Skip to main content

Introduction to Organic Solar Cells

  • Chapter
  • First Online:
Organic Solar Cells

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Organic solar cells (OSCs) have attracted strong attention in recent years, due to the advantages of flexibility, thinness, and simple manufacturing process. In this chapter, we overview the basics of OSCs. The basics of organic semiconductors are first described. We then provide details of the four steps in the operation principles of OSCs, including exciton generation, exciton diffusion, exciton dissociation, and charge collection. The basic architecture of OSC and the methods of characterization of OSCs are also explained. This chapter provides the fundamentals of OSCs to facilitate understanding of more advanced topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akamatu H, Inokuchi H, Matsunaga Y (1954) Electrical conductivity of the perylene bromine complex. Nature 173(4395):168–169

    Google Scholar 

  2. Tang C (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913

    Article  Google Scholar 

  3. Bredas JL, Calbert JP, da Silva Filho DA, Cornil J (2002) Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Nat Acad Sci 99(9):5804–5809

    Google Scholar 

  4. Kymissis I (2009) The physics of organic semiconductors. In: Organic Field Effect Transistors. Integrated Circuits and Systems, Springer, US, pp 1-12

    Google Scholar 

  5. Hu D, Yu J, Padmanaban G, Ramakrishnan S, Barbara PF (2002) Spatial confinement of exciton transfer and the role of conformational order in organic nanoparticles. Nano Lett 2(10):1121–1124

    Article  Google Scholar 

  6. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA (2004) Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303(5664):1644–1646

    Article  Google Scholar 

  7. Kietzke T (2007) Recent Advances in Organic Solar Cells. Advances in OptoElectronics 2007. doi:10.1155/2007/40285

  8. McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF (2006) Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 5(4):328–333

    Article  Google Scholar 

  9. Anthopoulos TD (2006) High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films. Appl Phys Lett 89(21):213504

    Article  Google Scholar 

  10. Gundlach DJ (2005) High mobility n-channel organic thin-film transistors and complementary inverters. J Appl Phys 98(6):064502

    Article  Google Scholar 

  11. Koster LJ (2006) Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett 88(9):093511

    Article  Google Scholar 

  12. Gregg B (2003) Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J Appl Phys 93(6):3605

    Article  Google Scholar 

  13. Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Polymer-based solar cells. Mater Today 10:28–33

    Google Scholar 

  14. Brütting W (2006) Introduction to the physics of organic semiconductors. In: Physics of organic semiconductors. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–14

    Google Scholar 

  15. Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16(23):4533–4542

    Article  Google Scholar 

  16. Min C (2010) Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl Phys Lett 96(13):133302

    Article  Google Scholar 

  17. Lee JH, Kim DW, Jang H, Choi JK, Geng J, Jung JW, Yoon SC, Jung H-T (2009) Enhanced solar-cell efficiency in bulk-heterojunction polymer systems obtained by nanoimprinting with commercially available AAO membrane filters. Small 5(19):2139–2143

    Article  Google Scholar 

  18. Andersson V (2008) Optical modeling of a folded organic solar cell. J Appl Phys 103(9):094520

    Article  Google Scholar 

  19. Peumans P, Bulovic V, Forrest SR (2000) Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett 76(19):2650–2652

    Article  Google Scholar 

  20. Jean-Michel N (2002) Organic photovoltaic materials and devices. CR Phys 3(4):523–542

    Article  Google Scholar 

  21. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(07):1924–1945

    Article  Google Scholar 

  22. Tang C (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183

    Article  Google Scholar 

  23. Brabec CJ, Zerza G, Cerullo G, De Silvestri S, Luzzati S, Hummelen JC, Sariciftci S (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340(3–4):232–236

    Article  Google Scholar 

  24. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338

    Article  Google Scholar 

  25. Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B 72(8):085205

    Article  Google Scholar 

  26. Mihailetchi VD, Wildeman J, Blom PWM (2005) Space-charge limited photocurrent. Phys Rev Lett 94(12):126602

    Article  Google Scholar 

  27. Koster LJ (2005) Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl Phys Lett 87(20):203502

    Article  Google Scholar 

  28. Lenes M (2006) Thickness dependence of the efficiency of polymer: fullerene bulk heterojunction solar cells. Appl Phys Lett 88(24):243502

    Article  Google Scholar 

  29. Shrotriya V (2006) Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Appl Phys Lett 89(6):063505

    Article  Google Scholar 

  30. Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11(5):374–380

    Article  Google Scholar 

  31. Parker I (1994) Carrier tunneling and device characteristics in polymer light-emitting diodes. J Appl Phys 75(3):1656

    Article  Google Scholar 

  32. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794

    Article  Google Scholar 

  33. Mihailetchi V (2003) Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells. J Appl Phys 94(10):6849

    Article  Google Scholar 

  34. Brabec C (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80(7):1288

    Article  Google Scholar 

  35. Hayakawa A (2007) High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer. Appl Phys Lett 90(16):163517

    Article  Google Scholar 

  36. Waldauf C (2006) Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl Phys Lett 89(23):233517

    Article  Google Scholar 

  37. Kuwabara T, Nakayama T, Uozumi K, Yamaguchi T, Takahashi K (2008) Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol Energy Mater Sol Cells 92(11):1476–1482

    Article  Google Scholar 

  38. Keis K, Magnusson E, Lindström H, Lindquist S-E, Hagfeldt A (2002) A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol Energy Mater Sol Cells 73(1):51–58

    Article  Google Scholar 

  39. Kyaw AK (2008) An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl Phys Lett 93(22):221107

    Article  Google Scholar 

  40. Schmidt H (2009) Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Appl Phys Lett 94(24):243302

    Article  Google Scholar 

  41. Han S, Shin WS, Seo M, Gupta D, Moon S-J, Yoo S (2009) Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes. Org Electron 10(5):791–797

    Article  Google Scholar 

  42. Jiang CY, Sun XW, Zhao DW, Kyaw AKK, Li YN (2010) Low work function metal modified ITO as cathode for inverted polymer solar cells. Sol Energy Mater Sol Cells 94(10):1618–1621

    Article  Google Scholar 

  43. Tao C (2008) Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Appl Phys Lett 93(19):193307

    Article  Google Scholar 

  44. Xie F (2011) Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Appl Phys Lett 99(15):153304

    Article  Google Scholar 

  45. Peng B (2011) Performance improvement of polymer solar cells by using a solvent-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) buffer layer. Appl Phys Lett 98(24):243308

    Article  Google Scholar 

  46. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791

    Article  Google Scholar 

  47. Chen L, Tang Y, Fan X, Zhang C, Chu Z, Wang D, Zou D (2009) Improvement of the efficiency of CuPc/C60-based photovoltaic cells using a multistepped structure. Org Electron 10(4):724–728

    Article  Google Scholar 

  48. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon 3(5):297–302

    Article  Google Scholar 

  49. Savenije TJ, Kroeze JE, Yang X, Loos J (2005) The Effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene–fullerene bulk heterojunction. Adv Funct Mater 15(8):1260–1266

    Article  Google Scholar 

  50. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17(10):1636–1644

    Article  Google Scholar 

  51. Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3(11):649–653

    Article  Google Scholar 

  52. Schilinsky P (2002) Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl Phys Lett 81(20):3885

    Article  Google Scholar 

  53. Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13(1):85–88

    Article  Google Scholar 

  54. Vanlaeke P, Swinnen A, Haeldermans I, Vanhoyland G, Aernouts T, Cheyns D, Deibel C, D’Haen J, Heremans P, Poortmans J, Manca JV (2006) P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics. Sol Energy Mater Sol Cells 90(14):2150–2158

    Article  Google Scholar 

  55. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C-S, Ree M (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat Mater 5(3):197–203

    Article  Google Scholar 

  56. Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1):45–61

    Article  Google Scholar 

  57. Yao Y, Hou J, Xu Z, Li G, Yang Y (2008) Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv Funct Mater 18(12):1783–1789

    Article  Google Scholar 

  58. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868

    Article  Google Scholar 

  59. Dennler G (2006) Enhanced spectral coverage in tandem organic solar cells. Appl Phys Lett 89(7):073502

    Article  Google Scholar 

  60. Janssen AG (2007) Highly efficient organic tandem solar cells using an improved connecting architecture. Appl Phys Lett 91(7):073519

    Article  Google Scholar 

  61. Peumans P (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93(7):3693

    Article  Google Scholar 

  62. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222–225

    Article  Google Scholar 

  63. Gilot J (2007) Double and triple junction polymer solar cells processed from solution. Appl Phys Lett 90(14):143512

    Article  Google Scholar 

  64. Sista S, Hong Z, Park M-H, Xu Z, Yang Y (2010) High-efficiency polymer tandem solar cells with three-terminal structure. Adv Mater 22(8):E77–E80

    Article  Google Scholar 

  65. Shrotriya V, Li G, Yao Y, Moriarty T, Emery K, Yang Y (2006) Accurate measurement and characterization of organic solar cells. Adv Funct Mater 16(15):2016–2023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace C. H. Choy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Fung, D.D.S., Choy, W.C.H. (2013). Introduction to Organic Solar Cells. In: Choy, W. (eds) Organic Solar Cells. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4823-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4823-4_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4822-7

  • Online ISBN: 978-1-4471-4823-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics