Skip to main content

Clays and Clay Minerals as Layered Nanofillers for (Bio)Polymers

  • Chapter
  • First Online:
Environmental Silicate Nano-Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This introductory chapter presents the most relevant structural, physical, and chemical properties of clay minerals for the formation of nanocomposites with polymers. The general principles of silicates classification are outlined in order to better understand the structures of the various types of clay minerals as phyllosilicates. Cation exchange capacity (CEC), surface area, porosity, and rheological properties of clay minerals are briefly discussed. The physico-chemical properties of clay mineral layers, including the reactivity at the edges surfaces, are introduced together with their consequences for the various mechanisms of clay-polymer interactions. The chapter closes on a brief presentation of synthetic clay minerals and a general introduction to clay polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marshall CE (1949) The colloid chemistry of silicates minerals. Cornell University Press, Ithaca

    Google Scholar 

  2. Eitel W (1954) The physical chemistry of silicates. University of Chicago Press, Chicago

    Google Scholar 

  3. Eitel W (1964–1976) Silicate science, vol I-VIII. Academic Press, New York

    Google Scholar 

  4. Iler RK (1955) The colloid chemistry of silica and silicates. Cornell University Press, New York

    Google Scholar 

  5. Iler RK (1979) The chemistry of silica. Solubility, polymerization, colloid and surface properties and biochemistry. Wiley, New York

    Google Scholar 

  6. Hauser EA (1955) Silicic science. D Van Nostrand Co, Inc., New York

    Google Scholar 

  7. Liebau F (1985) Structural chemistry of silicates. Structure, bonding, and classification. Springer, Heidelberg

    Google Scholar 

  8. Rives V (ed) (2001) Layered double hydroxides: present and future. Nova Science Publishers, New York

    Google Scholar 

  9. Duan X, Evans DG (eds) (2006) Layered double hydroxides. Springer, Heidelberg

    Google Scholar 

  10. Forano C, Hibino T, Leroux F, Taviot-Guého C (2006) Layered double hydroxides. In: Bergaya F, Theng BKG, Lagaly G (eds). Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 1021–1096

    Google Scholar 

  11. Choy J-H, Choi S-J, Oh J-M, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 26:122–132

    Article  CAS  Google Scholar 

  12. Veniale F (1992) Clay science, facts and perspectives, opening lecture. In: Paper presented at the proceedings of the Mediterranean clay meeting 1992, Lipari

    Google Scholar 

  13. Konta J (2000) Clay science at the threshold of the new millennium: a look at the history and present trends. Acta Universitatis Carolinae-Geologica 44:11

    CAS  Google Scholar 

  14. Bergaya F, Lagaly G, Beneke K (2006) History of clay science: a young discipline. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments of clay science, vol 1. Elsevier, Amsterdam, pp 1163–1181

    Google Scholar 

  15. Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals and clay science. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments of clay science, vol 1. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  16. Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford

    Google Scholar 

  17. Stokes G (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Phil Soc 9:8–106

    Google Scholar 

  18. Carrado KA, Decarreau A, Petit S, Bergaya F, Lagaly G (2006) Synthetic clay minerals and purification of natural clays. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments of clay science, vol 1. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  19. Lagaly G, Beneke K, Weiss A (1975) Magadiite and H-magadiite. I. Sodium magadiite and some of its derivatives. Am Miner 60(7-8):642–649

    CAS  Google Scholar 

  20. Lagaly G, Beneke K, Weiss A (1975) Magadiite and H-magadiite. II. H-magadiite and its intercalation compounds. Am Miner 60(7–8):650–658

    CAS  Google Scholar 

  21. Almond GG, Harris RK, Franklin KR (1996) A 23Na NMR study of hydrous layered silicates. J Mater Chem 6(5):843–847

    Article  CAS  Google Scholar 

  22. Almond GG, Harris RK, Franklin KR (1997) A structural consideration of kanemite, octosilicate, magadiite and kenyaite. J Mater Chem 7(4):681–687

    Article  CAS  Google Scholar 

  23. Apperley DC, Hudson MJ, Keene MTJ, Knowles JA (1995) Kanemite (NaHSi2O5.3H2O) and its hydrogen-exchanged form. J Mater Chem 5(4):577–582

    Article  CAS  Google Scholar 

  24. Brigatti F, Galan E, Theng BKG (2006) Structures and mineralogy of clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments of clay science, vol 1. Elsevier, Amsterdam, pp 19–86

    Google Scholar 

  25. Löwenstein W (1954) The distribution of aluminium in the terahedra of silicates and aluminates. Am Miner 39:92–96

    Google Scholar 

  26. Gonzalez-Gallardo S, Jancik V, Delgado-Robles AA, Moya-Cabrera M (2011) Cyclic alumosiloxanes and alumosilicates: exemplifying the loewenstein rule at the molecular level. Inorg Chem 50(10):4226–4228

    Article  CAS  Google Scholar 

  27. Tan S, Tincer T (2011) Preparation and characterization of polypropylene/serpentine. J Appl Polym Sci 121:846–854

    Article  CAS  Google Scholar 

  28. Battegazzore D, Bocchini S, Frache A (2011) Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym Lett 5(10):849–858

    Article  CAS  Google Scholar 

  29. Fowlks AC, Narayan R (2010) The effect of maleated polylactic acid (PLA) as an interfacial modifier in PLA-Talc composites. J Appl Polym Sci 118(5):2810–2820

    Article  CAS  Google Scholar 

  30. Cuba-Chiem LT, Huynh L, Ralston J, Beattie DA (2008) In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: binding mechanism, pH effects, and adsorption kinetics. Langmuir 24(15):8036–8044

    Article  CAS  Google Scholar 

  31. Brindley GW, Brown G (1980) Crystal structure of clay minerals and their X ray identification. Mineralogical Society, London

    Google Scholar 

  32. Rieder M, Cavazzini G, D’Yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Muller G, Neiva AMR, Radoslovich EW, Robert J-L, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Clays Clay Miner 46(5):486–495

    Article  Google Scholar 

  33. Meunier A, Velde B (2004) Illite. Origins, evolution and metamorphism. Springer, Berlin

    Google Scholar 

  34. Brigatti MF, Guggenheim S (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. In: Mottana A, Sassi FP, Thompson JB, Guggenheim S (eds) Micas: crystal chemistry and metamorphic petrology. Mineralogical Society of America, Washington, pp 1–97

    Google Scholar 

  35. Bergaya F, Jaber M, Lambert JF (2011) Clays and clay minerals—Chapter 1. In: Galimberti M (ed) Rubber clay nanocomposites. Science, technology and application. Wiley, Chichester

    Google Scholar 

  36. Altaner S, Ylagan RF (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays Clay Miner 45(4):517–533

    Article  CAS  Google Scholar 

  37. Bailey SW (1982) Nomenclature for regular interstratifications. Am Miner 67:394–398

    CAS  Google Scholar 

  38. Lagaly G (2006) Colloid clay science. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 141–246

    Google Scholar 

  39. Michot LJ, Bihannic I, Pelletier M, Rinnert E, Robert JL (2005) Hydration and swelling of synthetic Na-saponites: influence of layer charge. Am Mineral 90(1):166–172

    Article  CAS  Google Scholar 

  40. Ferrage E, Lanson B, Sakharov BA, Drits VA (2005) Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. Am Miner 90(8–9):1356–1374

    Google Scholar 

  41. Ferrage E, Tournassat C, Rinnert E, Lanson B (2005) Influence of pH on the interlayer cationic composition and hydration state of Ca-montmorillonite: analytical chemistry, chemical modelling and XRD profile modelling study. Geochem Cosmochem Acta 69(11):2797–2812

    Article  CAS  Google Scholar 

  42. Garcia-Romero E, Suarez M (2010) On the chemical composition of sepiolite and palygorskite. Clays Clay Miner 58(1):1–20

    Article  CAS  Google Scholar 

  43. de Lapparent J (1935) Sur un constituent essentiel des terres à foulon. Acad Sci 201:481–483

    Google Scholar 

  44. Yang H, Peng Z, Zhou Y, Zhao F, Zhang J, Cao X, Hu Z (2011) Preparation and performances of a novel intelligent humidity control composite material. Energy Build 43(2–3):386–392

    Article  Google Scholar 

  45. Cradwick PD, Wada K, Russell JD, Yoshinaga N, Masson CR, Farmer VC (1972) Imogolite, a hydrated aluminum silicate of tubular structure. Nature Phys Sci 240:187–199

    Article  CAS  Google Scholar 

  46. Levard C, Rose J, Masion A, Doelsch E, Borschneck D, Olivi L, Dominici C, Grauby O, Woicik JC, Bottero JY (2008) Synthesis of large quantities of single-walled aluminogermanate nanotube. J Am Chem Soc 130(18):5862

    Article  CAS  Google Scholar 

  47. Maillet P, Levard C, Larquet E, Mariet C, Spalla O, Menguy N, Masion A, Doelsch E, Rose J, Thill A (2010) Evidence of double-walled Al-Ge imogolite-like nanotubes. A cryo-TEM and SAXS investigation. J Am Chem Soc 132(4):1208–1218

    Article  CAS  Google Scholar 

  48. Bergaya F, Lagaly G (2011) Intercalation processes of layered minerals—Chapter 7. In: Brigatti MF, Mottana A (eds). Layered mineral structure and their application in advanced technologies, vol 11. European Mineralogical Union Notes in Mineralogy

    Google Scholar 

  49. Aparicio P, Perez-Bernal JL, Galan E, Bello MA (2004) Kaolin fractal dimension. Comparison with other properties. Clay Miner 39(1):75–84

    Article  CAS  Google Scholar 

  50. Annabi-Bergaya F, Cruz MI, Gatineau L, Fripiat JJ (1979) Adsorption of alcohols by smectites I. Distinction between internal and external surfaces. Clay Miner 14:249–258

    Article  CAS  Google Scholar 

  51. Eltantawy IM, Arnold PW (1974) Ethylene glycol sorption by homoionic montmorillonites. J Soil Sci 25:99–110

    Article  CAS  Google Scholar 

  52. Chiou CT, Rutherford DW (1997) Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays. Clays Clay Miner 45:867–880

    Article  CAS  Google Scholar 

  53. Tiller KG, Smith LH (1990) Limitations of EGME retention to estimate the surface area of soils. Aust J Soil Res 28:1–26

    Article  Google Scholar 

  54. Yukselen Y, Kaya A (2008) Suitability of methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Eng Geol 102:38–45

    Article  Google Scholar 

  55. Bergaya F (1995) The meaning of surface area measurements of clays and pillared clays. J. Por. Mat. 2:91–96

    Article  CAS  Google Scholar 

  56. Rouquerol J, Rodriguez-Reinoso F, Sing KSW, Unger KK (1994) Characterization of porous solids III. Proceedings of the IUPAC Symposium Elsevier Science, Amsterdam

    Google Scholar 

  57. Michot LJ, Villieras F (2006) Surface area and porosity. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 965–978

    Google Scholar 

  58. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Principles, methodology and applications. Academic Press, San Diego

    Google Scholar 

  59. Julve D, Ramos J, Perez J, Menendez M (2011) Analysis of mercury porosimetry curves of precipitated silica, as an example of compressible porous solids. J Non-Cryst Sol 357(4):1319–1327

    Article  CAS  Google Scholar 

  60. Bergaya F, Lagaly G, Vayer M (2006) Cation and anion exchange. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 979–1001

    Google Scholar 

  61. Chourabi B, Fripiat JJ (1981) Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites. Clays Clay Miner 29:260–268

    Article  CAS  Google Scholar 

  62. Bergaya F, Vayer M (1997) CEC of clays: measurement by adsorption of a copper ethylenediamine complex. Appl Clay Sci 12(3):275–280

    Article  CAS  Google Scholar 

  63. Ammann L, Bergaya F, Lagaly G (2005) Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Min. 40(4):441–453

    Article  CAS  Google Scholar 

  64. Lagaly G (1994) Layer charge determination by alkyl ammonium. In: Mermut AR (ed) Layer charge charactersitics of 2:1 silicate clay minerals. The Clay Minerals Society, Boulder, pp 2–46

    Google Scholar 

  65. Hofmann U, Klemen R (1950) Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung. Z Anorg Allg Chem 262:95–99

    CAS  Google Scholar 

  66. Christidis GE, Blum AE, Eberl DD (2006) Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites. Appl Clay Sci 34:125–138

    Article  CAS  Google Scholar 

  67. Norrish K (1954) The swelling of montmorillonite. Disc. Faraday Soc. 18:120–134

    Article  CAS  Google Scholar 

  68. Benna M, Kbir-Ariguib N, Clinard C, Bergaya F (2001) Static filtration of purified sodium bentonite clay suspensions. Effect of clay content. Appl Clay Sci 19:103–120

    Article  CAS  Google Scholar 

  69. Michot LJ, Baravian C, Bihannic I, Maddi S, Moyne C, Duval JFL, Levitz P, Davidson P (2009) Sol-gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 2. Gel structure and mechanical properties. Langmuir 25(1):127–139

    Article  CAS  Google Scholar 

  70. Michot LJ, Bihannic I, Maddi S, Baravian C, Levitz P, Davidson P (2009) Sol-gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 1. Features of the I/N Transition. Langmuir 24:3127–3139

    Article  CAS  Google Scholar 

  71. Lagaly G, Ogawa M, Dekany I (2006) Clay mineral organic interaction. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 309–377

    Google Scholar 

  72. de Paiva LB, Morales AR, Valenzuela Diaz FR (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1–2):8–24

    Article  CAS  Google Scholar 

  73. Bergaya F, Jaber M, Lambert JF (2011) Organophilic clay minerals—Chapter 2. In: Galimberti M (ed) Rubber clay nanocomposites. Science, technology and application. Wiley, Chichester

    Google Scholar 

  74. Lagaly G (1976) Kink-block and gauche-block structures of bimolecular films. Angewandte Chemie-International Edition in English 15(10):575–586

    Article  Google Scholar 

  75. Lagaly G, Beneke K (1991) Intercalation and exchange reactions of clay minerals and non-clay layer compounds. Colloid Polym Sci 269:1198–1211

    Article  CAS  Google Scholar 

  76. Wang L-Q, Liu J, Exarhos GJ, Flanigan KY, Bordia R (2000) Conformation heterogeneity and mobility of surfactant molecules in intercalated clay minerals studied by solid-state NMR. J Phys Chem B 104(13):2810–2816

    Article  CAS  Google Scholar 

  77. Vaia RA, Teukolsky RK, Giannelis EP (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater 6:1017–1022

    Article  CAS  Google Scholar 

  78. Bergaya F, Aouad A, Mandalia T (2006) Pillared clays and clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Developments of Clay Science, vol 1. Elsevier, Amsterdam, pp 393–421

    Google Scholar 

  79. Plee D, Borg F, Gatineau L, Fripiat JJ (1985) High-resolution solid-state aluminum-27 and silicon-29 nuclear magnetic resonance study of pillared clays. J Am Chem Soc 107:2362–2369

    Article  CAS  Google Scholar 

  80. Gil A, Gandía LM, Vicente MA (2000) Recent advances in the synthesis and catalytic applications of pillared clays. Catal Rev—Sci Eng 42:145–212

    Article  CAS  Google Scholar 

  81. Gil A, Korili SA, Vicente MA (2008) Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catal Rev Sci Eng 50(2):153–221

    Article  CAS  Google Scholar 

  82. Lambert JF, Poncelet G (1997) Acidity in pillared clays: origin and catalytic manifestations. Top Catal 4:43–56

    Article  Google Scholar 

  83. Hougardy J, Stone WEE, Fripiat JJ (1976) NMR-study of adsorbed water.1. Molecular orientation and protonic motions in 2-layer hydrate of a Na vermiculite. J Chem Phys 64(9):3840–3852

    Article  CAS  Google Scholar 

  84. Laperche V, Lambert JF, Prost R, Fripiat JJ (1989) High-resolution solid-state NMR of exchangeable cations in the interlayer surface of a swelling mica- Na-23, Cd-111, and Cs-133 vermiculites. J Phys Chem 94(25):8821–8831

    Article  Google Scholar 

  85. Annabi-Bergaya F, Cruz MI, Gatineau L, Fripiat JJ (1979) Adsorption of alcohols by smectites III. Nature of the bonds. Clay Miner 14:225–237

    Article  Google Scholar 

  86. Tunney JJ, Detellier C (1993) Interlamellar covalent grafting of organic units on kaolinite. Chem Mater 5(6):747–748

    Article  CAS  Google Scholar 

  87. Bleam WE (1993) Atomic theory of phyllosilicates: quantum chemistry, statistical, mechanics, electrostatic theory, and crystal chemistry. Rev Geophys 31:51–73

    Article  Google Scholar 

  88. Tournassat C, Neaman A, Villieras F, Bosbach D, Charlet L (2003) Nanomorphology of montmorillonite particles: estimation of the clay edge sorption site density at low pressure gas adsorption and AFM observations. Am Miner 88:1989–1995

    CAS  Google Scholar 

  89. Tombácz E, Szekeres M (2004) Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci 34:105–124

    Article  CAS  Google Scholar 

  90. Michot LJ, Villieras F (2002) Assessment of surface energetic heterogeneity of synthetic Na-saponites. The role of layer charge. Clay Min 37(1):39–57

    Article  CAS  Google Scholar 

  91. Beall GW, Goss M (2005) Self-assembly of organic molecules on montmorillonite. Appl Clay Sci 27:179–186

    Article  CAS  Google Scholar 

  92. Paul DR, Zeng QH, Yu AB, Lu GQ (2005) The interlayer swelling and molecular packing in organoclays. J Colloid Interface Sci 292:462–468

    Article  CAS  Google Scholar 

  93. Aranda P, Ruiz-Hitzky E (1992) Poly(ethylene oxide) intercalation materials. Chem Mater 4(6):1395–1403

    Article  CAS  Google Scholar 

  94. Krishnamachari P, Zhang J, Lou J, Yan J, Uitenham L (2009) Biodegradable poly(lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. Int J Polym Anal Charact 4:336–350

    Article  CAS  Google Scholar 

  95. Sengwa RJ, Sankhla S, Choudhary S (2009) Dielectric characterization of solution intercalation and melt intercalation poly(vinyl alcohol)-poly(vinyl pyrrolidone) blend-montmorillonite clay nanocomposite films. Indian J Pure Appl Phys 48(3):196–204

    Google Scholar 

  96. Fernandes FM, Ruiz AI, Darder M, Aranda P, Ruiz-Hitzky E (2009) Gelatin-clay bio-nanocomposites: structural and functional properties as advanced materials. J Nanosci Nanotechnol 9(1):221–229

    Article  CAS  Google Scholar 

  97. Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of 2-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 6:1694–1696

    Article  Google Scholar 

  98. Ruiz-Hitzky E, Darder M, Aranda P (2005) Functional biopolymer nanocomposites based on layered solids. J Mater Chem 15:3650–3662

    Article  CAS  Google Scholar 

  99. Da Silva C, Haidar B, Vidal A, Miehé-Brendlé J, Le Dred R, Vidal L (2005) Preparation of EPDM/synthetic montmorillonite nanocomposites by direct compounding. J Mater Sci 40:1813–1815

    Article  CAS  Google Scholar 

  100. Utracki LA, Sepehr M, Boccaleri E (2007) Synthetic, layered nanoparticles for polymeric nanocomposites WNCO. Polym Adv Technol 18(1):1–37

    Article  CAS  Google Scholar 

  101. Sharma S, Komarneni S (2009) Synthesis and characterization of synthetic mica-bionanocomposites. Appl Clay Sci 42(3–4):553–558

    Article  CAS  Google Scholar 

  102. Kloprogge JT, Komarneni S, Amonette JE (1999) Synthesis of smectites clay minerals: a critical review. Clays Clay Miner 57(5):529–554

    Article  Google Scholar 

  103. Zhang D, Zhou C-H, Lin C-X, Tong D-S, Yu W-H (2010) Synthesis of clay minerals. Appl Clay Sci 50(1):1–11

    Article  CAS  Google Scholar 

  104. Theng BKG (1979) Formation and properties of clay-polymer complexes. Elsevier, New York

    Google Scholar 

  105. Singer A, Huang PM (1989) Adsorption of humic acid by palygorskite and sepiolite. Clay Miner 24(3):561–564

    Article  CAS  Google Scholar 

  106. Murray HH, Kogel JE (2005) Engineered clay products for the paper industry. Appl Clay Sci 29(3–4):199–206

    Article  CAS  Google Scholar 

  107. Robertson RHS (1957) Sepiolite—a versatile raw material. Chem Ind 46:1492–1495

    Google Scholar 

  108. Yao-Zong Y, Shi-Rong L, Delvaux M (2004) Comparative efficacy of dioctahedral smectite (Smecta (R)) and a probiotic preparation in chronic functional diarrhoea. Digest Liver Dis 36(12):824–828

    Article  CAS  Google Scholar 

  109. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8(5):1179–1184

    Article  CAS  Google Scholar 

  110. Pinnavaia TJ, Beall GW (eds) (2001) Polymer-clay nanocomposites. Wiley, Chichester

    Google Scholar 

  111. Biswas M, Sinha Ray S (2001) Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv Polym Sci 135:167–221

    Article  Google Scholar 

  112. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  113. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  114. Chen B, Evans JRG, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A (2007) A critical appraisal of polymer-clay nanocomposites. Chem Soc Rev 37:568–594

    Article  CAS  Google Scholar 

  115. Carrado KA, Bergaya F (eds) (2007) Clay-based polymer nanocomposites (CPN). CMS workshop lectures series, vol 14. The Clay Minerals Society, Boulder

    Google Scholar 

  116. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22(3):323–336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faïza Bergaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Bergaya, F., Jaber, M., Lambert, JF. (2012). Clays and Clay Minerals as Layered Nanofillers for (Bio)Polymers. In: Avérous, L., Pollet, E. (eds) Environmental Silicate Nano-Biocomposites. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4108-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4108-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4101-3

  • Online ISBN: 978-1-4471-4108-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics