Skip to main content

Engineering of Photomanipulatable Hydrogels for Translational Medicine

  • Chapter
  • First Online:
Engineering in Translational Medicine
  • 2623 Accesses

Abstract

Photomanipulatable biomaterials are important for translational medicine because the spatial- and temporal-resoluted control on the property and function of biomaterials can be realized through light irradiation. As one of the most important types of biomaterials, hydrogels based on natural or synthetic polymers have been engineered to have photoreactive chemical moieties for the post-gelation photomanipulation. In this chapter, we summarized the chemistry involved in the engineering of photomanipulatable hydrogels, followed by some representative examples of photomanipulatable hydrogels including photopolymerizable hydrogels, photodegradable hydrogels, photopatternable hydrogels and smart supramolecular hydrogels with sensitive photoresponses. The applications of these photomanipulatable biomaterials in regenerative medicines and tissue engineering were demonstrated by recent examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bryan T, Janet H, William S, Russell AJ, Parenteau NL (2013) Meeting the need for regenerative therapies: translation-focused analysis of U.S. regenerative medicine opportunities in cardiovascular and peripheral vascular medicine using detailed incidence data. Tissue Eng Part B 19:99–115

    Article  Google Scholar 

  2. Ratcliffe A (2011) Difficulties in the translation of functionalized biomaterials into regenerative medicine clinical products. Biomaterials 32:4215–4217

    Article  Google Scholar 

  3. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  Google Scholar 

  4. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314

    Article  Google Scholar 

  5. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573

    Article  Google Scholar 

  6. Massi A, Nanni D (2012) Thiol-yne coupling: revisiting old concepts as a breakthrough for up-to-date applications. Org Biomol Chem 10:3791–3807

    Article  Google Scholar 

  7. Wang YZ, Vera CIR, Lin Q (2007) Convenient synthesis of highly functionalized Pyrazolines via Mild, Photoactivated 1,3-Dipolar Cycloaddition. Org Lett 9:4155–4158

    Article  Google Scholar 

  8. Lim RKV, Lin Q (2011) Photoinducible Bioorthogonal Chemistry: a spatiotemporally controllable tool to visualize and Perturb Proteins in live cells. Acc Chem Res 44:828–839

    Article  Google Scholar 

  9. Ercole F, DavisTP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54

    Google Scholar 

  10. Kumar GS, Neckers DC (1989) Photochemistry of azobenzene-containing polymers. Chem Rev 89:1915–1925

    Article  Google Scholar 

  11. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422–4437

    Article  Google Scholar 

  12. Minkin VI (2004) Photo-, Thermo-, Solvato-, and Electrochromic spiroheterocyclic compounds. Chem Rev 104:2751–2776

    Google Scholar 

  13. Kohl-landgraf J, Braun M, Ozcoban C, Goncalves DPN, Heckel A, Wachtveitl J (2012) Ultrafast dynamics of a Spiropyran in water. J Am Chem Soc 134:14070–14077

    Article  Google Scholar 

  14. Mayer G, Heckel A (2006) Biologically active molecules with a “light switch”. Angew Chem Int Ed 45:4900–4921

    Article  Google Scholar 

  15. Yu HT, Li JB, Wu DD, Qiu ZJ, Zhang Y (2010) Chemistry and biological applications of photo-labile organic molecules. Chem Soc Rev 39:464–473

    Article  Google Scholar 

  16. Khatiwala C, Law R, Shepherd B, Dorfman S, Csete M (2012) 3D Cell Bioprinting For Regenerative Medicine Research And Therapies. Gene Ther Regul 7:1230004

    Article  Google Scholar 

  17. Ifkovits JL, Burdick JA (2007) Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13:2369–2385

    Article  Google Scholar 

  18. Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomat Sci Polym E 11:439–457

    Article  Google Scholar 

  19. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26:1211–1218

    Article  Google Scholar 

  20. Ng L, Ng K, Stein DB (2009) Handbook of hydrogels. Nova Science, New York

    Google Scholar 

  21. Anseth KS, Shastri VR, Langer R (1999) Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat Biotechnol 17:156–159

    Article  Google Scholar 

  22. Cruise GM, Scharp DS, Hubbell JA (1998) Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19:1287–1294

    Article  Google Scholar 

  23. Timmer MD, Carter C, Ambrose CG, Mikos AG (2003) Fabrication of poly(propylene fumarate)-based orthopaedic implants by photo-crosslinking through transparent silicone molds. Biomaterials 24:4707–4714

    Article  Google Scholar 

  24. John G, Morita M (1999) Synthesis and characterization of photo-cross-linked networks based on L-lactide/serine copolymers. Macromolecules 32:1853–1858

    Article  Google Scholar 

  25. Schmedlen KH, Masters KS, West JL (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23:4325–4332

    Article  Google Scholar 

  26. Anderson DG, Tweedie CA, Hossain N, Navarro SM, Brey DM, Van VKJ, Langer R, Burdick JA (2006)A combinatorial library of photocrosslinkable and degradable materials. Adv Mater 18:2614–2618

    Google Scholar 

  27. Brinkman WT, Nagapudi K, Thomas BS, Chaikof EL (2003) Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: mechanical properties, cell viability, and function. Biomacromolecules 4:890–895

    Article  Google Scholar 

  28. Dong CM, Wu XY, Caves J, Rele SS, Thomas BS, Chaikof EL (2005) Photomediated crosslinking of C6-cinnamate derivatized type I collagen. Biomaterials 26:4041–4049

    Article  Google Scholar 

  29. Smeds KA, Pfister-Serres A, Hatchell DL, Grinstaff MW (1999) Synthesis of a novel polysaccharide hydrogel. J Macromol Sci Pure Appl Chem 36:981–989

    Google Scholar 

  30. Leach JB, Bivens KA, Patrick CW, Schmidt CE (2003) Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82:578–589

    Article  Google Scholar 

  31. Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A (2002) Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23:833–840

    Article  Google Scholar 

  32. Matsuda T, Magoshi T (2002) Preparation of vinylated polysaccharides and photofabrication of tubular scaffolds as potential use in tissue engineering. Biomacromolecules 3:942–950

    Article  Google Scholar 

  33. Ono K, Ishihara M, Ozeki Y, Deguchi H, Sato M, Saito Y, Yura H, Sato M, Kikuchi M, Kurita A, Maehara T (2001) Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications. Surgery 130:844–850

    Article  Google Scholar 

  34. Elisseeff J, Mclntosh W, Anseth K, Riley S, Ragan P, Langer R (2000) Photoencapsulation of chondrocytes in poly(ethyleneoxide)-based semi-interpenetrating networks). J Biomed Mater Res 51:164–171

    Article  Google Scholar 

  35. Burdick JA, Anseth KS (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323

    Google Scholar 

  36. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (2003) In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 9:679–688

    Article  Google Scholar 

  37. Burdick JA, Chung C, Jia XQ, Randolph MA, Langer R (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6:386–391

    Article  Google Scholar 

  38. Park YD, Tirelli N, Hubbell JA (2003) Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials 24:893–900

    Google Scholar 

  39. Hu JL, Hou YP, Park H, Choi B, Hou S, Chung A, Lee M (2012) Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater 8:1730–1738

    Google Scholar 

  40. McCall JD, Anseth KS (2012) Thiol-ene photopolymerizations provide a facile method to encapsulate proteins and maintain their bioactivity. Biomacromolecules 13:2410–2417

    Article  Google Scholar 

  41. Fairbanks BD, Scott TF, Kloxin CJ, Anseth KS, Bowman CN (2009) Thiol-yne photopolymerizations: novel mechanism, kinetics, and step-growth formation of highly cross-linked networks. Macromolecules 42:211–217

    Article  Google Scholar 

  42. Lin CC, Raza A, Shih H (2011) PEG hydrogels formed by thiol-ene photoclick chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 32:9685–9695

    Google Scholar 

  43. Fairbanks BD, Schwartz MP, Halevi AE, Nuttelman CR, Bowman CN, Anseth KS (2009) A versatile synthetic extracellular matrix mimic via Thiol-Norbornene photopolymerization. Adv Mater 21:5005–5010

    Article  Google Scholar 

  44. Engler AJ, SenS S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  Google Scholar 

  45. Guvendiren M, Burdick JA (2012) Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun. doi:10.1038/ncomms1792

  46. Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA Nat Mater. doi:10.1038/nmat3586

  47. Tseng SJ, Chien CC, Liao ZX, Chen HH, Kang YD, Wang CL, Hwu Y, Margaritondo G (2012) Controlled hydrogel photopolymerization inside live systems by X-ray irradiation. Soft Matter 8:1420–1427

    Article  Google Scholar 

  48. Kloxin AM, Kloxin CJ et al (2010) Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 22:3484–3494

    Article  Google Scholar 

  49. Li Q, Wang J et al (2006) Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 27:1027–1034

    Article  Google Scholar 

  50. Poon YF, Cao Y et al (2009) Addition of beta-Malic Acid-Containing Poly(ethylene glycol) Dimethacrylate to form biodegradable and biocompatible hydrogels. Biomacromolecules 10:2043–2052

    Article  Google Scholar 

  51. Zhou CC, Li P et al (2011) A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials 32:2704–2712

    Google Scholar 

  52. Yang F, Williams CG et al (2005) The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26:5991–5998

    Article  Google Scholar 

  53. Suzuki A, Tanaka T (1990) Phase-transition in polymer gels induced by visible-light. Nature 346:345–347

    Google Scholar 

  54. Tanaka T, Mamada A et al (1990) Photoinduced phase-transition of gels. Macromolecules 23:1517–1519

    Article  Google Scholar 

  55. Kloxin AM, Kasko AM et al (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63

    Article  Google Scholar 

  56. Kloxin AM, Benton JA et al (2010) In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31:1–8

    Google Scholar 

  57. Kloxin AM, Tibbitt MW et al (2010) Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat Protoc 5:1867–1887

    Article  Google Scholar 

  58. Tibbitt MW, Kloxin AM et al (2010) Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv Mater 22:61–66

    Article  Google Scholar 

  59. Peng K, Tomatsu I et al (2011) Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter 7:4881–4887

    Article  Google Scholar 

  60. Lewis KJR, Kloxin AM et al (2012) Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr Biol 4:1540–1549

    Article  Google Scholar 

  61. Wang H, Haeger SM et al (2012) Redirecting Valvular Myofibroblasts into Dormant Fibroblasts through light-mediated reduction in substrate modulus. PLoS ONE 7:e39969

    Article  Google Scholar 

  62. Griffin DR, Kasko AM (2012) Photodegradable macromers and hydrogels for live cell encapsulation and release. J Am Chem Soc 134:13103–13107

    Article  Google Scholar 

  63. Griffin DR, Kasko AM (2012) Photoselective delivery of model therapeutics from hydrogels. Acs Macro Lett 1:1330–1334

    Article  Google Scholar 

  64. Yan B, Boyer JC et al (2012) Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J Am Chem Soc 134:16558–16561

    Article  Google Scholar 

  65. Peng K, Tomatsu I et al (2010) Light controlled protein release from a supramolecular hydrogel. Chem Commun 46:4094–4096

    Article  Google Scholar 

  66. Khetan S, Burdick JA (2011) Patterning hydrogels in three dimensions towards controlling cellular interactions. Soft Matter 7:830–838

    Article  Google Scholar 

  67. DeForest CA, Anseth KS (2011) Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat Chem 3:925–931

    Article  Google Scholar 

  68. DeForest CA, Anseth KS (2012) Photoreversible patterning of biomolecules within click -based hydrogels. Angew Chem Int Ed 124:1852–1855

    Google Scholar 

  69. Khetan S, Katz JS et al (2009) Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Matter 5:1601–1606

    Article  Google Scholar 

  70. Marklein RA, Burdick JA (2010) Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter 6:136–143

    Article  Google Scholar 

  71. Khetan S, Burdick JA (2010) Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31:8228–8234

    Article  Google Scholar 

  72. Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3:249–253

    Article  Google Scholar 

  73. Wylie RG, Ahsan S et al (2011) Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater 10:799–806

    Article  Google Scholar 

  74. Wylie RG, Shoichet MS (2011) Three-dimensional spatial patterning of proteins in hydrogels. Biomacromolecules 12:3789–3796

    Article  Google Scholar 

  75. Hahn MS, Miller JS, West JL (2006) Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv Mater 18:2679–2684

    Article  Google Scholar 

  76. Lee SH, Moon JJ, West JL (2008) Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29:2962–2968

    Article  Google Scholar 

  77. DeForest CA, Anseth KS (2012) Photoreversible patterning of biomolecules within click-based hydrogels. Angew Chem Int Ed 51:1816–1819

    Article  Google Scholar 

  78. Hu YH, Wang HM, Wang JY, Wang SB, Liao W, Yang YG, Zhang YJ, Kong DL, Yang ZM (2010) Supramolecular hydrogels inspired by collagen for tissue engineering. Org Biomol Chem 8:3267–3271

    Article  Google Scholar 

  79. Hamachi I (2010) Supramolecular hydrogels as novel stimuli-responsive materials. Frag J 38:21–25

    Google Scholar 

  80. Appel EA, Loh XJ, Jones ST, Biedermann F, Dreiss CA, Scherman OA (2012) Ultrahigh-water-content supramolecular hydrogels exhibiting Multistimuli responsiveness. J Am Chem Soc 134:11767–11770

    Google Scholar 

  81. Komatsu H, Tsukiji S, Ikeda M, Hamachi I (2011) Stiff, Multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D Microarchitectures of live cells. Chem Asian J 6:2368–2375

    Google Scholar 

  82. Li H, Wang GL, Tang L, Wei Q, Zhen TM, Meng XB (2010) Smart polymer materials for biomedical applications. Nova Science, New York

    Google Scholar 

  83. Yang ZM, Liang GL, Xu B (2008) Enzymatic hydrogelation of small molecules. Acc Chem Res 41:315–326

    Article  Google Scholar 

  84. Huang YC, Qiu ZJ, Xu YM, Shi JF, Lin HK, Zhang Y (2011) Supramolecular hydrogels based on short peptides linked with conformational switch. Org Biomol Chem 9:2149–2155

    Article  Google Scholar 

  85. Qiu ZJ, Yu HT, Li JB, Wang Y, Zhang Y (2009) Spiropyran-linked dipeptide forms supramolecular hydrogel with dual responses to light and to ligand-receptor interaction. Chem Commun 45:3342–3344

    Article  Google Scholar 

  86. Li XM, Kuang Y, Gao Y, Xu B (2010) Enzymatic formation of a photoresponsive supramolecular hydrogel. Chem Commun 46:5364–5366

    Article  Google Scholar 

  87. Haines LA, Ozbas B, Rajagopal K, Salick DA, Pochan DJ (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc 127(48):17025–17029

    Article  Google Scholar 

  88. Muraoka T, Cui HG, Koh CY, Stupp SI (2009) Light-triggered bioactivity in three dimensions. Angew Chem Int Ed 48:5946–5949

    Article  Google Scholar 

  89. Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A (2012) Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat Commun. doi:10.1038/ncomms2280

Download references

Acknowledgments

Financial support from the Natural Science Foundation of Jiangsu Province (BK2012012) was acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

He, M., Zhang, Y. (2014). Engineering of Photomanipulatable Hydrogels for Translational Medicine. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_34

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics