Skip to main content

Synthesis of Organic and Bioorganic Nanoparticles: An Overview of the Preparation Methods

  • Chapter
  • First Online:
Book cover Nanomaterials: A Danger or a Promise?

Abstract

Since the emergence of Nanotechnology in the past decades, the development and design of organic and bioorganic nanomaterials has become an important field of research. Such materials find many applications in a wide range of domains such as electronic, photonic, or biotechnology, which contribute to impact our society and our way of life. The improvement of properties and the discovery of new functionalities are key goals that cannot be obtained without a well controlled and a better understanding of the preparation methods which constitute the starting point of the design of a specific organic material. In this context, this chapter gives a general but non-exhaustive overview of the methods of preparation of organic and bioorganic nanoparticles. Some general definitions about organic nanoparticles and description of organic compounds are given before describing the most common methods used divided into two families, the two-step and one-step procedures. The major part of the two-step procedures is based on an emulsification step followed by generation of nanoparticles through different mechanisms such as precipitation, gelation, or polymerization. The one-step procedures are founded on generation of nanoparticles through different techniques such as nanoprecipitation, desolvation, or drying processes without preliminary emulsification step. For each method, the description is supported by several examples and focused on the explanation of the general mechanisms and of the major key parameters involved in the control of the nanoparticles formation. In addition, since emergence and improvement of syntheses are often associated to development of experimental setups, technological aspects are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreuter J (1994) Nanoparticles. In: Kreuter J (ed) Colloidal drug delivery systems. Marcel Dekker Inc, New York, pp 219–342

    Google Scholar 

  2. Couvreur P (1988) Polyalkylcyanoacrylates as colloidal drug carriers. Crit Rev Ther Drug Carr Syst 5:1–20

    Google Scholar 

  3. Schmid G (2004) Nanoparticles: from theory to application. Wiley-VCH Publisher, Weinheim

    Google Scholar 

  4. Geckeler KE, Nishide H (2010) Advanced nanomaterials. Wiley-VCH Publishers, Weinheim

    Google Scholar 

  5. Geckeler KE, Rosenberg E (2006) Functional nanomaterials. American Scientific Publishers, Valencia

    Google Scholar 

  6. Hosokawa M, Nogi K, Naito M, Yokoyama T (2007) Nanoparticle technology handbook. Elsevier, Amsterdam

    Google Scholar 

  7. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091

    Article  Google Scholar 

  8. Müllen K, Scherf U (2006) Organic light-emitting devices. Wiley-VCH Publisher, Weinheim

    Google Scholar 

  9. Nalwa HS, Rohwer LS (eds) (2003) Handbook of luminescence, display materials, and devices. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  10. Hadziioannou G, Malliaras GG (eds) (2000) Semiconducting polymers. Wiley-VCH Publisher, Weinheim

    Google Scholar 

  11. Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450

    Article  Google Scholar 

  12. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2: 8–21

    Google Scholar 

  13. Pinto Reis C, Neufeld R J, Ribeiro A J, Veiga F (2006) Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomed Nanotechnol Biol Med 2:53–65

    Google Scholar 

  14. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Article  Google Scholar 

  15. Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. Chem Rev 110:6260–6279

    Article  Google Scholar 

  16. Anton N, Benoit J-P, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates–A review. J Controlled Release 128:185–199

    Article  Google Scholar 

  17. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    Article  Google Scholar 

  18. Landfester K, Musyanovych A, Mailänder V (2010) From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. J Polym Sci A Polym Chem 48:493–515

    Article  Google Scholar 

  19. Allemann E, Gurny R, Doelker E (1993) Drug-loaded nanoparticles—Preparation methods and drug targeting issues. Eur J Pharm Biopharm 39:173–191

    Google Scholar 

  20. Quintanar-Guerrero D, Alle?mann E, Fessi H, Doelker E (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128

    Google Scholar 

  21. De Jaeghere F, Doelker E, Gurny R (1999) Nanoparticles, In: Mathiowitz E (ed) Encyclopedia of controlled drug delivery, vol 2. Wiley-VCH, New York, pp 641–664

    Google Scholar 

  22. Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug 19:99–134

    Article  Google Scholar 

  23. Tuncel D, Demir HV (2010) Conjugated polymer nanoparticles. Nanoscale 2:484–494

    Article  Google Scholar 

  24. Gangopadhyay R, Conducting Polymer Nanostructures, In: Nalwa H S (ed) (2004) Encyclopedia of nanoscience and nanotechnology, vol 2. American Scientific Publishers, Stevenson Ranch, pp 105–131

    Google Scholar 

  25. Wallace GG, Innis PC (2002) Inherently conducting polymer nanostructures. J Nanosci Nanotechnol 2:441–451

    Article  Google Scholar 

  26. Stejskal J (2001) Colloidal dispersions of conducting polymers. J Polym Mater 18:225–258

    Google Scholar 

  27. Vincent B (1995) Electrically conducting polymer colloids and composites. Polym Adv Technol 6:356–361

    Article  Google Scholar 

  28. Armes SP (1995) Electrically conducting polymer colloids. Polym News 20:233–237

    Google Scholar 

  29. Aldissi M, Armes SP (1991) Colloidal dispersions of conducting polymers. Prog Org Coat 19:21–58

    Article  Google Scholar 

  30. Armes SP, Vincent B (1988) Post-doping of sterically-stabilized polyacetylene latexes. Synth Met 25:171–179

    Article  Google Scholar 

  31. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494

    Article  Google Scholar 

  32. Huyal IO, Ozel T, Tuncel D, Demir HV (2008) Quantum efficiency enhancement in film by making nanoparticles of polyfluorene. Opt Express 16:13391–13397

    Article  Google Scholar 

  33. Ozel IO, Ozel T, Demir HV, Tuncel D (2010) Non-radiative resonance energy transfer in bi-polymer nanoparticles of fluorescent conjugated polymers. Opt Express 18:670–684

    Article  Google Scholar 

  34. Grigalevicius S, Forster M, Ellinger S, Landfester K, Scherf U (2006) Excitation energy transfer from semi-conducting polymer nanoparticles to surface-bound fluorescent dyes. Macromol Rapid Commun 27:200–202

    Article  Google Scholar 

  35. Pecher J, Mecking S (2007) Nanoparticles from step-growth coordination polymerization. Macromolecules 40:7733–7735

    Article  Google Scholar 

  36. Pecher J, Mecking S (2008) Poly(p-phenylene vinylene) nanoparticles by acyclic diene metathesis (ADMET) polycondensation in aqueous emulsion. Polymer Preprints (American Chemical Society, division of Polymer Chemistry), pp 363–364

    Google Scholar 

  37. Rahim NAA, McDaniel W, Bardon K, Srinivasan S, Vickerman V, So PTC, Moon JH (2009) Conjugated polymer nanoparticles for two-photon imaging of endothelial cells in a tissue model. Adv Mater 21:3492–3496

    Article  Google Scholar 

  38. Hittinger E, Kokil A, Weder C (2004) Synthesis and characterization of cross-linked conjugated polymer milli-, micro-, and nanoparticles. Angew Chem Int Ed 43:1808–1811

    Article  Google Scholar 

  39. Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  Google Scholar 

  40. Pragati S, Kuldeep S, Ashok S, Satheesh M (2009) Solid lipid nanoparticles: a promising drug delivery technology. Int J Pharm Sci Nanotechnol 2:509–516

    Google Scholar 

  41. Basu B, Garala K, Bhalodia R, Joshi B, Mehta K (2010) Solid lipid nanoparticles:a promising tool for drug delivery system. J Pharm Res 3:84–92

    Google Scholar 

  42. Freitas C, Müller RH (1999) Correlation between long-term stability of solid lipid nanoparticles (SLN(TM)) and crystallinity of the lipid phase. Eur J Pharm Biopharm 47:125–132

    Article  Google Scholar 

  43. Müller RH, Radtke M, Wissing SA (2002) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242:121–128

    Article  Google Scholar 

  44. Olbrich C, Gessner A, Kayser O, Müller RH (2002) Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Targeting 10:387–396

    Article  Google Scholar 

  45. Li X, Anton N, Arpagaus C, Belleteix F, Vandamme TF (2010) Nanoparticles by spray drying using innovative new technology: the Büchi Nano spray dryer B-90. J Controlled Release 147:304–310

    Article  Google Scholar 

  46. Lee SH, Heng D, Ng WK, Chan H-K, Tan RBH (2011) Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 403:192–200

    Article  Google Scholar 

  47. York P (1999) Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today 2:430–440

    Article  Google Scholar 

  48. Shariati A, Peters CJ (2003) Recent developments in particle design using supercritical fluids. Curr Opin Solid State Mater Sci 7:371–383

    Article  Google Scholar 

  49. Wright IK, Higginbotham A, Baker SM, Donnelly TD (2010) Generation of nanoparticles of controlled size using ultrasonic piezoelectric oscillators in solution. ACS Appl Mater Interfaces 2:2360–2364

    Article  Google Scholar 

  50. Becher P (1965) Emulsions: theory and practice. Reinhold Pub Corp, New York

    Google Scholar 

  51. Becher P (1985) Encyclopedia of emulsion technology. Marcel Dekker Inc, New York

    Google Scholar 

  52. Mittal KL, Lindman B (eds) (1984) Surfactants in solution. Plenum, New York

    Google Scholar 

  53. Ruschak KJ, Miller CA (1972) Spontaneous emulsification in ternary systems with mass transfer. Ind Eng Chem Fundam 11:534–540

    Article  Google Scholar 

  54. Miller CA (1988) Spontaneous emulsification produced by diffusion—a review. Colloids Surf 29:89–102

    Article  Google Scholar 

  55. El-Aasser MS, Lack CD, Vanderhoff JW, Fowkes FM (1988) The miniemulsification process—different form of spontaneous emulsification. Colloids Surf 29:103–118

    Article  Google Scholar 

  56. Ganachaud F, Katz JL (2005) Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. ChemPhysChem 6:209–216

    Article  Google Scholar 

  57. Bouchemal K, Briançon S, Perrier E, Fessi H (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int J Pharm 280:241–251

    Article  Google Scholar 

  58. Kawashima Y, Yamamoto H, Takeuchi H, Hino T, Niwa T (1998) Properties of a peptide containing DL-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods. Eur J Pharm Biopharm 45:41–48

    Article  Google Scholar 

  59. Quintanar-Guerrero D, Allémann E, Doelker E, Fessi H (1997) A mechanistic study of the formation of polymer nanoparticles by the emulsification-diffusion technique. Colloid Polym Sci 275:640–647

    Article  Google Scholar 

  60. Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E (1999) Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int J Pharm 188:155–164

    Article  Google Scholar 

  61. Quintanar-Guerrero D, Allémann E, Doelker E, Fessi H (1998) Preparation and characterization of nanocapsnles from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res 15:1056–1062

    Article  Google Scholar 

  62. Gallardo M, Couarraze G, Denizot B, Treupel L, Couvreur P, Puisieux F (1993) Study of the mechanisms of formation of nanoparticles and nanocapsules of polyisobutyl-2-cyanoacrylate. Int J Pharm 100:55–64

    Article  Google Scholar 

  63. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent deplacement. Int J Pharm 55:25–28

    Article  Google Scholar 

  64. Ostrovsky MV, Good RJ (1984) Mechanism of microemulsion formation in systems with low interfacial tension: occurrence, properties, and behavior of microemulsions. J Colloid Interface Sci 102:206–226

    Article  Google Scholar 

  65. Marszall L, Shick MJ (eds) (1987) Nonionic surfactants, surfactant sciences series, vol 23. Marcel Dekker Inc, New York

    Google Scholar 

  66. Taylor P, Ottewill RH (1994) The formation and ageing rates of oil-in-water miniemulsions. Colloids Surf A 88:303–316

    Article  Google Scholar 

  67. Taylor P, Ottewill RH (1994) Ostwald ripening in O/W miniemulsions formed by the dilution of O/W microemulsions. Prog Colloid Polym Sci 97:199–203

    Article  Google Scholar 

  68. Forgiarini A, Esquena J, González C, Solans C (2001) Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 17:2076–2083

    Article  Google Scholar 

  69. Wu H, Ramachandran C, Weiner ND, Roessler BJ (2001) Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int J Pharm 220:63–75

    Article  Google Scholar 

  70. Porras M, Solans C, González C, Martínez A, Guinart A, Gutiérrez JM (2004) Studies of formation of W/O nano-emulsions. Colloids Surf A 249:115–118

    Article  Google Scholar 

  71. Usón N, Garcia MJ, Solans C (2004) Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids Surf A 250:415–421

    Article  Google Scholar 

  72. Solè I, Maestro A, Pey CM, González C, Solans C, Gutiérrez JM (2006) Nano-emulsions preparation by low energy methods in an ionic surfactant system. Colloids Surf A 288:138–143

    Article  Google Scholar 

  73. Solè I, Maestro A, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 22:8326–8332

    Article  Google Scholar 

  74. Shinoda K, Saito H (1968) The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. J Colloid Interface Sci 26:70–74

    Article  Google Scholar 

  75. Shinoda K, Saito H (1969) The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method. J Colloid Interface Sci 30:258–263

    Article  Google Scholar 

  76. Izquierdo P, Esquena J, Tadros TF, Dederen C, Garcia MJ, Azemar N, Solans C (2002) Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 18:26–30

    Article  Google Scholar 

  77. Izquierdo P, Esquena J, Tadros TF, Dederen JC, Feng J, Garcia-Celma MJ, Azemar N, Solans C (2004) Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir 20:6594–6598

    Article  Google Scholar 

  78. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10:102–110

    Article  Google Scholar 

  79. Förster T, Von Rybinski W, Wadle A (1995) Influence of microemulsion phases on the preparation of fine-disperse emulsions. Adv Colloid Interface Sci 58:119–149

    Article  Google Scholar 

  80. Pons R, Carrera I, Caelles J, Rouch J, Panizza P (2003) Formation and properties of miniemulsions formed by microemulsions dilution. Adv Colloid Interface Sci 106:129–146

    Article  Google Scholar 

  81. Anton N, Gayet P, Benoit J-P, Saulnier P (2007) Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. Int J Pharm 344:44–52

    Article  Google Scholar 

  82. Salager J-L, Marquez N, Graciaa A, Lachaise J (2000) Partitioning of ethoxylated octylphenol surfactants in microemulsion–oil–water systems: influence of temperature and relation between partitioning coefficient and physicochemical formulation. Langmuir 16:5534–5539

    Article  Google Scholar 

  83. Salager JL, Antón RE, Andérez JM, Aubry JM (2001) Formulation des micro-émulsions par la méthode HLD, Techniques De L’Ingénieur, Génie Des Procédés J2: 1–20

    Google Scholar 

  84. Salager JL (1999) Microemulsions, handbook of detergents—part A: properties. Marcel Dekker Inc, New York, pp 253–302

    Google Scholar 

  85. Salager JL (2000) Pharmaceutical emulsions and suspensions, formulation concepts for the emulsion maker. Marcel Dekker Inc, New York, pp 19–72

    Google Scholar 

  86. Bourrel M, Salager JL, Schechter RS, Wade WH (1980) A correlation for phase behavior of nonionic surfactants. J Colloid Interface Sci 75:451–461

    Article  Google Scholar 

  87. Rondón-González M, Sadtler V, Choplin L, Salager J-L (2006) Emulsion inversion from abnormal to normal morphology by continuous stirring without internal phase addition. Effect of surfactant mixture fractionation at extreme water-oil ratio. Colloids Surf A 288:151–157

    Article  Google Scholar 

  88. Rondón-Gonzaléz M, Sadtler V, Choplin L, Salager J-L (2006) Emulsion catastrophic inversion from abnormal to normal morphology. 5. Effect of the water-to-oil ratio and surfactant concentration on the inversion produced by continuous stirring. Ind Eng Chem Res 45:3074–3080

    Article  Google Scholar 

  89. Tyrode E, Allouche J, Choplin L, Salager J-L (2005) Emulsion catastrophic inversion from abnormal to normal morphology. 4. Following the emulsion viscosity during three inversion protocols and extending the critical dispersed-phase concept. Ind Eng Chem Res 44:67–74

    Article  Google Scholar 

  90. Tyrode E, Mira I, Zambrano N, Márquez L, Rondón-Gonzalez M, Salager J-L (2003) Emulsion catastrophic inversion from abnormal to normal morphology. 3. Conditions for triggering the dynamic inversion and application to industrial processes. Ind Eng Chem Res 42:4311–4318

    Article  Google Scholar 

  91. Salager J-L, Forgiarini A, Márquez L, Peña A, Pizzino A, Rodriguez MP, Rondón-González M (2004) Using emulsion inversion in industrial processes. Adv Colloid Interface Sci 108–109:259–272

    Article  Google Scholar 

  92. Allouche J, Tyrode E, Sadtler V, Choplin L, Salager J-L (2004) Simultaneous conductivity and viscosity measurements as a technique to track emulsion inversion by the phase-inversion-temperature method. Langmuir 20:2134–2140

    Article  Google Scholar 

  93. Salager J-L, Marquez L, Pena AA, Rondon M, Silva F, Tyrode E (2000) Current phenomenological know-how and modeling of emulsion inversion. Ind Eng Chem Res 39:2665–2676

    Article  Google Scholar 

  94. Salager J-L (1996) Guidelines for the formulation, composition and stirring to attain desired emulsion properties (type, droplet size, viscosity and stability), Surfactant Science Series, pp 261–295

    Google Scholar 

  95. Marquez L, Graciaa A, Lachaise J, Salager J-L, Zambrano N (2003) Hysteresis behavior in temperature-induced emulsion inversion. Polym Int 52:590–593

    Article  Google Scholar 

  96. Pizzino A, Rodriguez MP, Xuereb C, Catte M, Van HE, Aubry J-M, Salager J-L (2007) Light backscattering as an indirect method for detecting emulsion inversion. Langmuir 23:5286–5288

    Article  Google Scholar 

  97. Stork M, Tousain RL, Wieringa JA, Bosgra OH (2003) A MILP approach to the optimization of the operation procedure of a fed-batch emulsification process in a stirred vessel. Comput Chem Eng 27:1681–1691

    Article  Google Scholar 

  98. Mabille C, Leal-Calderon F, Bibette J, Schmitt V (2003) Monodisperse fragmentation in emulsions: mechanisms and kinetics. Europhys Lett 61:708–714

    Article  Google Scholar 

  99. Mabille C, Schmitt V, Gorria P, Calderon FL, Faye V, Deminiere B, Bibette J (2000) Rheological and shearing conditions for the preparation of monodisperse emulsions. Langmuir 16:422–429

    Article  Google Scholar 

  100. Trotta M, Pattarino F, Ignoni T (2002) Stability of drug-carrier emulsions containing phosphatidylcholine mixtures. Eur J Pharm Biopharm 53:203–208

    Article  Google Scholar 

  101. Lizarraga MS, Pan LG, Anon MC, Santiago LG (2008) Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions-I. Whey protein concentrate. Food Hydrocoll 22:868–878

    Article  Google Scholar 

  102. Bengoechea C, Cordobes F, Puppo MC, Guerrero A (2007) Linear viscoelasticity and droplet size distribution of O/W emulsions stabilized by plant proteins. Afinidad 64:696–704

    Google Scholar 

  103. Higgins DM, Skauen DM (1972) Influence of power on quality of emulsions prepared by ultrasound. J Pharm Sci 61:1567–1570

    Article  Google Scholar 

  104. Li MK, Fogler HS (1978) Acoustic emulsification—1. The instability of the oil–water interface to form the initial droplets. J Fluid Mech 88:499–511

    Article  MATH  Google Scholar 

  105. Li MK, Fogler HS (1978) Acoustic emulsification—2 breakup of the large primary oil droplets in water medium. J Fluid Mech 88:513–528

    Article  MATH  Google Scholar 

  106. Griffin WC (1979) Emulsions. In: Kirk-Othmer (ed) Encyclopedia of Chemical Technology, vol 8. Wiley, Weinheim, pp 900–930

    Google Scholar 

  107. Johnson JC (1979) Emulsifiers and emulsifying techniques. Noyes Data Corp, Park Ridge

    Google Scholar 

  108. Reddy SR, Fogler HS (1980) Emulsion stability of acoustically formed emulsions. J Phys Chem 84:1570–1575

    Article  Google Scholar 

  109. Eberth K, Merry J (1983) A comparative study of emulsions prepared by ultrasound and by a conventional method. Droplet size measurements by means of a Coulter Counter and microscopy. Int J Pharm 14:349–353

    Article  Google Scholar 

  110. Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48:333–349

    Article  Google Scholar 

  111. Abismail B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem 6:75–83

    Article  Google Scholar 

  112. Mongenot N, Charrier S, Chalier P (2000) Effect of ultrasound emulsification on cheese aroma encapsulation by carbohydrates. J Agric Food Chem 48:861–867

    Article  Google Scholar 

  113. Corzo-Martinez M, Soria AC, Villamiel M, Olano A, Harte FM, Moreno FJ (2011) Effect of glycation on sodium caseinate-stabilized emulsions obtained by ultrasound. J Dairy Sci 94:51–58

    Article  Google Scholar 

  114. Wood RW, Loomis AL (1927) The physical and biological effects of high frequency sound waves of great intensity. Philos Mag 4:417–436

    Google Scholar 

  115. Akiyoshi K, Kang E-C, Kurumada S, Sunamoto J, Principi T, Winnik FM (2000) Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly(n-isopropylacrylamides). Macromolecules 33:3244–3249

    Article  Google Scholar 

  116. Xia H, Wang Q (2001) Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization. J Nanopart Res 3:401–411

    Article  Google Scholar 

  117. Xia H, Zhang C, Wang Q (2001) Study on ultrasonic induced encapsulating emulsion polymerization in the presence of nanoparticles. J Appl Polym Sci 80:1130–1139

    Article  Google Scholar 

  118. Hou D, Xie C, Huang K, Zhu C (2003) The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 24:1781–1785

    Article  Google Scholar 

  119. Li Y, Dong L, Jia A, Chang X, Xue H (2006) Preparation and characterization of solid lipid nanoparticles loaded traditional chinese medicine. Int J Biol Macromol 38:296–299

    Article  Google Scholar 

  120. Luo Y, Chen D, Ren L, Zhao X, Qin J (2006) Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Controlled Release 114:53–59

    Article  Google Scholar 

  121. Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY (2006) A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer–lipid hybrid nanoparticle system. J Pharmacol Exp Ther 317:1372–1381

    Article  Google Scholar 

  122. Yegin BA, Benoit J-P, Lamprecht A (2006) Paclitaxel-loaded lipid nanoparticles prepared by solvent injection or ultrasound emulsification. Drug Dev Ind Pharm 32:1089–1094

    Article  Google Scholar 

  123. Sharma P, Ganta S, Denny WA, Garg S (2009) Formulation and pharmacokinetics of lipid nanoparticles of a chemically sensitive nitrogen mustard derivative: chlorambucil. Int J Pharm 367:187–194

    Article  Google Scholar 

  124. Lee KJ, Oh W-K, Song J, Kim S, Lee J, Jang J (2010) Photoluminescent polymer nanoparticles for label-free cellular imaging. Chem Commun 46:5229–5231

    Article  Google Scholar 

  125. Aji A, Chacko AJ, Jose S, Souto EB (2011) Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci 42:11–18

    Article  Google Scholar 

  126. Das S, Ng WK, Kanaujia P, Kim S, Tan RBH (2011) Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B 88:483–489

    Article  Google Scholar 

  127. Allouche J, Boissiere M, Helary C, Livage J, Coradin T (2006) Biomimetic core-shell gelatine/silica nanoparticles: a new example of biopolymer-based nanocomposites. J Mater Chem 16:3120–3125

    Article  Google Scholar 

  128. Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot.OH and.cntdot.H) by spin trapping. J Am Chem Soc 104:3537–3539

    Article  Google Scholar 

  129. Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87:1369–1377

    Article  Google Scholar 

  130. Seo M, Nie Z, Xu S, Mok M, Lewis PC, Graham R, Kumacheva E (2005) Continuous microfluidic reactors for polymer particles. Langmuir 21:11614–11622

    Article  Google Scholar 

  131. Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655

    Article  Google Scholar 

  132. Nisisako T, Okushima S, Torii T (2005) Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 1:23–27

    Article  Google Scholar 

  133. Jahn A, Reiner JE, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M (2008) Preparation of nanoparticles by continuous-flow microfluidics. J Nanopart Res 10:925–934

    Article  Google Scholar 

  134. Engl W, Backov R, Panizza P (2008) Controlled production of emulsions and particles by milli- and microfluidic techniques. Curr Opin Colloid Interface Sci 13:206–216

    Article  Google Scholar 

  135. Kumacheva E, Zhang H, Nie Z (2009) Polymerization in microfluidic reactors. In: Microchemical engineering in practice , pp. 361–383 John Wiley and Sons Inc., Weinheim, Germany

    Google Scholar 

  136. Schaerli Y, Hollfelder F (2009) The potential of microfluidic water-in-oil droplets in experimental biology. Mol BioSyst 5:1392–1404

    Article  Google Scholar 

  137. Zhao C-X, Middelberg APJ (2011) Two-phase microfluidic flows. Chem Eng Sci 66:1394–1411

    Article  Google Scholar 

  138. Zhao C-X, He L, Qiao SZ, Middelberg APJ (2011) Nanoparticle synthesis in microreactors. Chem Eng Sci 66:1463–1479

    Article  Google Scholar 

  139. Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8:2906–2912

    Article  Google Scholar 

  140. Charcosset C, Fessi H (2005) Preparation of nanoparticles with a membrane contactor. J Membr Sci 266:115–120

    Article  Google Scholar 

  141. Rondeau E, Cooper-White JJ (2008) Biopolymer microparticle and nanoparticle formation within a microfluidic device. Langmuir 24:6937–6945

    Article  Google Scholar 

  142. Gurny R, Peppas NA, Harrington DD, Banker GS (1981) Development of biodegradable and injectable latices for controlled release of potent drugs. Drug Dev Ind Pharm 7:1–25

    Article  Google Scholar 

  143. Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E (1999) Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int J Pharm 188:155–164

    Article  Google Scholar 

  144. Choonara YE, Pillay V, Ndesendo VMK, du Toit LC, Kumar P, Khan RA, Murphy CS, Jarvis D-L (2011) Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids Surf B 87:243–254

    Article  Google Scholar 

  145. Lee W-K, Park J-Y, Jung S, Chul WY, Kim W-U, Kim H-Y, Park J-H, Park J-S (2005) Preparation and characterization of biodegradable nanoparticles entrapping immunodominant peptide conjugated with PEG for oral tolerance induction. J Controlled Release 105:77–88

    Article  Google Scholar 

  146. Venier-Julienne MC, Benoît JP (1996) Preparation, purification and morphology of polymeric nanoparticles as drug carriers. Pharm Acta Helv 71:121–128

    Article  Google Scholar 

  147. Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, Levy RJ (1997) Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Controlled Release 43:197–212

    Article  Google Scholar 

  148. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, Labrude P, Vigneron C (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Controlled Release 50:31–40

    Article  Google Scholar 

  149. Bazile DV, Ropert C, Huve P, Verrecchia T, Marland M, Frydman A, Veillard M, Spenleuhauer G (1992) Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 13:1093–1102

    Article  Google Scholar 

  150. Singh J, Pandit S, Bramwell VW, Alpar HO (2006) Diphtheria toxoid loaded poly-([epsilon]-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods 38:96–105

    Article  Google Scholar 

  151. Quellec P, Gref R, Dellacherie E, Sommer F, Tran MD, Alonso MJ (1999) Protein encapsulation within poly(ethylene glycol)-coated nanospheres. II. Controlled release properties. J Biomed Mater Res 47:388–395

    Article  Google Scholar 

  152. Bazile D, Prud’Homme C, Bassoullet M-T, Marlard M, Spenlehauer G, Veillard M (1995) Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84:493–498

    Article  Google Scholar 

  153. Luo G, Yu X, Jin C, Yang F, Fu D, Long J, Xu J, Zhan C, Lu W (2010) LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int J Pharm 385:150–156

    Article  Google Scholar 

  154. Lemarchand C, Couvreur P, Vauthier C, Costantini D, Gref R (2003) Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. Int J Pharm 254:77–82

    Article  Google Scholar 

  155. Lemarchand C, Couvreur P, Besnard M, Costantini D, Gref R (2003) Novel polyester-polysaccharide nanoparticles. Pharm Res 20:1284–1292

    Article  Google Scholar 

  156. Moinard-Checot D, Chevalier Y, Briançon S, Fessi H, Guinebretière S (2006) Nanoparticles for drug delivery: review of the formulation and process difficulties illustrated by the emulsion–diffusion process. J Nanosci Nanotechnol 6:2664–2681

    Article  Google Scholar 

  157. Moinard-Chécot D, Chevalier Y, Briançon S, Beney L, Fessi H (2008) Mechanism of nanocapsules formation by the emulsion–diffusion process. J Colloid Interface Sci 317:458–468

    Article  Google Scholar 

  158. Leroux J-C, Allemann E, Doelker E, Gurny R (1995) New approach for the preparation of nanoparticles by an emulsification-diffusion method. Eur J Pharm Biopharm 41:14–18

    Google Scholar 

  159. Quintanar-Guerrero D, Tamayo-Esquivel D, Ganem-Quintanar A, Allémann E, Doelker E (2005) Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres. Eur J Pham Sci 26:211–218

    Article  Google Scholar 

  160. Quintanar-Guerrero D, Fessi H, Allémann E, Doelker E (1996) Influence of stabilizing agents and preparative variables on the formation of poly(D,L-lactic acid) nanoparticles by an emulsification-diffusion technique. Int J Pharm 143:133–141

    Article  Google Scholar 

  161. Trimaille T, Pichot C, Elaïssari A, Fessi H, Briançon S, Delair T (2003) Poly(D,L-lactic acid) nanoparticle preparation and colloidal characterization. Colloid Polym Sci 281:1184–1190

    Article  Google Scholar 

  162. Choi S-W, Kwon H-Y, Kim W-S, Kim J-H (2002) Thermodynamic parameters on poly(d,l-lactide-co-glycolide) particle size in emulsification-diffusion process. Colloids Surf A 201:283–289

    Article  Google Scholar 

  163. Kwon H-Y, Lee J-Y, Choi S-W, Jang Y, Kim J-H (2001) Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method. Colloids Surf A 182:123–130

    Article  Google Scholar 

  164. Swarnakar NK, Jain AK, Singh RP, Godugu C, Das M, Jain S (2011) Oral bioavailability, therapeutic efficacy and reactive oxygen species scavenging properties of coenzyme Q10-loaded polymeric nanoparticles. Biomaterials 32:6860–6874

    Article  Google Scholar 

  165. El-Shabouri MH (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249:101–108

    Article  Google Scholar 

  166. Yan C, Chen D, Gu J, Qin J (2006) Nanoparticles of 5-fluorouracil (5-FU) loaded N-succinyl-chitosan (Suc-Chi) for cancer chemotherapy: preparation, characterization—in vitro drug release and anti-tumour activity. J Pharm Pharmacol 58:1177–1181

    Article  Google Scholar 

  167. Yan C, Gu J, Yan C, Zhan H, Chen D (2010) In vivo biodistribution for tumor targeting of 5-fluorouracil (5-FU) loaded N-succinyl-chitosan (Suc-Chi) nanoparticles. BioChem Indian J 4:21–25

    Google Scholar 

  168. Ibrahim H, Bindschaedler C, Doelker E, Buri P, Gurny R (1992) Aqueous nanodispersions prepared by a salting-out process. Int J Pharm 87:239–246

    Article  Google Scholar 

  169. De Jaeghere F, Allémann E, Leroux J-C, Stevels W, Feijen J, Doelker E, Gurny R (1999) Formulation and lyoprotection of poly(Lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharm Res 16:859–866

    Article  Google Scholar 

  170. Nguyen CA, Allémann E, Schwach G, Doelker E, Gurny R (2003) Synthesis of a novel fluorescent poly(D,L-lactide) end-capped with 1-pyrenebutanol used for the preparation of nanoparticles. Eur J Pham Sci 20:217–222

    Article  Google Scholar 

  171. Zweers MLT, Engbers GHM, Grijpma DW, Feijen J (2004) In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide). J Controlled Release 100:347–356

    Article  Google Scholar 

  172. Perugini P, Simeoni S, Scalia S, Genta I, Modena T, Conti B, Pavanetto F (2002) Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. Int J Pharm 246:37–45

    Article  Google Scholar 

  173. Allemann E, Gurny R, Doelker E (1992) Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: Influence of process parameters on particle size. Int J Pharm 87:247–253

    Article  Google Scholar 

  174. Konan YN, Gurny R, Allémann E (2002) Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm 233:239–252

    Article  Google Scholar 

  175. Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E (2004) Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res 21:1428–1439

    Article  Google Scholar 

  176. Reis CP, Neufeld RJ, Vilela S, Ribeiro AJ, Veiga F (2006) Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J Microencapsul 23:245–257

    Article  Google Scholar 

  177. Wang N, Wu XS (1997) Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm Dev Technol 2:135–142

    Article  Google Scholar 

  178. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Design of insulin-loaded alginate nanoparticles: influence of the calcium ion on polymer gel matrix properties. Chem Ind Chem Eng Q 12:47–52

    Article  Google Scholar 

  179. Arshady R (1988) Preparation of polymer nano- and microspheres by vinyl polymerization techniques. J Microencapsul 5:101–114

    Article  Google Scholar 

  180. Asua JM (2002) Miniemulsion polymerization. Prog Polym Sci 27:1283–1346

    Article  Google Scholar 

  181. Landfester K (2006) Encapsulation through (mini)emulsion polymerization. Functional coating Wiley-VCH, Weinheim, Germany

    Google Scholar 

  182. Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486

    Article  Google Scholar 

  183. Thickett SC, Gilbert RG (2007) Emulsion polymerization: state of the art in kinetics and mechanisms. Polymer 48:6965–6991

    Article  Google Scholar 

  184. Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48:4488–4507

    Article  Google Scholar 

  185. Yoon S-J, Chun H, Lee M-S, Kim N (2009) Preparation of poly(N-vinylcarbazole) (PVK) nanoparticles by emulsion polymerization and PVK hollow particles. Synth Met 159:518–522

    Article  Google Scholar 

  186. Costa C, Santos AF, Fortuny M, Araújo PHH, Sayer C (2009) Kinetic advantages of using microwaves in the emulsion polymerization of MMA. Mater Sci Eng C 29:415–419

    Article  Google Scholar 

  187. Cheng X, Chen M, Zhou S, Wu L (2006) Preparation of SiO2/PMMA composite particles via conventional emulsion polymerization. J Polym Sci Part A Polym Chem 44:3807–3816

    Article  Google Scholar 

  188. Muñoz-Bonilla A, Van Herk AM, Heuts JPA (2010) Preparation of hairy particles and antifouling films using brush-type amphiphilic block copolymer surfactants in emulsion polymerization. Macromolecules 43:2721–2731

    Article  Google Scholar 

  189. Garay-Jimenez JC, Gergeres D, Young A, Lim DV, Turos E (2009) Physical properties and biological activity of poly(butyl acrylate-styrene) nanoparticle emulsions prepared with conventional and polymerizable surfactants. Nanomed Nanotechnol Biol Med 5: 443–451

    Google Scholar 

  190. Lu S, Qu R, Forcada J (2009) Preparation of magnetic polymeric composite nanoparticles by seeded emulsion polymerization. Mater Lett 63:770–772

    Article  Google Scholar 

  191. Gao J, Wu C (2005) Modified structural model for predicting particle size in the microemulsion and emulsion polymerization of styrene under microwave irradiation. Langmuir 21:782–785

    Article  Google Scholar 

  192. Zhang J, Cao Y, He Y (2004) Ultrasonically irradiated emulsion polymerization of styrene in the presence of a polymeric surfactant. J Appl Polym Sci 94:763–768

    Article  Google Scholar 

  193. Chang Y-H, Lee Y-D, Karlsson OJ, Sundberg DC (2001) Particle nucleation mechanism for the emulsion polymerization of styrene with a novel polyester emulsifier. J Appl Polym Sci 82:1061–1070

    Article  Google Scholar 

  194. Thickett SC, Gaborieau M, Gilbert RG (2007) Extended mechanistic description of particle growth in electrosterically stabilized emulsion polymerization systems. Macromolecules 40:4710–4720

    Article  Google Scholar 

  195. Mock EB, De Bruyn H, Hawkett BS, Gilbert RG, Zukoski CF (2006) Synthesis of anisotropic nanoparticles by seeded emulsion polymerization. Langmuir 22:4037–4043

    Article  Google Scholar 

  196. El-Samaligy MS, Rohdewald P, Mahmoud HA (1986) Polyalkyl cyanoacrylate nanocapsules. J Pharm Pharmacol 38:216–218

    Article  Google Scholar 

  197. Couvreur P, Kante B, Roland M (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 31:331–332

    Article  Google Scholar 

  198. Vauthier C, Labarre D, Ponchel G (2007) Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 15:641–663

    Article  Google Scholar 

  199. Nicolas J, Couvreur P (2009) Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley interdisciplinary reviews. Nanomed Nanobiotechnol 1:111–127

    Article  Google Scholar 

  200. Bertholon I, Lesieur S, Labarre D, Besnard M, Vauthier C (2006) Characterization of dextran-poly(isobutylcyanoacrylate) copolymers obtained by redox radical and anionic emulsion polymerization. Macromolecules 39:3559–3567

    Article  Google Scholar 

  201. Bertholon I, Ponchel G, Labarre D, Couvreur P, Vauthier C (2006) Bioadhesive properties of poly(alkylcyanoacrylate) nanoparticles coated with polysaccharide. J Nanosci Nanotechnol 6:3102–3109

    Article  Google Scholar 

  202. Hearn J, Wilkinson MC, Goodall AR, Chainey M (1985) Kinetics of the surfactant-free emulsion polymerization of styrene: the post nucleation stage. J Polym Sci Part A Polym Chem 23:1869–1883

    Google Scholar 

  203. Song Z, Poehlein GW (1990) Kinetics of emulsifier-free emulsion polymerization of styrene. J Polym Sci Part A Polym Chem 28:2359–2392

    Article  Google Scholar 

  204. Zou D, Ma S, Guan R, Park M, Sun L, Aklonis JJ, Salovey R (1992) Model filled polymers. V. Synthesis of crosslinked monodisperse polymethacrylate beads. J Polym Sci Part A Polym Chem 30:137–144

    Article  Google Scholar 

  205. Shouldice GTD, Vandezande GA, Rudin A (1994) Practical aspects of the emulsifier-free emulsion polymerization of styrene. Eur Polym J 30:179–183

    Article  Google Scholar 

  206. Pang S-W, Park H-Y, Jang Y-S, Kim W-S, Kim J-H (2002) Effects of charge density and particle size of poly(styrene/(dimethylamino)ethyl methacrylate) nanoparticle for gene delivery in 293 cells. Colloids Surf B 26:213–222

    Article  Google Scholar 

  207. Akgöl S, Öztürk N, Denizli A (2010) New generation polymeric nanospheres for lysozyme adsorption. J Appl Polym Sci 115:1608–1615

    Article  Google Scholar 

  208. Liu G, Liu P (2010) Synthesis of monodispersed crosslinked nanoparticles decorated with surface carboxyl groups via soapless emulsion polymerization. Colloids Surf A 354:377–381

    Article  Google Scholar 

  209. Goodall AR, Wilkinson MC, Hearn J (1977) Mechanism of emulsion polymerization of styrene in soap-free systems. J Polym Sci Polym Chem Ed 15:2193–2218

    Article  Google Scholar 

  210. Landfester K (2001) Polyreactions in miniemulsions. Macromol Rapid Commun 22:896–936

    Article  Google Scholar 

  211. Fitch R M, Tsai C H (1971) Particle formation in polymer colloids. III. Prediction of the number of particles by a homogeneous nucleation theory. Polymer Colloids. 73–102

    Google Scholar 

  212. Hansen FK, Ugelstad J (1979) Particle nucleation in emulsion polymerization—3 nucleation in systems with anionic emulsifier investigated by seeded and unseeded polymerization. J Polym Sci Part A Polym Chem 17:3047–3067

    Google Scholar 

  213. Hansen FK, Ugelstad J (1982) Particle formation mechanisms, In: Piirma I (ed) Emulsion polymerization. Academic press, New York, pp 51–92

    Google Scholar 

  214. Choi YT, El-Aasser MS, Sudol ED, Vanderhoff JW (1985) Polymerization of styrene miniemulsion. J Polym Sci Part A Polym Chem 23:2973–2987

    Google Scholar 

  215. Chern CS, Liou YC, Chen TJ (1998) Particle nucleation loci in styrene miniemulsion polymerization using alkyl methacrylates as the reactive cosurfactant. Macromol Chem Phys 199:1315–1322

    Article  Google Scholar 

  216. Chern CS, Chen TJ, Liou YC (1998) Miniemulsion polymerization of styrene in the presence of a water-insoluble blue dye. Polymer 39:3767–3777

    Article  Google Scholar 

  217. Bao J, Zhang A (2004) Poly(methyl methacrylate) nanoparticles prepared through microwave emulsion polymerization. J Appl Polym Sci 93:2815–2820

    Article  Google Scholar 

  218. An Z, Tang W, Hawker CJ, Stucky GD (2006) One-step microwave preparation of well-defined and functionalized polymeric nanoparticles. J Am Chem Soc 128:15054–15055

    Article  Google Scholar 

  219. Chiu T-P, Don T-M (2008) Synthesis and characterization of poly(methyl methacrylate) nanoparticles by emulsifier-free emulsion polymerization with a redox-initiated system. J Appl Polym Sci 109:3622–3630

    Article  Google Scholar 

  220. Fang FF, Kim JH, Choi HJ, Kim CA (2009) Synthesis and electrorheological response of nano-sized laponite stabilized poly(methyl methacrylate) spheres. Colloid Polym Sci 287:745–749

    Article  Google Scholar 

  221. Cui X, Zhong S, Wang H (2007) Emulsifier-free core-shell polyacrylate latex nanoparticles containing fluorine and silicon in shell. Polymer 48:7241–7248

    Article  Google Scholar 

  222. Lee JM, Lee SJ, Jung YJ, Kim JH (2008) Fabrication of nano-structured polythiophene nanoparticles in aqueous dispersion. Curr Appl Phys 8:659–663

    Article  Google Scholar 

  223. Wang S, Wang X, Zhang Z (2007) Preparation of polystyrene particles with narrow particle size distribution by gamma-ray initiated miniemulsion polymerization stabilized by polymeric surfactant. Eur Polym J 43:178–184

    Article  Google Scholar 

  224. Bardajee GR, Vancaeyzeele C, Haley JC, Li AY, Winnik MA (2007) Synthesis, characterization, and energy transfer studies of dye-labeled poly(butyl methacrylate) latex particles prepared by miniemulsion polymerization. Polymer 48:5839–5849

    Article  Google Scholar 

  225. Rotureau E, Raynaud J, Choquenet B, Marie E, Nouvel C, Six J-L, Dellacherie E, Durand A (2008) Application of amphiphilic polysaccharides as stabilizers in direct and inverse free-radical miniemulsion polymerization. Colloids Surf A 331:84–90

    Article  Google Scholar 

  226. Yildiz U, Landfester K (2008) Miniemulsion polymerization of styrene in the presence of macromonomeric initiators. Polymer 49:4930–4934

    Article  Google Scholar 

  227. Ethirajan A, Ziener U, Landfester K (2009) Surface-functionalized polymeric nanoparticles as templates for biomimetic mineralization of hydroxyapatite. Chem Mater 21:2218–2225

    Article  Google Scholar 

  228. Crespy D, Landfester K (2009) Synthesis of polyvinylpyrrolidone/silver nanoparticles hybrid latex in non-aqueous miniemulsion at high temperature. Polymer 50:1616–1620

    Article  Google Scholar 

  229. Wu M, Dellacherie E, Durand A, Marie E (2009) Poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion polymerization (1): Dextran-based surfactants. Colloids Surf B 69:141–146

    Article  Google Scholar 

  230. Baruch-Sharon S, Margel S (2010) Synthesis and characterization of polychloromethylstyrene nanoparticles of narrow size distribution by emulsion and miniemulsion polymerization processes. Colloid Polym Sci 288:869–877

    Article  Google Scholar 

  231. Jiang X, Dausend J, Hafner M, Musyanovych A, Röcker C, Landfester K, Mailänder V, Ulrich Nienhaus G (2010) Specific effects of surface amines on polystyrene nanoparticles in their interactions with mesenchymal stem cells. Biomacromolecules 11:748–753

    Article  Google Scholar 

  232. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27:689–757

    Article  Google Scholar 

  233. Landfester K, Willert M, Antonietti M (2000) Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33:2370–2376

    Article  Google Scholar 

  234. Wormuth K (2001) Superparamagnetic latex via inverse emulsion polymerization. J Colloid Interface Sci 241:366–377

    Article  Google Scholar 

  235. Oh JK, Tang C, Gao H, Tsarevsky NV, Matyjaszewski K (2006) Inverse miniemulsion ATRP: a new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. J Am Chem Soc 128:5578–5584

    Article  Google Scholar 

  236. Landfester K, Tiarks F, Hentze H-P, Antonietti M (2000) Polyaddition in miniemulsions: a new route to polymer dispersions. Macromol Chem Phys 201:1–5

    Article  Google Scholar 

  237. Li C-YU, Chiu W-Y, Don T-M (2005) Preparation of polyurethane dispersions by miniemulsion polymerization. J Polym Sci Part A Polym Chem 43:4870–4881

    Article  Google Scholar 

  238. Maitre C, Ganachaud F, Ferreira O, Lutz JF, Paintoux Y, Hémery P (2000) Anionic polymerization of phenyl glycidyl ether in miniemulsion. Macromolecules 33:7730–7736

    Article  Google Scholar 

  239. Tomov A, Broyer J-P, Spitz R (2000) Emulsion polymerization of ethylene in water medium catalysed by organotransition metal complexes. Macromol Symp 150:53–58

    Article  Google Scholar 

  240. Puig JE (1996) Microemulsion polymerization, In: Salamone JC (ed) Polymeric materials encyclopedia, vol 6. CRC Press, New York, pp 4333–4341

    Google Scholar 

  241. Sosa N, Peralta RD, López RG, Ramos LF, Katime I, Cesteros C, Mendizábal E, Puig JE (2001) A comparison of the characteristics of poly(vinyl acetate) latex with high solid content made by emulsion and semi-continuous microemulsion polymerization. Polymer 42:6923–6928

    Article  Google Scholar 

  242. Sosa N, Zaragoza EA, López RG, Peralta RD, Katime I, Becerra F, Mendizábal E, Puig JE (2000) Unusual free radical polymerization of vinyl acetate in anionic microemulsion media. Langmuir 16:3612–3619

    Article  Google Scholar 

  243. Kim B-J, Oh S-G, Han M-G, Im S–S (2000) Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium. Langmuir 16:5841–5845

    Article  Google Scholar 

  244. Choi JW, Han MG, Kim SY, Oh SG, Im SS (2004) Poly(3,4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions. Synth Met 141:293–299

    Article  Google Scholar 

  245. Han MG, Cho SK, Oh SG, Im SS (2002) Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth Met 126:53–60

    Article  Google Scholar 

  246. Li X-G, Huang M-R, Zeng J-F, Zhu M-F (2004) The preparation of polyaniline waterborne latex nanoparticles and their films with anti-corrosivity and semi-conductivity. Colloids Surf A 248:111–120

    Article  Google Scholar 

  247. Jang J, Oh JH, Stucky GD (2002) Fabrication of ultrafine conducting polymer and graphite nanoparticles. Angew Chem Int Ed 41:4016–4019

    Article  Google Scholar 

  248. Lambert G, Bertrand JR, Fattal E, Subra F, Pinto-Alphandary H, Malvy C, Auclair C, Couvreur P (2000) EWS Fli-1 antisense nanocapsules inhibits Ewing sarcoma-related tumor in mice. Biochem Biophys Res Commun 279:401–406

    Article  Google Scholar 

  249. Lambert G, Fattal E, Pinto-Alphandary H, Gulik A, Couvreur P (2000) Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm Res 17:707–714

    Article  Google Scholar 

  250. Lambert G, Fattal E, Pinto-Alphandary H, Gulik A, Couvreur P (2001) Polyisobutylcyanoacrylate nanocapsules containing an aqueous core for the delivery of oligonucleotides. Int J Pharm 214:13–16

    Article  Google Scholar 

  251. Lambert G, Fattal E, Couvreur P (2001) Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Delivery Rev 47:99–112

    Article  Google Scholar 

  252. Toub N, Angiari C, Eboué D, Fattal E, Tenu J-P, Le Doan T, Couvreur P (2005) Cellular fate of oligonucleotides when delivered by nanocapsules of poly(isobutylcyanoacrylate). J Controlled Release 106:209–213

    Article  Google Scholar 

  253. Toub N, Bertrand J-R, Tamaddon A, Elhamess H, Hillaireau H, Maksimenko A, Maccario J, Malvy C, Fattal E, Couvreur P (2006) Efficacy of siRNA nanocapsules targeted against the EWS-Fli1 oncogene in Ewing sarcoma. Pharm Res 23:892–900

    Article  Google Scholar 

  254. Hillaireau H, Le Doan T, Besnard M, Chacun H, Janin J, Couvreur P (2006) Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules. Int J Pharm 324:37–42

    Article  Google Scholar 

  255. Hillaireau H, Le Doan T, Chacun H, Janin J, Couvreur P (2007) Encapsulation of mono- and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int J Pharm 331:148–152

    Article  Google Scholar 

  256. Anton N, Saulnier P, Gaillard C, Porcher E, Vrignaud S, Benoit J-P (2009) Aqueous-core lipid nanocapsules for encapsulating fragile hydrophilic and/or lipophilic molecules. Langmuir 25:11413–11419

    Article  Google Scholar 

  257. Jang J, Bae J, Park E (2006) Selective fabrication of poly(3,4-ethylenedioxythiophene) nanocapsules and mesocellular foams using surfactant-mediated interfacial polymerization. Adv Mater 18:354–358

    Article  Google Scholar 

  258. Landfester K (2001) The generation of nanoparticles in miniemulsions. Adv Mater 13:765–768

    Article  Google Scholar 

  259. Tiarks F, Landfester K, Antonietti M (2001) Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17:908–918

    Article  Google Scholar 

  260. Al Khouri Fallouh N, Roblot-Treupel L, Fessi H (1986) Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm 28:125–132

    Article  Google Scholar 

  261. Al Khouri N, Fessi H, Roblot-Treupel L (1986) Original procedure for preparation of nanocapsules of polyalkyl cyanoacrylates by interfacial polymerization. Pharm Acta Helv 61:274–281

    Google Scholar 

  262. Rollot JM, Couvreur P, Roblo-Treupel L, Puisieux F (1986) Physicochemical and morphological characterization of polyisobutyl cyanoacrylate nanocapsules. J Pharm Sci 75:361–364

    Article  Google Scholar 

  263. Chouinard F, Kan FWK, Leroux J-C, Foucher C, Lenaerts V (1991) Preparation and purification of polyisohexylcyanoacrylate nanocapsules. Int J Pharm 72:211–217

    Article  Google Scholar 

  264. Bouchemal K, Couenne F, Briançon S, Fessi H, Tayakout M (2006) Polyamides nanocapsules: modelling and wall thickness estimation. AiChe 52:1–10

    Article  Google Scholar 

  265. Takasu M, Kawaguchi H (2005) Preparation of colored latex with polyurea shell by miniemulsion polymerization. Colloid Polym Sci 283:805–811

    Article  Google Scholar 

  266. Sirkar KK, Shanbhag PV, Kovvali AS (1999) Membrane in a reactor: a functional perspective. Ind Eng Chem Res 38:3715–3737

    Article  Google Scholar 

  267. Drioli E, Criscuoli A, Curcio E (2003) Membrane contactors and catalytic membrane reactors in process intensification. Chem Eng Technol 26:975–981

    Article  Google Scholar 

  268. Charcosset C, Fessi H (2006) A membrane contactor for the preparation of nanoparticles. Desalination 200:568–569

    Article  Google Scholar 

  269. Yanagishita T, Fujimura R, Nishio K, Masuda H (2010) Fabrication of monodisperse polymer nanoparticles by membrane emulsification using ordered anodic porous alumina. Langmuir 26:1516–1519

    Article  Google Scholar 

  270. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    Article  Google Scholar 

  271. Zetterlund PB, Kagawa Y, Okubo M (2008) Controlled/living radical polymerization in dispersed systems. Chem Rev 108:3747–3794

    Article  Google Scholar 

  272. Zetterlund PB, Nakamura T, Okubo M (2007) Mechanistic investigation of particle size effects in TEMPO-mediated radical polymerization of styrene in aqueous miniemulsion. Macromolecules 40:8663–8672

    Article  Google Scholar 

  273. Nicolas J, Ruzette A-V, Farcet C, Gérard P, Magnet S, Charleux B (2007) Nanostructured latex particles synthesized by nitroxide-mediated controlled/living free-radical polymerization in emulsion. Polymer 48:7029–7040

    Article  Google Scholar 

  274. Dire C, Magnet S, Couvreur L, Charleux B (2009) Nitroxide-mediated controlled/living free-radical surfactant-free emulsion polymerization of methyl methacrylate using a poly(methacrylie acid)-based macroalkoxyamine initiator. Macromolecules 42:95–103

    Article  Google Scholar 

  275. Farcet C, Nicolas J, Charleux B (2002) Kinetic study of the nitroxide-mediated controlled free-radical polymerization of n-butyl acrylate in aqueous miniemulsions. J Polym Sci Part A Polym Chem 40:4410–4420

    Article  Google Scholar 

  276. Farcet C, Charleux B, Pirri R (2001) Poly(n-butyl acrylate) homopolymer and poly[n-butyl acrylate-b-(n-butyl acrylate-co-styrene)] block copolymer prepared via nitroxide-mediated living/controlled radical polymerization in miniemulsion [6]. Macromolecules 34:3823–3826

    Article  Google Scholar 

  277. Farcet C, Lansalot M, Charleux B, Pirri R, Vairon JP (2000) Mechanistic aspects of nitroxide-mediated controlled radical polymerization of styrene in miniemulsion, using a water-soluble radical initiator. Macromolecules 33:8559–8570

    Article  Google Scholar 

  278. Li W, Matyjaszewski K, Albrecht K, Möller M (2009) Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP. Macromolecules 42:8228–8233

    Article  Google Scholar 

  279. Siegwart DJ, Srinivasan A, Bencherif SA, Karunanidhi A, Jung KO, Vaidya S, Jin R, Hollinger JO, Matyjaszewski K (2009) Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. Biomacromolecules 10:2300–2309

    Article  Google Scholar 

  280. Oh JK, Perineau F, Charleux B, Matyjaszewski K (2009) AGET ATRP in water and inverse minlemulsion: A facile route for preparation of high-molecular-weight biocompatible brush-like polymers. J Polym Sci Part A Polym Chem 47:1771–1781

    Article  Google Scholar 

  281. Li W, Min K, Matyjaszewski K, Stoffelbach F, Charleux B (2008) PEO-based block copolymers and homopolymers as reactive surfactants for AGET ATRP of butyl acrylate in miniemulsion. Macromolecules 41:6387–6392

    Article  Google Scholar 

  282. Min K, Gao H, Yoon JA, Wu W, Kowalewski T, Matyjaszewski K (2009) One-pot synthesis of hairy nanoparticles by emulsion ATRP. Macromolecules 42:1597–1603

    Article  Google Scholar 

  283. Min K, Gao H, Matyjaszewski K (2006) Development of an ab initio emulsion atom transfer radical polymerization: from microemulsion to emulsion. J Am Chem Soc 128:10521–10526

    Article  Google Scholar 

  284. Min K, Matyjaszewski K (2005) Atom transfer radical polymerization in microemulsion. Macromolecules 38:8131–8134

    Article  Google Scholar 

  285. Rieger J, Zhang W, Stoffelbach F, Charleux B (2010) Surfactant-free RAFT emulsion polymerization using poly(N,N -dimethylacrylamide) trithiocarbonate macromolecular chain transfer agents. Macromolecules 43:6302–6310

    Article  Google Scholar 

  286. Manguian M, Save M, Charleux B (2006) Batch emulsion polymerization of styrene stabilized by a hydrophilic macro-RAFT agenta. Macromol Rapid Commun 27:399–404

    Article  Google Scholar 

  287. Zhou X, Ni P, Yu Z (2007) Comparison of RAFT polymerization of methyl methacrylate in conventional emulsion and miniemulsion systems. Polymer 48:6262–6271

    Article  Google Scholar 

  288. Nicolas J, Charleux B, Guerret O, Magnet S (2005) Nitroxide-mediated controlled free-radical emulsion polymerization using a difunctional water-soluble alkoxyamine initiator. Toward the control of particle size, particle size distribution, and the synthesis of triblock copolymers. Macromolecules 38:9963–9973

    Article  Google Scholar 

  289. Dalpiaz A, Vighi E, Pavan B, Leo E (2009) Fabrication via a nonaqueous nanoprecipitation method, characterization and in vitro biological behavior of N6-cyclopentyladenosine-loaded nanoparticles. J Pharm Sci 98:4272–4284

    Article  Google Scholar 

  290. Cheng F-Y, Wang SP-H, Su C-H, Tsai T-L, Wu P-C, Shieh D-B, Chen J-H, Hsieh PC-H, Yeh C-S (2008) Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials 29:2104–2112

    Article  Google Scholar 

  291. Murakami H, Kobayashi M, Takeuchi H, Kawashima Y (1999) Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm 187:143–152

    Article  Google Scholar 

  292. Chang J, Jallouli Y, Kroubi M, Yuan X-b, Feng W, Kang C-s, Pu P-y, Betbeder D (2009) Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 379: 285–292

    Google Scholar 

  293. Nassar T, Rom A, Nyska A, Benita S (2009) Novel double coated nanocapsules for intestinal delivery and enhanced oral bioavailability of tacrolimus, a P-gp substrate drug. J Controlled Release 133:77–84

    Article  Google Scholar 

  294. de Assis DN, Mosqueira VCF, Vilela JMC, Andrade MS, Cardoso VN (2008) Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules. Int J Pharm 349:152–160

    Article  Google Scholar 

  295. Limayem Blouza I, Charcosset C, Sfar S, Fessi H (2006) Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm 325:124–131

    Article  Google Scholar 

  296. Moinard-Chécot D, Chevalier Y, Briançon S, Beney L, Fessi H (2008) Mechanism of nanocapsules formation by the emulsion-diffusion process. J Colloid Interface Sci 317:458–468

    Article  Google Scholar 

  297. Zili Z, Sfar S, Fessi H (2005) Preparation and characterization of poly-epsilon-caprolactone nanoparticles containing griseofulvin. Int J Pharm 294:261–267

    Article  Google Scholar 

  298. Kim E, Yang J, Choi J, Suh J-S, Huh Y-M, Haam S (2009) Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents. Nanotechnology. 20: 365602 (p 7)

    Google Scholar 

  299. Ferranti V, Marchais H, Chabenat C, Orecchioni AM, Lafont O (1999) Primidone-loaded poly-epsilon-caprolactone nanocapsules: incorporation efficiency and in vitro release profiles. Int J Pharm 193:107–111

    Article  Google Scholar 

  300. Seyler I, Appel M, Devissaguet J-P, Legrand P, Barratt G (1999) Macrophage activation by a lipophilic derivative of muramyldipeptide within nanocapsules: Investigation of the mechanism of drug delivery. J Nanopart Res 1:91–97

    Article  Google Scholar 

  301. Legrand P, Lesieur S, Bochot A, Gref R, Raatjes W, Barratt G, Vauthier C (2007) Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm 344:33–43

    Article  Google Scholar 

  302. Nehilla BJ, Bergkvist M, Popat KC, Desai TA (2008) Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles. Int J Pharm 348:107–114

    Article  Google Scholar 

  303. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC (2010) Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 351:19–29

    Article  Google Scholar 

  304. Deepak V, Ram Kumar Pandian SB, Kalishwaralal K, Gurunathan S (2009) Purification, immobilization, and characterization of nattokinase on PHB nanoparticles. Bioresour Technol 100: 6644–6646

    Google Scholar 

  305. Duclairoir C, Nakache E, Marchais H, Orecchioni A-M (1998) Formation of gliadin nanoparticles: Influence of the solubility parameter of the protein solvent. Colloid Polym Sci 276:321–327

    Article  Google Scholar 

  306. Skiba M, Wouessidjewe D, Puisieux F, Duchêne D, Gulik A (1996) Characterization of amphiphilic beta-cyclodextrin nanospheres. Int J Pharm 142:121–124

    Article  Google Scholar 

  307. Lannibois H, Hasmy A, Botet R, Chariol OA, Cabane B (1997) Surfactant limited aggregation of hydrophobic molecules in water. J Phys I 7:319–342

    Google Scholar 

  308. Jeong Y-I, Cho C-S, Kim S-H, Ko K-S, Kim S-I, Shim Y-H, Nah J-W (2001) Preparation of poly(DL-lactide-co-glycolide) nanoparticles without surfactant. J Appl Polym Sci 80:2228–2236

    Article  Google Scholar 

  309. Kostag M, Köhler S, Liebert T, Heinze T (2010) Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 294:96–106

    Article  Google Scholar 

  310. Jeon H-J, Jeong Y-I, Jang M-K, Park Y-H, Nah J-W (2000) Effect of solvent on the preparation of surfactant-free poly(DL-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics. Int J Pharm 207:99–108

    Article  Google Scholar 

  311. Akagi T, Kaneko T, Kida T, Akashi M (2005) Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier. J Controlled Release 108:226–236

    Article  Google Scholar 

  312. Lee J, Cho EC, Cho K (2004) Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles. J Controlled Release 94:323–335

    Article  Google Scholar 

  313. Chronopoulou L, Fratoddi I, Palocci C, Venditti I, Russo MV (2009) Osmosis based method drives the self-assembly of polymeric chains into micro-and nanostructures. Langmuir 25:11940–11946

    Article  Google Scholar 

  314. Na K, Lee KH, Lee DH, Bae YH (2006) Biodegradable thermo-sensitive nanoparticles from poly(L-lactic acid)/poly(ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier. Eur J Pham Sci 27:115–122

    Article  Google Scholar 

  315. Hornig S, Heinze T (2008) Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromolecules 9:1487–1492

    Article  Google Scholar 

  316. Marty JJ, Oppenheim RC, Speiser P (1978) Nanoparticles–a new colloidal drug delivery system. Pharm Acta Helv 53:17–23

    Google Scholar 

  317. Kommareddy S, Amiji MM (2007) Protein nanospheres for gene delivery: preparation and in vitro transfection studies with gelatin nanoparticles. Gene transfer. Cold Spring Harbor Laboratory Press, New York, pp 527–540

    Google Scholar 

  318. Weber C, Coester C, Kreuter J, Langer K (2000) Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm 194:91–102

    Article  Google Scholar 

  319. Weber C, Kreuter J, Langer K (2000) Desolvation process and surface characteristics of HSA-nanoparticles. Int J Pharm 196:197–200

    Article  Google Scholar 

  320. Langer K, Anhorn MG, Steinhauser I, Dreis S, Celebi D, Schrickel N, Faust S, Vogel V (2008) Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int J Pharm 347:109–117

    Article  Google Scholar 

  321. Langer K, Balthasar S, Vogel V, Dinauer N, von B, Schubert D (2003) Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm 257: 169–180

    Google Scholar 

  322. Wartlick H, Spankuch-Schmitt B, Strebhardt K, Kreuter J, Langer K (2004) Tumour cell delivery of antisense oligonucleotides by human serum albumin nanoparticles. J Controlled Release 96:483–495

    Article  Google Scholar 

  323. Mo Y, Barnett ME, Takemoto D, Davidson H, Kompella UB (2007) Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 13:746–757

    Google Scholar 

  324. Li F-Q, Su H, Wang J, Liu J-Y, Zhu Q-G, Fei Y-B, Pan Y-H, Hu J-H (2008) Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int J Pharm 349:274–282

    Article  Google Scholar 

  325. Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, Zhang Z (2010) Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomed 5:669–677

    Google Scholar 

  326. Duclairoir C, Irache JM, Nakache E, Orecchioni A-M, Chabenat C, Popineau Y (1999) Gliadin nanoparticles: formation, all-trans-retinoic acid entrapment and release, size optimization. Polym Int 48:327–333

    Article  Google Scholar 

  327. Umamaheshwari RB, Jain NK (2003) Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. J Drug Target 11:415–424

    Article  Google Scholar 

  328. Ramteke S, Jain NK (2008) Clarithromycin- and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori. J Drug Target 16:65–72

    Article  Google Scholar 

  329. Coester CJ, Langer K, van Briesen H, Kreuter J (2000) Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake. J Microencapsul 17:187–193

    Google Scholar 

  330. Coester C, Kreuter J, von B, Langer K (2000) Preparation of avidin-labeled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int J Pharm 196:147–149

    Google Scholar 

  331. Vandervoort J, Ludwig A (2004) Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm 57:251–261

    Article  Google Scholar 

  332. Balthasar S, Michaelis K, Dinauer N, von B, Kreuter J, Langer K (2005) Preparation and characterization of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials 26:2723–2732

    Google Scholar 

  333. Azarmi S, Huang Y, Chen H, McQuarrie S, Abrams D, Roa W, Finlay WH, Miller GG, Lobenberg R (2006) Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. J Pharm Pharm Sci 9:124–132

    Google Scholar 

  334. Saraogi GK, Gupta P, Gupta UD, Jain NK, Agrawal GP (2010) Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharm 385:143–149

    Article  Google Scholar 

  335. Taheri Qazvini N, Zinatloo S (2011) Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 22:63–69

    Article  Google Scholar 

  336. Zwiorek K, Kloeckner J, Wagner E, Coester C (2004) Gelatin nanoparticles as a new and simple gene delivery system. J Pharm Pharm Sci 7:22–28

    Google Scholar 

  337. Agnihotri SA, Aminabhavi TM (2007) Chitosan nanoparticles for prolonged delivery of timolol maleate. Drug Dev Ind Pharm 33:1254–1262

    Article  Google Scholar 

  338. Al-Ghananeem AM, Malkawi AH, Muammer YM, Balko JM, Black EP, Mourad W, Romond E (2009) Intratumoral delivery of paclitaxel in solid tumor from biodegradable hyaluronan nanoparticle formulations. AAPS PharmSciTech 10:410–417

    Article  Google Scholar 

  339. De Martimprey H, Vauthier C, Malvy C, Couvreur P (2009) Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur J Pharm Biopharm 71:490–504

    Article  Google Scholar 

  340. Howard KA, Kjems J (2007) Polycation-based nanoparticle delivery for improved RNA interference therapeutics. Expert Opin Biol Ther 7:1811–1822

    Article  Google Scholar 

  341. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82:912–917

    Article  Google Scholar 

  342. Schatz C, Domard A, Viton C, Pichot C, Delair T (2004) Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules 5:1882–1892

    Article  Google Scholar 

  343. Drogoz A, David L, Rochas C, Domard A, Delair T (2007) Polyelectrolyte complexes from polysaccharides: formation and stoichiometry monitoring. Langmuir 23:10950–10958

    Article  Google Scholar 

  344. Drogoz A, Munier S, Verrier B, David L, Domard A, Delair T (2008) Towards biocompatible vaccine delivery systems: Interactions of colloidal PECs based on polysaccharides with HIV-1 p24 antigen. Biomacromolecules 9:583–591

    Article  Google Scholar 

  345. Daoud-Mahammed S, Ringard-Lefebvre C, Razzouq N, Rosilio V, Gillet B, Couvreur P, Amiel C, Gref R (2007) Spontaneous association of hydrophobized dextran and poly-beta-cyclodextrin into nanoassemblies. Formation and interaction with a hydrophobic drug. J Colloid Interface Sci 307:83–93

    Article  Google Scholar 

  346. Gref R, Amiel C, Molinard K, Daoud-Mahammed S, Sébille B, Gillet B, Beloeil J-C, Ringard C, Rosilio V, Poupaert J, Couvreur P (2006) New self-assembled nanogels based on host-guest interactions: characterization and drug loading. J Controlled Release 111:316–324

    Article  Google Scholar 

  347. Boissière M, Meadows PJ, Brayner R, Hélary C, Livage J, Coradin T (2006) Turning biopolymer particles into hybrid capsules: the example of silica/alginate nanocomposites. J Mater Chem 16:1178–1182

    Article  Google Scholar 

  348. De S, Robinson D (2003) Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Controlled Release 89:101–112

    Article  Google Scholar 

  349. Aynie I, Vauthier C, Chacun H, Fattal E, Couvreur P (1999) Spongelike alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 9:301–312

    Google Scholar 

  350. González Ferreiro M, Tillman L, Hardee G, Bodmeier R (2002) Characterization of alginate/poly-l-lysine particles as antisense oligonucleotide carriers. Int J Pharm 239:47–59

    Article  Google Scholar 

  351. Douglas KL, Tabrizian M (2005) Effect of experimental parameters on the formation of alginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. J Biomater Sci Polym Ed 16:43–56

    Article  Google Scholar 

  352. Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ (2007) Insulin-loaded nanoparticles are prepared by alginate lonotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol 7:2833–2841

    Article  Google Scholar 

  353. Das RK, Kasoju N, Bora U (2010) Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 6:153–160

    Article  Google Scholar 

  354. Li P, Dai Y-N, Zhang J-P, Wang A-Q, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4:221–228

    Google Scholar 

  355. Sarmento B, Ferreira DC, Jorgensen L, van de Weert M (2007) Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm 65:10–17

    Article  Google Scholar 

  356. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007) Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 24:2198–2206

    Article  Google Scholar 

  357. Sarmento B, Ferreira D, Veiga F, Ribeiro A (2006) Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym 66:1–7

    Article  Google Scholar 

  358. Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14:1431–1436

    Article  Google Scholar 

  359. Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  Google Scholar 

  360. López-León T, Carvalho ELS, Seijo B, Ortega-Vinuesa JL, Bastos-González D (2005) Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci 283:344–351

    Article  Google Scholar 

  361. Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16:1576–1581

    Article  Google Scholar 

  362. Cetin M, Aktas Y, Vural I, Capan Y, Dogan LA, Duman M, Dalkara T (2007) Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug Deliv 14:525–529

    Article  Google Scholar 

  363. Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Delivery Rev 47:83–97

    Article  Google Scholar 

  364. Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Controlled Release 115:216–225

    Article  Google Scholar 

  365. Dung TH, Lee S-R, Han S-D, Kim S-J, Ju Y-M, Kim M-S, Yoo H (2007) Chitosan-TPP nanoparticle as a release system of antisense oligonucleotide in the oral environment. J Nanosci Nanotechnol 7:3695–3699

    Article  Google Scholar 

  366. Reverchon E (1999) Supercritical antisolvent precipitation of micro- and nano-particles. J Supercrit Fluids 15:1–21

    Article  Google Scholar 

  367. Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20:179–219

    Article  Google Scholar 

  368. Vemavarapu C, Mollan MJ, Lodaya M, Needham TE (2005) Design and process aspects of laboratory scale SCF particle formation systems. Int J Pharm 292:1–16

    Article  Google Scholar 

  369. Mishima K (2008) Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Adv Drug Deliv Rev 60:411–432

    Article  Google Scholar 

  370. Kawashima Y (2001) Panoparticulate systems for improved drug delivery. Adv Drug Deliv Rev 47:1–2

    Article  Google Scholar 

  371. Weber M, Thies MC (2002) Understanding the RESS process. In: Sun Y-P (ed) Supercritical fluid technology in materials science and engineering: synthesis, properties, and applications. CRC press, New York, pp 387–437

    Google Scholar 

  372. Blasig A, Shi C, Enick RM, Thies MC (2002) Effect of concentration and degree of saturation on RESS of a CO2-soluble fluoropolymer. Ind Eng Chem Res 41:4976–4983

    Article  Google Scholar 

  373. Sane A, Thies MC (2007) Effect of material properties and processing conditions on RESS of poly(l-lactide). J Supercrit Fluids 40:134–143

    Article  Google Scholar 

  374. Sun Y-P, Rollins HW, Jayasundera B, Meziani MJ, Bunker CE (2002) Preparation and processing of nanoscale materials by supercritical fluid technology. In: Sun Y-P (ed) Supercritical fluid technology in materials science and engineering: synthesis, properties, and applications. CRC Press, New York, pp 491–576

    Chapter  Google Scholar 

  375. Meziani MJ, Pathak P, Hurezeanu R, Thies MC, Enick RM, Sun Y-P (2004) Supercritical-fluid processing technique for nanoscale polymer particles. Angew Chem Int Ed 43:704–707

    Article  Google Scholar 

  376. Meziani MJ, Pathak P, Wang W, Desai T, Patil A, Sun Y-P (2005) Polymeric nanofibers from rapid expansion of supercritical solution. Ind Eng Chem Res 44:4594–4598

    Article  Google Scholar 

  377. Vehring R (2008) Pharmaceutical particle engineering via spray drying. Pharm Res 25:999–1022

    Article  Google Scholar 

  378. Schuck P, Dolivet A, Méjean S, Zhu P, Blanchard E, Jeantet R (2009) Drying by desorption: a tool to determine spray drying parameters. J Food Eng 94:199–204

    Article  Google Scholar 

  379. Arpagaus C, Schafroth N (2009) Laboratory scale spray drying of biodegradable polymers. Respir Drug Deliv Eur 2:269–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Allouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Allouche, J. (2013). Synthesis of Organic and Bioorganic Nanoparticles: An Overview of the Preparation Methods. In: Brayner, R., Fiévet, F., Coradin, T. (eds) Nanomaterials: A Danger or a Promise?. Springer, London. https://doi.org/10.1007/978-1-4471-4213-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4213-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4212-6

  • Online ISBN: 978-1-4471-4213-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics