Skip to main content

Fate and Health Impact of Inorganic Manufactured Nanoparticles

  • Chapter
  • First Online:
Nanomaterials: A Danger or a Promise?

Abstract

Inorganic nanoparticles (NPs) either based on metal oxides (iron oxide, cerium oxide, titanium dioxide, silicon dioxide, etc.) or metals (gold and silver) have now wide applications. Consequently it increases the probability of unintended exposure that could affect workers as well as the general population including susceptible people. Inhalation, ingestion, and dermal contact are the main routes of exposure. Before reaching the epithelial barrier lining the respiratory tract, the digestive tract, or the skin, NPs get in contact with biological fluids and become covered by molecules present in these fluids forming the so-called “corona”. The fate and the effects of NPs may be different according to the corona composition as the cell membrane does not interact directly with the NPs surface but with the NP surrounded by its corona. Endocytosis has been shown to be an important route of NPs uptake. However, the rate and mechanism of uptake seem to be cell-type dependent, cell density-dependent and vary for NPs of different size, charge, and other surface properties. Uptake is mostly an energy-dependent process, dependent on NPs size, shape, and charge. There is also some evidence of NPs exocytosis allowing NPs to cross epithelial barrier and enter systemic circulation. Different in vitro models have been proposed showing potential of different NPs to translocate. NPs biodistribution have been studied in different in vivo models after intravenous injection, oral ingestion, intratracheal instillation, or inhalation showing that smaller NPs can be better eliminated, but are also more widespread in secondary organs. Inhalation studies underline that NPs mainly remain at the site of exposure and only a low amount translocates. NPs health effects are widely studied. Toxicological studies performed on animals by intratracheal instillation have underlined that the most predominant effect of NPs is the induction of lung inflammation characterized by the increase of immune cells, frequently macrophages and neutrophils, in the bronchoalveolar lavage and the increased release of pro-inflammatory mediators (cytokines and chemokines), and all this effects are dependent on dose, size, surface reactivity, and NPs composition. There is also evidence of some cardiovascular and neurologic effects of NPs. NPs toxicity mainly results from their ability to induce an oxidative stress resulting from the ability of NPs to directly or indirectly generate reactive oxygen species (ROS). Some studies have shown the role of specific interactions between NPs and proteins in cell activation or cell metabolism suggesting potential additional pathways of toxicity independent of oxidative stress. A better knowledge about the NPs properties involved in their toxicity is expected in order to propose NPs safe by design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Rawi M, Diabaté S et al (2011) Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells. Arch Toxicol 85(7):813–826

    Article  Google Scholar 

  2. Asati A, Santra S et al (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4(9):5321–5331

    Article  Google Scholar 

  3. Auffan M, Rose J et al (2009) Toward a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641

    Article  Google Scholar 

  4. Ayres JG, Borm P et al (2008) Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential–a workshop report and consensus statement. Inhal Toxicol 20(1):75–99

    Article  Google Scholar 

  5. Blank F, Rothen-Rutishauser B et al (2007) Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol 36(6):669–677

    Article  Google Scholar 

  6. Brandenberger C, Mühlfeld C et al (2010) Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6(15):1669–1678

    Article  Google Scholar 

  7. Brunner TJ, Wick P et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    Article  Google Scholar 

  8. Burello E, Worth AP (2011) A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5(2):228–235

    Article  Google Scholar 

  9. Burnett ME, Wang SQ (2011) Current sunscreen controversies: a critical review. Photodermatol Photoimmunol Photomed 27(2):58–67

    Article  Google Scholar 

  10. Chen EY, Wang YC et al (2010) Functionalized positive nanoparticles reduce mucin swelling and dispersion. PLoS ONE 5(11):e15434

    Article  Google Scholar 

  11. Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305:51–62

    Article  Google Scholar 

  12. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550

    Article  Google Scholar 

  13. Chithrani DB (2010) Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol 27(7):299–311

    Article  Google Scholar 

  14. Cho M, Cho WS et al (2009) The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 189(3):177–183

    Article  Google Scholar 

  15. Cho WS, Duffin R et al (2010) Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 118(12):1699–1706

    Article  Google Scholar 

  16. Choi HS, Ashitate Y et al (2010) Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28(12):1300–1303

    Article  Google Scholar 

  17. Conner S, Schmid S (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44

    Article  Google Scholar 

  18. Cuevas AK, Liberda EN et al (2010) Inhaled nickel nanoparticles alter vascular reactivity in C57BL/6 mice. Inhal Toxicol 22(Suppl 2):100–106

    Article  Google Scholar 

  19. De Jong WH, Hagens WI et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919

    Article  Google Scholar 

  20. Deng ZJ, Liang M et al (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44

    Article  Google Scholar 

  21. Dominici F, Peng RD et al (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295(10):1127–1134

    Article  Google Scholar 

  22. Eom HJ, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187(2):77–83

    Article  Google Scholar 

  23. Fröhlich E, Kueznik T et al (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Appl Pharmacol 242(3):326–332

    Article  Google Scholar 

  24. Geiser M (2010) Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv 23(4):207–217

    Article  Google Scholar 

  25. Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2

    Article  Google Scholar 

  26. Germain RN (2004) An innately interesting decade of research in immunology. Nat Med 10(12):1307–1320

    Article  Google Scholar 

  27. Geys J, De Vos R et al (2009) In vitro translocation of quantum dots and influence of oxidative stress. Am J Physiol Lung Cell Mol Physiol 297(5):L903–L911

    Article  Google Scholar 

  28. Geys J, Nemery B et al (2007) Optimisation of culture conditions to develop an in vitro pulmonary permeability model. Toxicol In Vitro 21(7):1215–1219

    Article  Google Scholar 

  29. Gulson B, McCall M et al (2010) Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci 118(1):140–149

    Article  Google Scholar 

  30. He X, Zhang H et al (2010) Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology 21(28):285103

    Article  Google Scholar 

  31. Hellstrand E, Lynch I et al (2009) Complete high-density lipoproteins in nanoparticle corona. FEBS J 276(12):3372–3381

    Article  Google Scholar 

  32. Hu R, Zheng L et al (2011) Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater 191(1–3):32–40

    Article  Google Scholar 

  33. Hu YL, Gao JQ (2010) Potential neurotoxicity of nanoparticles. Int J Pharm 394(1–2):115–121

    Article  Google Scholar 

  34. Huang X, Teng X et al (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31(3):438–448

    Article  Google Scholar 

  35. Huh D, Matthews BD et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668

    Article  Google Scholar 

  36. Hussain S, Thomassen LC et al (2010) Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol 7:10

    Article  Google Scholar 

  37. Hussain S, Vanoirbeek JA et al (2011) Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J 37(2):299–309

    Article  Google Scholar 

  38. Jachak A, Lai SK et al. (2011) Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. Nanotoxicology 1–9. Posted online on 29 Jul 2011

    Google Scholar 

  39. Jiang W, Kim BY et al (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  Google Scholar 

  40. Jin H, Heller DA et al (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1):149–158

    Article  Google Scholar 

  41. Kang GS, Gillespie PA et al (2011a) Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environ Health Perspect 119(2):176–181

    Google Scholar 

  42. Kang SJ, Ryoo IG et al. (2011b) Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity. Toxicol Appl Pharmacol 258:(1) 89–98

    Google Scholar 

  43. Kim JS, Yoon TJ et al (2006) Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 7(4):321–326

    Article  Google Scholar 

  44. Knol AB, de Hartog JJ et al (2009) Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. Part Fibre Toxicol 6:19

    Article  Google Scholar 

  45. LeBlanc AJ, Cumpston JL et al (2009) Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J Toxicol Environ Health A 72(24):1576–1584

    Article  Google Scholar 

  46. LeBlanc AJ, Moseley AM et al (2010) Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc Toxicol 10(1):27–36

    Article  Google Scholar 

  47. Lesniak A, Campbell A et al (2010) Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31(36):9511–9518

    Article  Google Scholar 

  48. Limbach LK, Wick P et al (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163

    Article  Google Scholar 

  49. Lipka J, Semmler-Behnke M et al (2010) Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 31(25):6574–6581

    Article  Google Scholar 

  50. Lu S, Duffin R et al (2009) Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect 117(2):241–247

    Google Scholar 

  51. Lundqvist M, Stigler J et al (2011) The Evolution of the Protein Corona around Nanoparticles: A Test Study. ACS Nano 5(9):7503–7509

    Article  Google Scholar 

  52. Lundqvist M, Stigler J et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105(38):14265–14270

    Article  Google Scholar 

  53. Mailänder V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10(9):2379–2400

    Article  Google Scholar 

  54. Maiorano G, Sabella S et al (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491

    Article  Google Scholar 

  55. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8(8):603–612

    Article  Google Scholar 

  56. Mills NL, Törnqvist H et al (2007) Air pollution and atherothrombosis. Inhal Toxicol 19(Suppl 1):81–89

    Article  Google Scholar 

  57. Mohamed BM, Verma NK et al (2011) Activation of stress-related signalling pathway in human cells upon SiO2 nanoparticles exposure as an early indicator of cytotoxicity. J Nanobiotechnol 9:29

    Article  Google Scholar 

  58. Monteiller C, Tran L et al (2007) The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64(9):609–615

    Article  Google Scholar 

  59. Monteiro-Riviere NA, Wiench K et al (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123(1):264–280

    Article  Google Scholar 

  60. Nel A, Xia T et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  Google Scholar 

  61. Nishanth RP, Jyotsna RG et al (2011) Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway. Nanotoxicology 5:502–516

    Article  Google Scholar 

  62. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105

    Article  Google Scholar 

  63. Oberdörster G, Oberdörster E et al (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  Google Scholar 

  64. Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56(6):709–742

    Article  Google Scholar 

  65. Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5(3):85–87

    Article  Google Scholar 

  66. Rimai DS, Quesnel J, Busnaina AA (2000) The adhesion of dry particles in the nanometer to micrometer-size range. Colloids and Surfaces A: Physicochemical and Engineering Aspects 165:3–10

    Article  Google Scholar 

  67. Rothen-Rutishauser BM, Kiama SG et al (2005) A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 32(4):281–289

    Article  Google Scholar 

  68. Rothen-Rutishauser BM, Schürch S et al (2006) Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 40(14):4353–4359

    Article  Google Scholar 

  69. Ruge CA, Kirch J et al (2011) Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomedicine 7(6):690–693

    Google Scholar 

  70. Safi M, Yan M et al (2011) Interactions between magnetic nanowires and living cells: uptake, toxicity, and degradation. ACS Nano 5(7):5354–5364

    Article  Google Scholar 

  71. Sanfins E, Dairou J et al (2011) Carbon black nanoparticles impair acetylation of aromatic amine carcinogens through inactivation of arylamine N-acetyltransferase enzymes. ACS Nano 5(6):4504–4511

    Article  Google Scholar 

  72. Schleh C, Semmler-Behnke M et al (2011) Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6(1):36–46

    Google Scholar 

  73. Semmler-Behnke M, Takenaka S et al (2007) Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 115(5):728–733

    Article  Google Scholar 

  74. Semmler-Behnke M, Kreyling WG et al (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4(12):2108–2111

    Article  Google Scholar 

  75. Shapero K, Fenaroli F et al (2011) Time and space resolved uptake study of silica nanoparticles by human cells. Mol BioSyst 7(2):371–378

    Article  Google Scholar 

  76. Shukla R, Bansal V et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654

    Article  Google Scholar 

  77. Simkó M, Mattsson MO (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 7:42

    Article  Google Scholar 

  78. Singh S, Kumar A, Karakoti A, Seal S, Self WT (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst 6:1813–1820

    Article  Google Scholar 

  79. Singh S, Shi T et al (2007) Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222(2):141–151

    Article  Google Scholar 

  80. Slowing II, Vivero-Escoto JL et al (2011) Exocytosis of mesoporous silica nanoparticles from mammalian cells: from asymmetric cell-to-cell transfer to protein harvesting. Small 7(11):1526–1532

    Article  Google Scholar 

  81. Sotiriou GA, Diaz E et al (2011) A novel platform for pulmonary and cardiovascular toxicological characterization of inhaled engineered nanomaterials. Nanotoxicology 1–11. Posted online on 2 Aug 2011

    Google Scholar 

  82. Studer AM, Limbach LK et al (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197(3):169–174

    Article  Google Scholar 

  83. Sund J, Alenius H et al (2011) Proteomic characterization of engineered nanomaterial-protein interactions in relation to surface reactivity. ACS Nano 5(6):4300–4309

    Article  Google Scholar 

  84. Sung JH, Ji JH et al (2011) Subchronic inhalation toxicity of gold nanoparticles. Part Fibre Toxicol 8:16

    Article  Google Scholar 

  85. Tenzer S, Docter D et al (2011) Nanoparticle Size Is a Critical Physicochemical Determinant of the Human Blood Plasma Corona: A Comprehensive Quantitative Proteomic Analysis. ACS Nano 5(9):7155–7167

    Article  Google Scholar 

  86. Tinkle S, Antonini J et al (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111(9):1202–1208

    Article  Google Scholar 

  87. Turci F, Ghibaudi E et al (2010) An integrated approach to the study of the interaction between proteins and nanoparticles. Langmuir 26(11):8336–8346

    Article  Google Scholar 

  88. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21

    Article  Google Scholar 

  89. Walczyk D, Bombelli FB et al (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132(16):5761–5768

    Article  Google Scholar 

  90. Wu W, Samet JM et al (2010) Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Environ Health Perspect 118(7):982–987

    Article  Google Scholar 

  91. Xia T, Kovochich M et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    Article  Google Scholar 

  92. Xia T, Kovochich M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  Google Scholar 

  93. Yacobi NR, Malmstadt N et al (2010) Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol 42(5):604–614

    Article  Google Scholar 

  94. Zhang L, Bai R et al (2011) Rutile TiO(2) particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicol Lett 207(1):73–81

    Article  Google Scholar 

  95. Zhu MT, Feng WY et al (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107(2):342–351

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armelle Baeza-Squiban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Baeza-Squiban, A., Vranic, S., Boland, S. (2013). Fate and Health Impact of Inorganic Manufactured Nanoparticles. In: Brayner, R., Fiévet, F., Coradin, T. (eds) Nanomaterials: A Danger or a Promise?. Springer, London. https://doi.org/10.1007/978-1-4471-4213-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4213-3_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4212-6

  • Online ISBN: 978-1-4471-4213-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics