Skip to main content

Engineering Carbon Nanomaterials for Stem Cell-Based Tissue Engineering

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

Recent advances in creating carbon nanomaterials and their derivatives have led to several opportunities in biomedical research and clinical applications. The current and most promising biomedical applications of carbon nanomaterials such as carbon nanotubes and graphene includes but are not limited to tissue engineering and regenerative medicine. Owing to their unique intrinsic physical and chemical properties, they have been engineered by different methods to develop suitable two-dimensional and three-dimensional scaffolds. Such biocompatible nanostructured scaffolds were found to sustain growth, proliferation, and adhesion of different stem cells. While some of these scaffolds were found to accelerate the osteogenic, neurogenic, and adipogenic differentiation of various stem cells in the presence of specific medium, some scaffolds have been reported to support spontaneous differentiation of the stem cells into specific adult tissues even in normal medium. Several underlying mechanisms such as nanotopography, preconcentration of growth factors, electrostatic and chemical interactions have been proposed for such behavior of stem cells growing on different carbon nanomaterial-based scaffolds. Above results indicate them as excellent nanoplatforms for tissue engineering and stem cell-based regenerative medicine. However, most of these literature reports consist only of in vitro studies with specific stem cells. Therefore, sufficient in vivo studies together with relevant toxicity and biocompatibility data are necessary for their future application as an implantable tissue engineering material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  Google Scholar 

  2. Freed LE, Vunjak-Novakovic G (2000) Tissue engineering bioreactors. In: Lanza RP, Langer R, Vacanti J (eds) Principles of tissue engineering, 2nd edn. Academic Press, San Diego, pp 143–156

    Chapter  Google Scholar 

  3. Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, Kaplan D, Langer R, Vunjak-Novakovic G (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32(1):112–122

    Article  Google Scholar 

  4. de Boer HH (1988) The history of bone grafts. Clin Orthop Relat Res 226:292–298

    Google Scholar 

  5. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2(3):187–208. doi:10.1002/jab.770020307

    Article  Google Scholar 

  6. Coombes AG, Meikle MC (1994) Resorbable synthetic polymers as replacements for bone graft. Clin Mater 17(1):35–67

    Article  Google Scholar 

  7. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17(2):175–185. doi:0142961296857620 [pii]

    Article  Google Scholar 

  8. Lane JM, Tomin E, Bostrom MP (1999) Biosynthetic bone grafting. Clin Orthop Relat Res (367 Suppl):S107–117

    Google Scholar 

  9. Brown KL, Cruess RL (1982) Bone and cartilage transplantation in orthopaedic surgery, a review. J Bone Joint Surg Am 64(2):270–279

    Google Scholar 

  10. Northington JW, Brown MJ (1982) Acute canine idiopathic polyneuropathy, a Guillain-Barre-like syndrome in dogs. J Neurol Sci 56(2–3):259–273

    Article  Google Scholar 

  11. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 329:300–309

    Article  Google Scholar 

  12. Anderson ML, Dhert WJ, de Bruijn JD, Dalmeijer RA, Leenders H, van Blitterswijk CA, Verbout AJ (1999) Critical size defect in the goat’s os ilium, a model to evaluate bone grafts and substitutes. Clin Orthop Relat Res 364:231–239

    Article  Google Scholar 

  13. Strong DM, Friedlaender GE, Tomford WW, Springfield DS, Shives TC, Burchardt H, Enneking WF, Mankin HJ (1996) Immunologic responses in human recipients of osseous and osteochondral allografts. Clin Orthop Relat Res 326:107–114

    Article  Google Scholar 

  14. Mistry AS, Mikos AG (2005) Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol 94:1–22

    Google Scholar 

  15. Sittinger M, Bujia J, Rotter N, Reitzel D, Minuth WW, Burmester GR (1996) Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials 17(3):237–242. doi:014296129685561X [pii]

    Article  Google Scholar 

  16. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354 Suppl 1:SI32–34

    Google Scholar 

  17. Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300(5):64–71

    Article  Google Scholar 

  18. Bonassar LJ, Vacanti CA (1998) Tissue engineering: the first decade and beyond. J Cell Biochem Suppl 30–31:297–303

    Article  Google Scholar 

  19. Schultz O, Sittinger M, Haeupl T, Burmester GR (2000) Emerging strategies of bone and joint repair. Arthritis Res 2(6):433–436

    Article  Google Scholar 

  20. Moroni L, de Wijn JR, van Blitterswijk CA (2008) Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed 19(5):543–572. doi:10.1163/156856208784089571

    Article  Google Scholar 

  21. Satija NK, Singh VK, Verma YK, Gupta P, Sharma S, Afrin F, Sharma M, Sharma P, Tripathi RP, Gurudutta GU (2009) Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med 13(11–12):4385–4402. doi:10.1111/j.1582-4934.2009.00857.x

    Article  Google Scholar 

  22. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601. doi:10.1098/rsif.2006.0124 [pii] 3KJ54G03J182H66P

    Article  Google Scholar 

  23. Davis HE, Leach JK (2008) Hybrid and composite biomaterials in tissue engineering. In: Ashammakhi N (ed) Topics in multifunctional biomaterials and devices, vol 1

    Google Scholar 

  24. Liu Z, Liang XJ (2012) Nano-carbons as theranostics. Theranostics 2(3):235–237. doi:10.7150/thno.4156 thnov02p0235 [pii]

    Article  MathSciNet  Google Scholar 

  25. Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897. doi:10.1021/nn401196a

    Article  Google Scholar 

  26. Veetil JV, Ye KM (2009) Tailored carbon nanotubes for tissue engineering applications. Biotechnol Prog 25(3):709–721. doi:10.1002/btpr.165

    Article  Google Scholar 

  27. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555

    Article  Google Scholar 

  28. Ku SH, Lee M, Park CB (2013) Carbon-based nanomaterials for tissue engineering. Adv Healthcare Mater 2(2):244–260. doi:10.1002/adhm.201200307

    Article  Google Scholar 

  29. Lin Y, Taylor S, Li H, Fernando KAS, Qu L, Wang W, Gu L, Zhou B, Sun Y-P (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14(4):527. doi:10.1039/b314481j

    Article  Google Scholar 

  30. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105. doi:10.1016/j.pmatsci.2012.03.002

    Article  Google Scholar 

  31. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  32. Haddon RC (2002) Carbon nanotubes. Acc Chem Res 35(12):997

    Article  Google Scholar 

  33. Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35(12):1035–1044. doi:ar0101640 [pii]

    Article  Google Scholar 

  34. Hong H, Gao T, Cai W (2009) Molecular imaging with single-walled carbon nanotubes. Nano today 4(3):252–261. doi:10.1016/j.nantod.2009.04.002

    Article  Google Scholar 

  35. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120. doi:10.1007/s12274-009-9009-8

    Article  Google Scholar 

  36. Jan E, Kotov NA (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7(5):1123–1128. doi:10.1021/nl0620132

    Article  Google Scholar 

  37. Kam NW, Jan E, Kotov NA (2009) Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett 9(1):273–278. doi:10.1021/nl802859a 10.1021/nl802859a [pii]

    Article  Google Scholar 

  38. Park SY, Choi DS, Jin HJ, Park J, Byun KE, Lee KB, Hong S (2011) Polarization-controlled differentiation of human neural stem cells using synergistic cues from the patterns of carbon nanotube monolayer coating. ACS Nano 5(6):4704–4711. doi:10.1021/Nn2006128

    Article  Google Scholar 

  39. Park SY et al (2007) Carbon nanotube monolayer patterns for directed growth of mesenchymal stem cells. Adv Mater, 19 (18):2530–2534. doi:10.1002/adma.200600875

    Google Scholar 

  40. Namgung S, Kim T, Baik KY, Lee M, Nam JM, Hong S (2011) Fibronectin-carbon-nanotube hybrid nanostructures for controlled cell growth. Small 7(1):56–61. doi:10.1002/smll.201001513

    Article  Google Scholar 

  41. Tay CY, Gu H, Leong WS, Yu H, Li HQ, Heng BC, Tantang H, Loo SCJ, Li LJ, Tan LP (2010) Cellular behavior of human mesenchymal stem cells cultured on single-walled carbon nanotube film. Carbon 48(4):1095–1104. doi:10.1016/j.carbon.2009.11.031

    Article  Google Scholar 

  42. Kim JA, Jang EY, Kang TJ, Yoon S, Ovalle-Robles R, Rhee WJ, Kim T, Baughman RH, Kim YH, Park TH (2012) Regulation of morphogenesis and neural differentiation of human mesenchymal stem cells using carbon nanotube sheets. Integr Biol (Camb) 4(6):587–594. doi:10.1039/c2ib20017a

    Article  Google Scholar 

  43. Sridharan I, Kim T, Wang R (2009) Adapting collagen/CNT matrix in directing hESC differentiation. Biochem Biophys Res Commun 381(4):508–512. doi:10.1016/j.bbrc.2009.02.072

    Article  Google Scholar 

  44. Chao TI, Xiang S, Chen CS, Chin WC, Nelson AJ, Wang C, Lu J (2009) Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun 384(4):426–430. doi:10.1016/j.bbrc.2009.04.157 [pii] S0006-291X(09)00851-1

    Article  Google Scholar 

  45. Chao TI, Xiang S, Lipstate JF, Wang C, Lu J (2010) Poly(methacrylic acid)-grafted carbon nanotube scaffolds enhance differentiation of hESCs into neuronal cells. Adv Mater 22(32):3542–3547. doi:10.1002/adma.201000262

    Article  Google Scholar 

  46. Usui Y, Aoki K, Narita N, Murakami N, Nakamura I, Nakamura K, Ishigaki N, Yamazaki H, Horiuchi H, Kato H, Taruta S, Kim YA, Endo M, Saito N (2008) Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 4(2):240–246. doi:10.1002/smll.200700670

    Article  Google Scholar 

  47. Nayak TR et al (2010) Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano. doi:10.1021/nn102738c

  48. Pan LL, Pei XB, He R, Wan QB, Wang J (2012) Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids and Surfaces B-Biointerfaces 93:226–234

    Article  Google Scholar 

  49. Baik KY, Park SY, Heo K, Lee KB, Hong S (2011) Carbon nanotube monolayer cues for osteogenesis of mesenchymal stem cells. Small 7(6):741–745. doi:10.1002/smll.201001930

    Article  Google Scholar 

  50. Namgung S, Baik KY, Park J, Hong S (2011) Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano 5(9):7383–7390. doi:10.1021/nn2023057

    Article  Google Scholar 

  51. Huang YJ, Wu HC, Tai NH, Wang TW (2012) Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small 8(18):2869–2877

    Article  Google Scholar 

  52. Shi X, Sitharaman B, Pham QP, Liang F, Wu K, Edward Billups W, Wilson LJ, Mikos AG (2007) Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28(28):4078–4090. doi:10.1016/j.biomaterials.2007.05.033

    Article  Google Scholar 

  53. Sitharaman B, Shi X, Walboomers X, Liao H, Cuijpers V, Wilson L, Mikos A, Jansen J (2008) In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43(2):362–370. doi:10.1016/j.bone.2008.04.013

    Article  Google Scholar 

  54. McCullen SD, Stevens DR, Roberts WA, Clarke LI, Bernacki SH, Gorga RE, Loboa EG (2007) Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomed 2(2):253–263

    Google Scholar 

  55. Mooney E, Mackle JN, Blond DJ, O’Cearbhaill E, Shaw G, Blau WJ, Barry FP, Barron V, Murphy JM (2012) The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials 33(26):6132–6139. doi:10.1016/j.biomaterials.2012.05.032 S0142-9612(12)00573-X [pii]

    Article  Google Scholar 

  56. Shao S, Zhou S, Li L, Li J, Luo C, Wang J, Li X, Weng J (2011) Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 32(11):2821–2833. doi:10.1016/j.biomaterials.2011.01.051 S0142-9612(11)00077-9 [pii]

    Article  Google Scholar 

  57. McKeon-Fischer KD, Flagg DH, Freeman JW (2011) Coaxial electrospun poly(epsilon-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering. J Biomed Mater Res, Part A 99A(3):493–499. doi:10.1002/jbm.a.33116

    Article  Google Scholar 

  58. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. doi:10.1038/nmat1849 [pii] nmat1849

    Article  Google Scholar 

  59. Feng L, Wu L, Qu X (2012) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater:ePub. doi:10.1002/adma.201203229

  60. Zhang Y, Nayak TR, Hong H, Cai W (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4(13):3833–3842. doi:10.1039/c2nr31040f

    Article  Google Scholar 

  61. Yang K, Feng L, Shi X, Liu Z (2012) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev:ePub. doi:10.1039/c2cs35342c

  62. Frank IW, Tanenbaum DM, Van der Zande AM, McEuen PL (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol, B 25(6):2558–2561. doi:10.1116/1.2789446

    Article  Google Scholar 

  63. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388. doi:10.1126/science.1157996 [pii] 321/5887/385

    Article  Google Scholar 

  64. Lee Y, Bae S, Jang H, Jang S, Zhu SE, Sim SH, Song YI, Hong BH, Ahn JH (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett 10(2):490–493. doi:10.1021/nl903272n

    Article  Google Scholar 

  65. Ryoo SR, Kim YK, Kim MH, Min DH (2010) Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4(11):6587–6598. doi:10.1021/nn1018279

    Article  Google Scholar 

  66. Ruiz ON, Fernando KA, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun YP, Bunker CE (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5(10):8100–8107. doi:10.1021/nn202699t

    Article  Google Scholar 

  67. Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15):4323–4329. doi:10.1016/j.carbon.2010.07.045

    Article  Google Scholar 

  68. Nayak TR et al (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. doi:10.1021/nn200500h

  69. Lee WC, Lim C, Shi H, Tang LAL, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341. doi:10.1021/nn202190c

    Article  Google Scholar 

  70. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003. doi:10.1038/nmat2013 [pii] nmat2013

    Article  Google Scholar 

  71. Tang LA, Lee WC, Shi H, Wong EY, Sadovoy A, Gorelik S, Hobley J, Lim CT, Loh KP (2012) Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. Small 8(3):423–431. doi:10.1002/smll.201101690

    Article  Google Scholar 

  72. Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, Liu L, Jin G, Tang M, Cheng G (2011) The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials 32(35):9374–9382. doi:10.1016/j.biomaterials.2011.08.065 [pii] S0142-9612(11)01013-1

    Article  Google Scholar 

  73. Agarwal S, Zhou X, Ye F, He Q, Chen GC, Soo J, Boey F, Zhang H, Chen P (2010) Interfacing live cells with nanocarbon substrates. Langmuir 26(4):2244–2247. doi:10.1021/la9048743

    Article  Google Scholar 

  74. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23(36):H263–H267. doi:10.1002/adma.201101503

    Article  Google Scholar 

  75. Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP (2012) Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater 24(31):4285–4290. doi:10.1002/adma.201200846

    Article  Google Scholar 

  76. Chen GY, Pang DW, Hwang SM, Tuan HY, Hu YC (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2):418–427. doi:10.1016/j.biomaterials.2011.09.071 [pii] S0142-9612(11)01147-1

    Article  Google Scholar 

  77. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330. doi:10.1021/nn101187z

    Article  Google Scholar 

  78. Jiang X, Ma YW, Li JJ, Fan QL, Huang W (2010) Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage. J Phys Chem C 114(51):22462–22465. doi:10.1021/Jp108081g

    Article  Google Scholar 

  79. Hou CY, Duan YR, Zhang QH, Wang HZ, Li YG (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22(30):14991–14996. doi:10.1039/C2jm32255b

    Article  Google Scholar 

  80. Tang Z, Shen S, Zhuang J, Wang X (2010) Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem Int Ed Engl 49(27):4603–4607. doi:10.1002/anie.201000270

    Article  Google Scholar 

  81. Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4(12):7358–7362. doi:10.1021/nn1027104

    Article  Google Scholar 

  82. Bai H, Li C, Wang X, Shi G (2010) A pH-sensitive graphene oxide composite hydrogel. Chem Commun (Camb) 46(14):2376–2378. doi:10.1039/c000051e

    Article  Google Scholar 

  83. Bai H, Sheng KX, Zhang PF, Li C, Shi GQ (2011) Graphene oxide/conducting polymer composite hydrogels. J Mater Chem 21(46):18653–18658. doi:10.1039/C1jm13918e

    Article  Google Scholar 

  84. Wan C, Chen B (2011) Poly (epsilon-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity. Biomed Mater 6(5):055010. doi:10.1088/1748-6041/6/5/055010 S1748-6041(11)99617-X [pii]

    Article  Google Scholar 

  85. Lim HN, Huang NM, Lim SS, Harrison I, Chia CH (2011) Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nanomed 6:1817–1823. doi:10.2147/ijn.s23392

    Article  Google Scholar 

  86. Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L, Dai J, Tang M, Cheng G (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604. doi:10.1038/srep01604 srep01604 [pii]

    Google Scholar 

  87. Crowder SW, Prasai D, Rath R, Balikov DA, Bae H, Bolotin KI, Sung HJ (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176. doi:10.1039/c3nr00803g

    Article  Google Scholar 

  88. Ji SR et al (2010) Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta 1806 (1):29–35. doi:S0304-419X(10)00014-4 [pii] 10.1016/j.bbcan.2010.02.004

    Google Scholar 

  89. Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21(3):438–448. doi:10.1016/j.tiv.2006.10.007 [pii] S0887-2333(06)00232-3

    Article  Google Scholar 

  90. Casey A, Herzog E, Lyng FM, Byrne HJ, Chambers G, Davoren M (2008) Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett 179(2):78–84. doi:10.1016/j.toxlet.2008.04.006 S0378-4274(08)00107-0 [pii]

    Article  Google Scholar 

  91. Ye SF, Wu YH, Hou ZQ, Zhang QQ (2009) ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379(2):643–648. doi:10.1016/j.bbrc.2008.12.137 S0006-291X(08)02565-5 [pii]

    Article  Google Scholar 

  92. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 5(9):1676–1684. doi:10.1021/nl0507966

    Article  Google Scholar 

  93. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155(3):377–384. doi:10.1016/j.toxlet.2004.11.004 [pii] S0378-4274(04)00506-5

    Article  Google Scholar 

  94. Kalbacova M, Kalbac M, Dunsch L, Kataura H, Hempel U (2006) The study of the interaction of human mesenchymal stem cells and monocytes/macrophages with single-walled carbon nanotube films. Physica Status Solidi B-Basic Solid State Physics 243(13):3514–3518. doi:10.1002/pssb.200669167

    Article  Google Scholar 

  95. Garibaldi S, Brunelli C, Bavastrello V, Ghigliotti G, Nicolini C (2006) Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology 17(2):391–397. doi:10.1088/0957-4484/17/2/008

    Article  Google Scholar 

  96. Zhu L, Chang DW, Dai L, Hong Y (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7(12):3592–3597. doi:10.1021/nl071303v

    Article  Google Scholar 

  97. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134. doi:10.1093/toxsci/kfg243 kfg243 [pii]

    Article  Google Scholar 

  98. Warheit DB (2003) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125. doi:10.1093/toxsci/kfg228

    Article  Google Scholar 

  99. Shvedova AA et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708. doi:10.1152/ajplung.00084.2005 [pii] 00084.2005

    Article  Google Scholar 

  100. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231. doi:10.1016/j.taap.2005.01.008

    Article  Google Scholar 

  101. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428. doi:10.1038/nnano.2008.111 [pii] nnano.2008.111

    Article  Google Scholar 

  102. Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NWS, Chu P, Liu Z, Sun X, Dai H, Gambhir SS (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3(4):216–221. doi:10.1038/nnano.2008.68

    Article  Google Scholar 

  103. Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105(5):1410–1415. doi:10.1073/pnas.0707654105

    Article  Google Scholar 

  104. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120. doi:10.1007/s12274-009-9009-8

    Article  Google Scholar 

  105. Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, Liu RS, Chang YZ, Chen C (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33(2):402–411. doi:10.1016/j.biomaterials.2011.09.091 S0142-9612(11)01183-5 [pii]

    Article  Google Scholar 

  106. Sasidharan A, Panchakarla LS, Sadanandan AR, Ashokan A, Chandran P, Girish CM, Menon D, Nair SV, Rao CN, Koyakutty M (2012) Hemocompatibility and macrophage response of pristine and functionalized graphene. Small 8(8):1251–1263. doi:10.1002/smll.201102393

    Article  Google Scholar 

  107. Chen GY, Yang HJ, Lu CH, Chao YC, Hwang SM, Chen CL, Lo KW, Sung LY, Luo WY, Tuan HY, Hu YC (2012) Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials 33(27):6559–6569. doi:10.1016/j.biomaterials.2012.05.064 S0142-9612(12)00618-7 [pii]

    Article  Google Scholar 

  108. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3(6):2461–2464. doi:10.1039/c1nr10172b

    Article  Google Scholar 

  109. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived pc12 cells. ACS Nano 4(6):3181–3186. doi:10.1021/nn1007176

    Article  Google Scholar 

  110. Lv M, Zhang Y, Liang L, Wei M, Hu W, Li X, Huang Q (2012) Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line. Nanoscale 4(13):3861–3866. doi:10.1039/c2nr30407d

    Article  Google Scholar 

  111. Chang Y, Yang S-T, Liu J-H, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210. doi:10.1016/j.toxlet.2010.11.016

    Article  Google Scholar 

  112. Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615. doi:10.1021/am200428v

    Article  Google Scholar 

  113. Yuan J, Gao H, Sui J, Duan H, Chen WN, Ching CB (2012) Cytotoxicity evaluation of oxidized single-walled carbon nanotubes and graphene oxide on human hepatoma HepG2 cells: an iTRAQ-coupled 2D LC-MS/MS proteome analysis. Toxicol Sci 126(1):149–161. doi:10.1093/toxsci/kfr332 [pii] kfr332

    Article  Google Scholar 

  114. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210. doi:10.1016/j.toxlet.2010.11.016 S0378-4274(10)01776-5 [pii]

    Article  Google Scholar 

  115. Liao KH, Lin YS, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615. doi:10.1021/am200428v

    Article  Google Scholar 

  116. Yue H, Wei W, Yue Z, Wang B, Luo N, Gao Y, Ma D, Ma G, Su Z (2012) The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33(16):4013–4021. doi:10.1016/j.biomaterials.2012.02.021 S0142-9612(12)00187-1 [pii]

    Article  Google Scholar 

  117. Wojtoniszak M, Chen X, Kalenczuk RJ, Wajda A, Lapczuk J, Kurzewski M, Drozdzik M, Chu PK, Borowiak-Palen E (2012) Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf B Biointerfaces 89:79–85. doi:10.1016/j.colsurfb.2011.08.026 [pii] S0927-7765(11)00504-2

    Article  Google Scholar 

  118. Zhang S, Yang K, Feng L, Liu Z (2011) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49(12):4040–4049. doi:10.1016/j.carbon.2011.05.056

    Article  Google Scholar 

  119. Wang K, Ruan J, Song H, Zhang JL, Wo Y, Guo SW, Cui DX (2011) Biocompatibility of graphene oxide. Nanoscale Res Lett 6:8. doi:10.1007/s11671-010-9751-6

    Google Scholar 

  120. Zhang XY, Yin JL, Peng C, Hu WQ, Zhu ZY, Li WX, Fan CH, Huang Q (2011) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49(3):986–995. doi:10.1016/j.carbon.2010.11.005

    Article  Google Scholar 

  121. Zhang SA, Yang K, Feng LZ, Liu Z (2011) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49(12):4040–4049. doi:10.1016/j.carbon.2011.05.056

    Article  Google Scholar 

  122. Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K (2012) Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6(1):736–746. doi:10.1021/nn204229f

    Article  Google Scholar 

  123. Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z (2011) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5(1):516–522. doi:10.1021/nn1024303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas R. Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Nayak, T.R., Cai, W. (2014). Engineering Carbon Nanomaterials for Stem Cell-Based Tissue Engineering. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics