics