Skip to main content

ALD: Atomic Layer Deposition, Precise and Conformal Coating for Better Performance

  • Living reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Atomic layer deposition (ALD) is a thin-film growth technology that is capable of depositing conformal, pinhole-free, and uniform films on high-aspect-ratio surfaces with atomic precision. It is similar to chemical vapor deposition (CVD), but compared to CVD, it usually produces thin films with better mechanical, thermal, and electrical properties. ALD is a rapidly growing field, and it is currently introduced in the semiconductor and solar cell industries.

In this chapter, the basics of chemistry and mechanism of ALD process are firstly described. ALD is then compared with other coating processes, such as CVD, physical vapor deposition (PVD), and electroless plating, to present its distinct advantages and also limitation. The elements of ALD process such as precursors, thin-film material, and substrates are also individually discussed. The evolvement of the ALD reactors, including plasma-enhanced ALD and the latest high-throughput ALD designs, is introduced. A number of existing and potential future applications of the ALD process for industry are presented at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamcyzk NM, Dameron AA, George SM (2008) Molecular Layer Deposition of Poly(p-phenylene terephthalamide) Films Using Terephthaloyl Chloride and p-Phenylenediamine. Langmuir 24:2081

    Article  Google Scholar 

  • Authorized material from TNO

    Google Scholar 

  • Carcia PF, McLean RS, Reilly MH, Groner MD, George SM (2006) Ca-Tests of Al2O3 Gas Diffusion Barriers Grown by Atomic Layer Deposition on Polymers. Appl Phys Lett 89:031915

    Article  Google Scholar 

  • Carcia PF, McLean RS, Groner MD, Dameron AA, George SM (2009) Al2O3 ALD and SiN PECVD Films as Gas Diffusion Ultra-barrier on Polymer Substrates. J Appl Phys 106:023533

    Article  Google Scholar 

  • Cavanagh AS, Wilson CA, Weimer AW, George SM (2009) Atomic Layer Deposition on Gram Quantities of Multiwalled Carbon Nanotubes. Nanotechnology 20:255602

    Google Scholar 

  • Cheng HE, Lee WJ (2006) Properties of TiN films grown by atomic-layer chemical vapor deposition with a modified gaseous-pulse sequence. Mater Chem Phys 97:315

    Article  Google Scholar 

  • Dameron AA, Davidson SD, Burton BB, Carcia PF, McLean RS, George SM (2008) Gas Diffusion Barriers on Polymers Using Multilayers Fabricated by Al2O3 and Rapid SiO2 Atomic Layer Deposition. J Phys Chem C 112:4573

    Article  Google Scholar 

  • de Groot WA, Webster JR, Felnhofer D, Gusev EP (2009) Review of device and reliability physics of dielectrics in electrostatically driven MEMS devices. IEEE Trans Device Mater Reliab 9:190

    Article  Google Scholar 

  • Du Y, George SM (2007) Molecular Layer Deposition of Nylon 66 Films Examined Using In Situ FTIR Spectroscopy. J Phys Chem C 111:8509

    Article  Google Scholar 

  • Elam JW, Schuisky M, Ferguson JD, George SM (2003) Surface Chemistry and Film Growth During TiN Atomic Layer Deposition using TDMAT and NH3. Thin Solid Films 436:145

    Article  Google Scholar 

  • Farm E, Kemell M, Ritala M, Leskela M (2008) Selective-area atomic layer deposition with microcontact printed self-assembled octadecyltrichlorosilane monolayers as mask layers. Thin Solid Films 517:972

    Article  Google Scholar 

  • Farm E, Vehkamaki M, Ritala M, Leskela M (2012) Passivation of Copper Surfaces for Selective-Area ALD Using Thiol Self-Assembled Monolayers. Semicond Sci Technol 27:074004

    Article  Google Scholar 

  • Ferguson JD, Weimer AW, George SM (2005) Surface Chemistry and Infrared Absorbance Changes during ZnO Atomic Layer Deposition on ZrO2 and BaTiO3 Particles. J Vac Sci Technol A 23:118

    Article  Google Scholar 

  • Gay G, Baron T, Agraffeil C, Salhi B, Chevolleau T, Cunge G, Grampeix H, Tortai JH, Martin F, Jalaguier E, De Salvo B. (2010) CMOS compatible strategy based on selective atomic layer deposition of a hard mask for transferring block copolymer lithography patterns. Nanotechnology 21:435301

    Article  Google Scholar 

  • George SM, Ott AW, Klaus JW (1996) Surface chemistry for atomic layer growth. J Phys Chem 100:13121

    Article  Google Scholar 

  • Granneman E, Fischer P, Pierreux D, Terhorst H, Zagwijn P (2007) ALD: Characteristics, comparison with single wafer ALD, and examples. Surf Coat Technol 201:8899

    Article  Google Scholar 

  • Groner MD, Elam JW, Fabreguette FH, George SM (2002) Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films 413:186

    Article  Google Scholar 

  • Groner MD, Fabreguette FH, Elam JW, George SM (2004) Low-Temperature Al2O3 Atomic Layer Deposition. Chem Mater 16:639

    Article  Google Scholar 

  • Groner MD, George SM, McLean RS, Carcia PF (2006) Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl Phys Lett 88:051907

    Article  Google Scholar 

  • Grubbs RK, George SMJ (2006) Attenuation of Hydrogen Radicals Traveling under Flowing Gas Conditions Through Tubes of Different Materials. J Vac Sci Technol A 24:486

    Article  Google Scholar 

  • Hakin LF, George SM, Weimer AW (2005) Conformal Nanocoating of Zirconia Nanoparticles by ALD in a Fluidized Bed Reactor. Nanotechnology 16:S375

    Article  Google Scholar 

  • Hasunuma E, Sugahara S, Hoshino S, Imai S, Ikeda K, Matsumura M (1998) Gas-phase-reaction-controlled atomic-layer-epitaxy of silicon. J Vac Sci Technol A 16:679

    Article  Google Scholar 

  • Heil SBS, Kudlacek P, Langereis E, Engeln R, van de Sanden MCM, Kessels WMM (2006) In situ reaction mechanism studies of plasma-assisted atomic layer deposition of Al2O3. Appl Phys Lett 89:131505

    Article  Google Scholar 

  • Hirvikorpi T, Vähä-Nissi M, Harlin A, Karppinen M (2010) Comparison of some coating techniques to fabricate barrier layers on packaging materials. Thin Solid Films 518:5463

    Article  Google Scholar 

  • Hoex B, Heil SBS, Langereis E, van de Sanden MCM, Kessels WMM (2006) Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl Phys Lett 89:042112

    Article  Google Scholar 

  • Huang ML, Chang YC, Chang CH, Lee YJ, Chang P, Kwo J, Wu TB, Hong M (2005) Surface passivation of III–V compound semiconductors using atomic-layer-deposition-grown Al2O3. Appl Phys Lett 87:252104

    Article  Google Scholar 

  • Huang JY, Wang XD, Wang ZL (2006) Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett 6:2325

    Article  Google Scholar 

  • Kim H (2003) Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. J Vac Sci Technol B 21:2231

    Article  Google Scholar 

  • Kim H, Cabral C, Lavoie C, Rossnagel SMJ (2002) Diffusion barrier properties of transition metal thin films grown by plasma-enhanced atomic-layer deposition. Vac Sci Technol B 20:1321

    Article  Google Scholar 

  • Kim A, Filler MA, Kim S, Bent SF (2005) Layer-by-layer growth on Ge(100) via spontaneous urea coupling reactions. J Am Chem Soc 127:6123

    Article  Google Scholar 

  • Knez M, Kadri A, Wege C, Gösele U, Jeske H, Nielsch K (2006) Atomic Layer Deposition on Biological Macromolecules: Metal Oxide Coating of Tobacco Mosaic Virus and Ferritin. Nano Lett 6:1172

    Article  Google Scholar 

  • Knoops HCM, Mackus AJM, Donders ME, van de Sanden MCM, Notten PHL, Kessels WMM (2009) Remote Plasma ALD of Platinum and Platinum Oxide Films. Electrochem Solid-State Lett 12:G34

    Article  Google Scholar 

  • Kwon OK, Kwon SH, Park HS, Kang SW (2004a) Plasma-enhanced atomic layer deposition of ruthenium thin films. Electrochem Solid-State Lett 7:C46

    Article  Google Scholar 

  • Kwon OK, Kwon SH, Park HS, Kang SW (2004b) PEALD of a ruthenium adhesion layer for copper interconnects. J Electrochem Soc 151:C753

    Article  Google Scholar 

  • Langereis E, Creatore M, Heil SBS, Van de Sanden MCM, Kessels WMM (2006) Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers. Appl Phys Lett 89:081915

    Article  Google Scholar 

  • Lee JS, Min B, Cho K, Kim S, Park J, Lee YT, Kim NS, Lee MS, Park SO, Moon JTJ (2003) Al2O3 nanotubes and nanorods fabricated by coating and filling of carbon nanotubes with atomic-layer deposition. Cryst Growth 254:443

    Article  Google Scholar 

  • Marin E, Lanzutti A, Guzman L, Fedrizzi L (2011) Corrosion protection of AISI 316 stainless steel by ALD alumina/titania nanometric coatings. J Coat Technol Res 8(5):655

    Article  Google Scholar 

  • Mayer TM, Elam JW, George SM, Kotula PG, Goeke RS (2003) Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices. Appl Phys Lett 82(17):2883

    Article  Google Scholar 

  • Meng XB, Yang XQ, Sun X (2012) Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv Mater 24:3589

    Article  Google Scholar 

  • Miikkulainen V, Leskelä M, Ritala M, Puurunen RL (2013) Crystallinity of inorganic films grown by ALD; overview and general trends. J Appl Phys 113:021301

    Article  Google Scholar 

  • Mohseni H, Scharf TW (2012) Atomic layer deposition of ZnO/Al2O3/ZrO2 nanolaminates for improved thermal and wear resistance in carbon-carbon composites. J Vac Sci Technol A 30(1):01A149-1

    Article  Google Scholar 

  • Ott AW, Klaus JW, Johnson JM, George SM (1997) Al2O3 Thin Film Growth on Si(100) Using Binary Reaction Sequence Chemistry. Thin Solid Films 292:135

    Article  Google Scholar 

  • Park JS, Lee MJ, Lee CS, Kang SW (2001) Plasma-Enhanced Atomic Layer Deposition of Tantalum Nitrides Using Hydrogen Radicals as a Reducing Agent. Electrochem Solid-State Lett 4:C17

    Article  Google Scholar 

  • Pilvi T, Arstila K, Leskelä M, Ritala M (2007) Novel ALD process for depositing CaF2 thin films. Chem Mater 19:3387

    Article  Google Scholar 

  • Poodta P, Cameron DC, Dickey E, George SM, Kuznetsov V, Parsons GN, Roozeboom F, Sundaram G, Vermeer A (2012) Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition. J Vac Sci Technol A 30:010802

    Article  Google Scholar 

  • Puurunen RL (2005) Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J Appl Phys 97:121301

    Article  Google Scholar 

  • Ritala M, Leskelä M (1999) Atomic layer epitaxy - a valuable tool for nanotechnology? Nanotechnology 10:19

    Article  Google Scholar 

  • Ritala M, Leskelä M, Nykänen E, Soininen P, Niinistö L (1993) Growth of titanium dioxide thin films by atomic layer epitaxy. Thin Solid Films 225:288

    Article  Google Scholar 

  • Ritala M, Leskelä M, Dekker JP, Mutsaers C, Soininen PJ, Skarp J (1999) Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition. Chem Vap Depos 5:7

    Article  Google Scholar 

  • Rossnagel SM, Sherman A, Turner FJ (2000) Plasma-enhanced atomic layer deposition of Ta and Ti for interconnect diffusion barriers. Vac Sci Technol B 18:2016

    Article  Google Scholar 

  • Samal N, Du H, Luberoff R, Chetry K, Bubber R, Hayes A, Devasahayam A (2013) Low-temperature (≤ 200° C) plasma enhanced atomic layer deposition of dense titanium nitride thin films. J Vac Sci Technol A 31(1):01A137

    Article  Google Scholar 

  • Satta A, Schuhmacher J, Whelan CM, Vandervorst W, Brongersma SH, Beyer GP, Maex K, Vantomme A, Viitanen MM, Brongersma HH, Besling WFA (2002) Growth mechanism and continuity of atomic layer deposited TiN films on thermal SiO2. J Appl Phys 92:7641

    Article  Google Scholar 

  • Sneh O (2005) ALD apparatus and method, US Patent #6,911,092, Issued 28 June 2005

    Google Scholar 

  • Sneh O, Clark-Phelps RB, Londer gan AR, Winkler J, Seidel TE (2002) Thin film atomic layer deposition equipment for semiconductor processing. Thin Solid Films 402:248

    Article  Google Scholar 

  • Suntola T, Antson J (1977) Method for producing compound thin films. Patent US 4058430 A, 10 Sept 1977

    Google Scholar 

  • Suntola T, Simpson M (eds) (1990) Atomic layer epitaxy. Blackie, New York, pp 3–5

    Google Scholar 

  • Wank JR, George SM, Weimer AW (2004) Nanocoating Individual Cohesive Boron Nitride Particles in a Fluidized Bed by ALD. Powder Technol 142:59

    Article  Google Scholar 

  • Wilson CA, Grubbs RK, George SM (2005) Nucleation and Growth during Al2O3 Atomic Layer Deposition on Polymers. Chem Mater 17:5625

    Article  Google Scholar 

  • Yamada A, Sang BS, Konagai M (1997) Atomic layer deposition of ZnO transparent conducting oxides. Appl Surf Sci 112:216

    Article  Google Scholar 

  • Ye PD, Wilk GD, Kwo J, Yang B, Gossmann HJL, Frei M, Chu SNG, Mannaerts JP, Sergent M, Hong M, Ng KK, Bude J (2003) GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition. IEEE Electron Device Lett 24:209

    Article  Google Scholar 

  • Yoshimura T, Terasawa N, Kazama H, Naito Y, Suzuki Y, Asama K (2006) Selective growth of conjugated polymer thin films by the vapor deposition polymerization. Thin Solid Films 497:182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this entry

Cite this entry

He, W. (2013). ALD: Atomic Layer Deposition, Precise and Conformal Coating for Better Performance. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4976-7_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4976-7_80-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4976-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics