Skip to main content

Chitosan-Clay Bio-Nanocomposites

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The present review chapter includes an overview on the current state-of-art of chitosan-clay based bio-nanocomposites. In the same way than conventional nanocomposites, these biohybrid materials also exhibit both structural and functional properties together with biocompatibility and biodegradability, which can be of great interest for different applications. Four main areas of interest have been identified showing examples of applications as green nanocomposites, bio-nanocomposites addressed to biomedical purposes (tissue engineering and drug delivery), environmental remediation and electroanalytical devices. Finally, examples of bio-nanocomposites based on chitosan assembled to other inorganic solids have been introduced to show the versatility of this biopolymer for development of diverse type of advanced functional materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309–1319

    CAS  Google Scholar 

  2. Ruiz-Hitzky E, Aranda P, Darder M (2009) Polymer and biopolymer-layered solid nanocomposites: organic–inorganic assembling in two-dimensional hybrid systems. In: Ariga K, Nalwa HS (eds) Bottom up nanofabrication. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  3. Ruiz-Hitzky E, Aranda P, Darder M, Ogawa M (2011) Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom-up processes. Chem Soc Rev 40:801–828

    CAS  Google Scholar 

  4. Ruiz-Hitzky E, Darder M, Aranda P (2010) Progress in bionanocomposite materials. In: Cao G, Zhang Q, Brinker CJ (eds) Annual review of nanoresearch. World Scientific Publishing, Singapore

    Google Scholar 

  5. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22:323–336

    CAS  Google Scholar 

  6. Ruiz-Hitzky E, Darder M, Aranda P (2005) Functional biopolymer nanocomposites based on layered solids. J Mater Chem 15:3650–3662

    CAS  Google Scholar 

  7. Rhim JW (2007) Potential use of biopolymer-based nanocomposite films in food packaging applications. Food Sci Biotechnol 16:691–709

    CAS  Google Scholar 

  8. Chivrac F, Pollet E, Averous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R Rep 67:1–17

    Google Scholar 

  9. Ruiz-Hitzky E, Ariga K, Lvov YM (2008) Bio-inorganic hybrid nanomaterials strategies syntheses, characterization and applications. Wiley-VCH, Weinheim

    Google Scholar 

  10. Ruiz-Hitzky E, Aranda P, Darder M (2008) Bionanocomposites. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, Hoboken

    Google Scholar 

  11. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    CAS  Google Scholar 

  12. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526

    CAS  Google Scholar 

  13. Bordes P, Pollet E, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    CAS  Google Scholar 

  14. Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433

    CAS  Google Scholar 

  15. Zhao RX, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43:3058–3071

    CAS  Google Scholar 

  16. Mittal V (2011) Nanocomposites with biodegradable polymers. Synthesis, properties, and future perspectives. Oxford University Press, New York

    Google Scholar 

  17. Darder M, Aranda P, Ruiz AI, Fernandes FM, Ruiz-Hitzky E (2008) Design and preparation of bio-nanocomposites based on layered solids with functional and structural properties. Mater Sci Technol 24:1100–1110

    CAS  Google Scholar 

  18. Darder M, Lopez-Blanco M, Aranda P, Leroux F, Ruiz-Hitzky E (2005) Bio-nanocomposites based on layered double hydroxides. Chem Mater 17:1969–1977

    CAS  Google Scholar 

  19. Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX (2005) Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stabil 90:123–131

    CAS  Google Scholar 

  20. Darder M, Lopez-Blanco M, Aranda P, Aznar AJ, Bravo J, Ruiz-Hitzky E (2006) Microfibrous chitosan-sepiolite nanocomposites. Chem Mater 18:1602–1610

    CAS  Google Scholar 

  21. Fernandes FM, Ruiz AI, Darder M, Aranda P, Ruiz-Hitzky E (2009) Gelatin-clay bio-nanocomposites: structural and functional properties as advanced materials. J Nanosci Nanotechnol 9:221–229

    CAS  Google Scholar 

  22. Nelson DL, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. W H Freeman, New York

    Google Scholar 

  23. Agboh OC, Qin Y (1996) Chitin and chitosan fibers. Polym Adv Technol 8:335–365

    Google Scholar 

  24. Muzzarelli R (1978) Modified chitosans and their chromatographic performances. In: Muzzarelli R, Pariser ER (eds) Proceedings of the first international conference on chitin/chitosan. Massachusetts Institute of Technology, Boston

    Google Scholar 

  25. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Google Scholar 

  26. Darder M, Colilla M, Ruiz-Hitzky E (2003) Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 15:3774–3780

    CAS  Google Scholar 

  27. Darder M, Colilla M, Ruiz-Hitzky E (2005) Chitosan-clay nanocomposites: application as electrochemical sensors. Appl Clay Sci 28:199–208

    CAS  Google Scholar 

  28. Theng BKG (1979) Formation and properties of clay-polymer complexes. Elsevier, New York

    Google Scholar 

  29. Ohashi H, Nakazawa H (1996) The microstructure of humic acid-montmorillonite composites. Clay Miner 31:347–354

    CAS  Google Scholar 

  30. Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–221

    CAS  Google Scholar 

  31. Robertson RHS (1957) Sepiolite—a versatile raw material. Chem Ind 1492–1495

    Google Scholar 

  32. Clapp CE, Emerson WW (1972) Reactions between Ca-montmorillonite and polysaccharides. Soil Sci 114:210–216

    CAS  Google Scholar 

  33. Wang SF, Chen L, Tong YJ (2006) Structure-property relationship in chitosan-based biopolymer/montmorillonite nanocomposites. J Polym Sci Pol Chem 44:686–696

    CAS  Google Scholar 

  34. Yao HB, Tan ZH, Fang HY, Yu SH (2010) Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew Chem Int Ed 49:10127–10131

    CAS  Google Scholar 

  35. Brunauer K, Preisinger A (1956) Struktur und Entstehung des Sepioliths. Miner Petrol 6:120–140

    Google Scholar 

  36. Santaren J, Sanz J, Ruiz-Hitzky E (1990) Structural fluorine in sepiolite. Clays Clay Miner 38:63–68

    CAS  Google Scholar 

  37. Ahlrichs JL, Serna C, Serratosa JM (1975) Structural hydroxyls in sepiolites. Clays Clay Miner 23:119–124

    CAS  Google Scholar 

  38. Ruiz-Hitzky E (2001) Molecular access to intracrystalline tunnels of sepiolite. J Mater Chem 11:86–91

    CAS  Google Scholar 

  39. Ruiz-Hitzky E, Aranda P, Alvarez A, Santarén J, Esteban-Cubillo A (2011) Advanced materials and new applications of sepiolite and palygorskite. In: Galán E, Singer A (eds) Developments in palygorskite-sepiolite research a new outlook of these nanomaterials. Elsevier B.V., Oxford

    Google Scholar 

  40. Perez-Castells R, Alvarez A, Gavilanes J, Lizarbe MA, Martinez Del Pozo A, Olmo N, Santaren J (1987) Adsorption of collagen by sepiolite. In: Schultz LG, van Olphen H, Mumpton FA (eds) Proceedings of the international clay conference Denver, 1985. The Clay Minerals Society, Bloomington

    Google Scholar 

  41. Ruiz-Hitzky E, Darder M, Aranda P, Martin del Burgo MA, del Real G (2009) Bionanocomposites as new carriers for influenza vaccines. Adv Mater 21:4167–4171

    CAS  Google Scholar 

  42. Wicklein B, Darder M, Aranda P, Ruiz-Hitzky E (2010) Bio-organoclays based on phospholipids as immobilization hosts for biological species. Langmuir 26:5217–5225

    CAS  Google Scholar 

  43. Alcântara ACS, Darder M, Aranda P, Ruiz-Hitzky E (2008) Interacciones de zeína con minerales de la arcilla. Macla 9:25–26

    Google Scholar 

  44. Fernandes FM, Manjubala I, Ruiz-Hitzky E (2011) Gelatin renaturation, a new approach to filler role in bionanocomposites. Phys Chem Chem Phys 13:4901–4910

    CAS  Google Scholar 

  45. Ruiz-Hitzky E, Fernandes FM (2010) Uso de arcillas fibrosas como coadyuvantes para mejorar la estabilidad coloidal de nanotubos y nanofibras de carbono en medios hidrofílicos. Spanish Patent P200931135ES

    Google Scholar 

  46. Ruiz-Hitzky E, Fernandes FM (2011) Composición de material carbonoso obtenible por carbonización de un biopolímero soportado sobre arcilla. Spanish Patent ES-P201130835

    Google Scholar 

  47. Fernandes FM (2011) On the structural and functional properties of sepiolite in polymer-clay nanocomposites and materials derived thereof. PhD dissertation, Autonomous University of Madrid

    Google Scholar 

  48. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    CAS  Google Scholar 

  49. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    CAS  Google Scholar 

  50. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78

    CAS  Google Scholar 

  51. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    CAS  Google Scholar 

  52. Han YS, Lee SH, Choi KH, Park I (2010) Preparation and characterization of chitosan-clay nanocomposites with antimicrobial activity. J Phys Chem Solids 71:464–467

    CAS  Google Scholar 

  53. Rhim JW (2006) The effect of clay concentration on mechanical and water barrier properties of chitosan-based nanocomposite films. Food Sci Biotechnol 15:925–930

    CAS  Google Scholar 

  54. Casariego A, Souza BWS, Cerqueira MA, Teixeira JA, Cruz L, Diaz R, Vicente AA (2009) Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids 23:1895–1902

    CAS  Google Scholar 

  55. Depan D, Kumar B, Singh RP (2008) Preparation and characterization of novel hybrid of chitosan-g-PDMS and sodium montmorillonite. J Biomed Mater Res B 84B:184–190

    CAS  Google Scholar 

  56. Li Y, Liu L, Zhang WA, Fang YE (2004) A new hybrid nanocomposite prepared by graft copolymerization of butyl acrylate onto chitosan in the presence of organophilic montmorillonite. Radiat Phys Chem 69:467–471

    Google Scholar 

  57. Xu YX, Ren X, Hanna MA (2006) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691

    CAS  Google Scholar 

  58. Oguzlu H, Tihminlioglu F (2010) Preparation and barrier properties of Chitosan-layered silicate nanocomposite films. Polychar-18 World Forum Adv Mater 298:91–98

    CAS  Google Scholar 

  59. Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    CAS  Google Scholar 

  60. Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GG (2010) Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohyd Polym 82:291–298

    CAS  Google Scholar 

  61. Kampeerapappun P, Aht-Ong D, Pentrakoon D, Srikulkit K (2007) Preparation of cassava starch/montmorillonite composite film. Carbohyd Polym 67:155–163

    CAS  Google Scholar 

  62. Choudhari SK, Kariduraganavar MY (2009) Development of novel composite membranes using quaternized chitosan and Na+-MMT clay for the pervaporation dehydration of isopropanol. J Colloid Interface Sci 338:111–120

    CAS  Google Scholar 

  63. Tang CY, Xiang LX, Su JX, Wang K, Yang CY, Zhang Q, Fu Q (2008) Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J Phys Chem B 112:3876–3881

    CAS  Google Scholar 

  64. Tang CY, Chen NX, Zhang Q, Wang K, Fu Q, Zhang XY (2009) Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polym Degrad Stabil 94:124–131

    CAS  Google Scholar 

  65. Ramirez-Salgado J (2007) Study of basic biopolymer as proton membrane for fuel cell systems. Electrochim Acta 52:3766–3778

    CAS  Google Scholar 

  66. Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Kabiri K (2009) Nafion®/bio-functionalized montmorillonite nanohybrids as novel polyelectrolyte membranes for direct methanol fuel cells. J Power Sour 190:318–321

    CAS  Google Scholar 

  67. Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Kabiri K, Mokarram N, Solati-Hashjin M, Moaddel H (2010) Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications. Chem Commun 46:6500–6502

    CAS  Google Scholar 

  68. Ngah WSW, Teong LC, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohyd Polym 83:1446–1456

    Google Scholar 

  69. An JH, Dultz S (2007) Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties. Appl Clay Sci 36:256–264

    CAS  Google Scholar 

  70. Wang L, Wang AQ (2007) Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater 147:979–985

    CAS  Google Scholar 

  71. Gecol H, Miakatsindila P, Ergican E, Hiibel SR (2006) Biopolymer coated clay particles for the adsorption of tungsten from water. Desalination 197:165–178

    CAS  Google Scholar 

  72. An JH, Dultz S (2008) Adsorption of Cr(VI) and As(V) on chitosan-montmorillonite: selectivity and pH dependence. Clays Clay Miner 56:549–557

    CAS  Google Scholar 

  73. Ngah WSW, Ariff NFM, Hanafiah M (2010) Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water Air Soil Pollut 206:225–236

    CAS  Google Scholar 

  74. Zhang AC, Sun LS, Xiang J, Hu S, Fu P, Su S, Zhou YB (2009) Removal of elemental mercury from coal combustion flue gas by bentonite–chitosan and their modifier. J Fuel Chem Technol 37:489–495

    CAS  Google Scholar 

  75. Zhu HY, Jiang R, Xiao L (2010) Adsorption of an anionic azo dye by chitosan/kaolin/gamma-Fe2O3 composites. Appl Clay Sci 48:522–526

    CAS  Google Scholar 

  76. Chang MY, Juang RS (2004) Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci 278:18–25

    CAS  Google Scholar 

  77. Qiu HX, Yu JG, Zhu JL (2005) Polyacrylate/(chitosan modified montmorillonite) nanocomposite: water absorption and photostability. Polym Polym Compos 13:167–172

    CAS  Google Scholar 

  78. Zhang JP, Wang L, Wang AQ (2007) Preparation and properties of chitosan-g-poly(acrylic acid)/montmorillonite superabsorbent nanocomposite via in situ intercalative polymerization. Ind Eng Chem Res 46:2497–2502

    CAS  Google Scholar 

  79. Wang L, Zhang JP, Wang AQ (2008) Removal of methylene blue from aqueous solution using chitosan-g-poly (acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloid Surf B Biointerfaces 322:47–53

    CAS  Google Scholar 

  80. Zheng YA, Wang AQ (2010) Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite. J Macromol Sci A Pure Appl Chem 47:33–38

    CAS  Google Scholar 

  81. Xie YT, Wang AQ, Liu G (2010) Superabsorbent composite XXII: effects of modified sepiolite on water absorbency and swelling behavior of chitosan-g-poly(acrylic acid)/sepiolite superabsorbent composite. Polym Compos 31:89–96

    CAS  Google Scholar 

  82. Zheng Y, Zhang JP, Wang AQ (2009) Fast removal of ammonium nitrogen from aqueous solution using chitosan-g-poly(acrylic acid)/attapulgite composite. Chem Eng J 155:215–222

    CAS  Google Scholar 

  83. Wang XH, Zheng Y, Wang AQ (2009) Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J Hazard Mater 168:970–977

    CAS  Google Scholar 

  84. Wang XH, Wang AQ (2010) Adsorption characteristics of chitosan-g-poly(acrylic acid)/attapulgite hydrogel composite for Hg(II) ions from aqueous solution. Sep Sci Technol 45:2086–2094

    CAS  Google Scholar 

  85. Wang XH, Wang AQ (2010) Removal of Cd(II) from aqueous solution by a composite hydrogel based on attapulgite. Environ Technol 31:745–753

    Google Scholar 

  86. Brett CMA, Brett AMO (1993) Electrochemistry principles methods and applications. Oxford University Press, Oxford

    Google Scholar 

  87. Darder M, Valera A, Nieto E, Colilla M, Fernandez CJ, Romero-Aranda R, Cuartero J, Ruiz-Hitzky E (2009) Multisensor device based on case-based reasoning (CBR) for monitoring nutrient solutions in fertigation. Sens Actuator B Chem 135:530–536

    Google Scholar 

  88. Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139

    CAS  Google Scholar 

  89. Chang MY, Juang RS (2005) Activities, stabilities, and reaction kinetics of three free and chitosan-clay composite immobilized enzymes. Enzyme Microb Technol 36:75–82

    CAS  Google Scholar 

  90. Shi QF, Li QB, Shan D, Fan Q, Xue HG (2008) Biopolymer-clay nanoparticles composite system (Chitosan-laponite) for electrochemical sensing based on glucose oxidase. Mater Sci Eng C Biomimetic Supramol Syst 28:1372–1375

    CAS  Google Scholar 

  91. Shan D, Li QB, Ding SN, Xu JQ, Cosnier S, Xue HG (2010) Reagentless biosensor for hydrogen peroxide based on self-assembled films of horseradish peroxidase/laponite/chitosan and the primary investigation on the inhibitory effect by sulfide. Biosens Bioelectron 26:536–541

    CAS  Google Scholar 

  92. Han E, Shan D, Xue HG, Cosnier S (2007) Hybrid material based on chitosan and layered double hydroxides: characterization and application to the design of amperometric phenol biosensor. Biomacromolecules 8:971–975

    CAS  Google Scholar 

  93. Sun XM, Zhang Y, Shen HB, Jia NQ (2010) Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film. Electrochim Acta 56:700–705

    CAS  Google Scholar 

  94. Sangeetha K, Abraham TE (2008) Investigation on the development of sturdy bioactive hydrogel beads. J Appl Polym Sci 107:2899–2908

    CAS  Google Scholar 

  95. Chang MY, Juang RS (2004) Stability and catalytic kinetics of acid phosphatase immobilized on composite beads of chitosan and activated clay. Process Biochem 39:1087–1091

    CAS  Google Scholar 

  96. Chang MY, Juang RS (2007) Use of chitosan-clay composite as immobilization support for improved activity and stability of beta-glucosidase. Biochem Eng J 35:93–98

    CAS  Google Scholar 

  97. Chang MY, Kao HC, Juang RS (2008) Thermal inactivation and reactivity of beta-glucosidase immobilized on chitosan-clay composite. Int J Biol Macromol 43:48–53

    CAS  Google Scholar 

  98. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohyd Polym 76:167–182

    CAS  Google Scholar 

  99. Katti KS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3:art. #034122

    Google Scholar 

  100. Muzzarelli RAA (2011) Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohyd Polym 83:1433–1445

    CAS  Google Scholar 

  101. Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G (2010) Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem 20:9306–9321

    CAS  Google Scholar 

  102. Zhuang H, Zheng J, Gao H, De Yao K (2007) In vitro biodegradation and biocompatibility of gelatin/montmorillonite-chitosan intercalated nanocomposite. J Mater Sci Mater Med 18:951–957

    CAS  Google Scholar 

  103. Depan D, Kumar AP, Singh RP (2009) Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomater 5:93–100

    CAS  Google Scholar 

  104. Gaharwar AK, Schexnailder PJ, Jin Q, Wu CJ, Schmidt G (2010) Addition of chitosan to silicate cross-linked PEO for tuning osteoblast cell adhesion and mineralization. ACS Appl Mater Interfaces 2:3119–3127

    CAS  Google Scholar 

  105. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  106. Darder M, Aranda P, Ferrer ML, Gutiérrez MC, del Monte F, Ruiz-Hitzky E (2011) Progress in bionanocomposite and bioinspired foams. Adv Mater 23:5262–5267

    CAS  Google Scholar 

  107. Zheng JP, Wang CZ, Wang XX, Wang HY, Zhuang H, De Yao K (2007) Preparation of biomimetic three-dimensional gelatin/montmorillonite-chitosan scaffold for tissue engineering. React Funct Polym 67:780–788

    CAS  Google Scholar 

  108. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    CAS  Google Scholar 

  109. Alcantara ACS, Aranda P, Darder M, Ruiz-Hitzky E (2010) Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. J Mater Chem 20:9495–9504

    CAS  Google Scholar 

  110. Wang XY, Du YM, Luo JW (2008) Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology 19:art. #065707

    Google Scholar 

  111. Yuan Q, Shah J, Hein S, Misra RDK (2010) Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 6:1140–1148

    CAS  Google Scholar 

  112. Kevadiya BD, Joshi GV, Bajaj HC (2010) Layered bionanocomposites as carrier for procainamide. Int J Pharm 388:280–286

    CAS  Google Scholar 

  113. Aguzzi C, Capra P, Bonferoni C, Cerezo P, Salcedo I, Sanchez R, Caramella C, Viseras C (2010) Chitosan-silicate biocomposites to be used in modified drug release of 5-aminosalicylic acid (5-ASA). Appl Clay Sci 50:106–111

    CAS  Google Scholar 

  114. Wang Q, Xie XL, Zhang XW, Zhang JP, Wang AQ (2010) Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol 46:356–362

    CAS  Google Scholar 

  115. Sahoo S, Sasmal A, Sahoo D, Nayak P (2010) Synthesis and characterization of chitosan-polycaprolactone blended with organoclay for control release of doxycycline. J Appl Polym Sci 118:3167–3175

    CAS  Google Scholar 

  116. Khunawattanakul W, Puttipipatkhachorn S, Rades T, Pongjanyakul T (2010) Chitosan-magnesium aluminum silicate nanocomposite films: physicochemical characterization and drug permeability. Int J Pharm 393:219–229

    CAS  Google Scholar 

  117. Liu KH, Liu TY, Chen SY, Liu DM (2007) Effect of clay content on electrostimulus deformation and volume recovery behavior of a clay-chitosan hybrid composite. Acta Biomater 3:919–926

    CAS  Google Scholar 

  118. Wang XY, Pei XF, Du YM, Li Y (2008) Quaternized chitosan/rectorite intercalative materials for a gene delivery system. Nanotechnology 19:art. #375102

    Google Scholar 

  119. Wang XY, Strand SP, Du YM, Varum KM (2010) Chitosan-DNA-rectorite nanocomposites: effect of chitosan chain length and glycosylation. Carbohyd Polym 79:590–596

    CAS  Google Scholar 

  120. Ruiz-Hitzky E, Darder M, Aranda P (2008) An introduction to bio-nanohybrid materials. In: Ruiz-Hitzky E, Ariga K, Lvov YM (eds) Bio-inorganic hybrid nanomaterials strategies, syntheses, characterization and applications. Wiley-VCH, Weinheim

    Google Scholar 

  121. Diaz-Dosque M, Aranda P, Darder M, Retuert J, Yazdani-Pedram M, Arias JL, Ruiz-Hitzky E (2008) Use of biopolymers as oriented supports for the stabilization of different polymorphs of biomineralized calcium carbonate with complex shape. J Cryst Growth 310:5331–5340

    CAS  Google Scholar 

  122. Wu ZG, Feng W, Feng YY, Liu Q, Xu XH, Sekino T, Fujii A, Ozaki M (2007) Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon 45:1212–1218

    CAS  Google Scholar 

  123. Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG (2005) Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 26:5414–5426

    CAS  Google Scholar 

  124. Liu TY, Chen SY, Li JH, Liu DM (2006) Study on drug release behaviour of CDHA/chitosan nanocomposites—effect of CDHA nanoparticles. J Control Release 112:88–95

    CAS  Google Scholar 

  125. Kong LJ, Gao Y, Lu GY, Gong YD, Zhao NM, Zhang XF (2006) A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J 42:3171–3179

    CAS  Google Scholar 

  126. Liu H, Li H, Cheng WJ, Yang Y, Zhu MY, Zhou CR (2006) Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2:557–565

    Google Scholar 

  127. Xu HHK, Burguera EF, Carey LE (2007) Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures. Biomaterials 28:3786–3796

    CAS  Google Scholar 

  128. Xu HHK, Weir MD, Simon CG (2008) Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent Mater 24:1212–1222

    CAS  Google Scholar 

  129. Kim HS, Kim JT, Jung YJ, Ryu SC, Son HJ, Kim YG (2007) Preparation of a porous chitosan/fibroin-hydroxyapatite composite matrix for tissue engineering. Macromol Res 15:65–73

    CAS  Google Scholar 

  130. Li J, Chen Y, Yin Y, Yao F, Yao K (2007) Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 28:781–790

    CAS  Google Scholar 

  131. Li JJ, Dou Y, Yang J, Yin YJ, Zhang H, Yao FL, Wang HB, Yao KD (2009) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films. Mater Sci Eng C Biomimetic Supramol Syst 29:1207–1215

    CAS  Google Scholar 

  132. Gutierrez MC, Jobbagy M, Ferrer ML, del Monte F (2008) Enzymatic synthesis of amorphous calcium phosphate—Chitosan nanocomposites and their processing into hierarchical structures. Chem Mater 20:11–13

    CAS  Google Scholar 

  133. Teng SH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS (2009) Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A 88:569–580

    Google Scholar 

  134. Mohamed KR, Mostafa AA (2008) Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites. Mater Sci Eng C Biomimetic Supramol Syst 28:1087–1099

    CAS  Google Scholar 

  135. Liu CH, Wu HX, Yang YJ, Zhu LN, Teng YL (2011) The structure and properties of a novel nanocomposite films from chitosan and layered zirconium phosphonate. J Appl Polym Sci 120:1106–1113

    CAS  Google Scholar 

  136. Rashidova SS, Shakarova DS, Ruzimuradov ON, Satubaldieva DT, Zalyalieva SV, Shpigun OA, Varlamov VP, Kabulov BD (2004) Bionanocompositional chitosan-silica sorbent for liquid chromatography. J Chromatogr B 800:49–53

    CAS  Google Scholar 

  137. Zhang LH, Dong SJ (2006) Electrogenerated chemiluminescence sensors using Ru(bpy)(3)(2+) doped in silica nanoparticles. Anal Chem 78:5119–5123

    CAS  Google Scholar 

  138. Shirosaki Y, Okayama T, Tsuru K, Hayakawa S, Osaka A (2008) Synthesis and cytocompatibility of porous chitosan-silicate hybrids for tissue engineering scaffold application. Chem Eng J 137:122–128

    CAS  Google Scholar 

  139. Corma A, Concepcion P, Dominguez I, Fornes V, Sabater MJ (2007) Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes. J Catal 251:39–47

    CAS  Google Scholar 

  140. Li BQ, Jia DC, Zhou Y, Hu QL, Cai W (2006) In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J Magn Magn Mater 306:223–227

    CAS  Google Scholar 

  141. Hu QL, Wu J, Chen FP, Shen JC (2006) Biomimetic preparation of magnetite/chitosan nanocomposite via in situ composite method. Potential use in magnetic tissue repair domain. Chem Res Chin U 22:792–796

    CAS  Google Scholar 

  142. Zhu HY, Jiang R, Xiao L, Li W (2010) A novel magnetically separable gamma-Fe2O3/crosslinked chitosan adsorbent: preparation, characterization and adsorption application for removal of hazardous azo dye. J Hazard Mater 179:251–257

    CAS  Google Scholar 

  143. Li Z, Du YM, Zhang ZL, Pang DW (2003) Preparation and characterization of CdS quantum dots chitosan biocomposite. React Funct Polym 55:35–43

    CAS  Google Scholar 

  144. dos Santos DS, Goulet PJG, Pieczonka NPW, Oliveira ON, Aroca RF (2004) Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir 20:10273–10277

    Google Scholar 

  145. Kulys J, Stupak R (2008) Glucose biosensor based on chitosan-gold and Prussian blue-gold nanoparticles. Open Nanosci J 2:34–38

    CAS  Google Scholar 

  146. Wang SF, Shen L, Zhang WD, Tong YJ (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072

    CAS  Google Scholar 

  147. Liu YY, Tang J, Chen XQ, Xin JH (2005) Decoration of carbon nanotubes with chitosan. Carbon 43:3178–3180

    CAS  Google Scholar 

  148. Shieh YT, Yang YF (2006) Significant improvements in mechanical property and water stability of chitosan by carbon nanotubes. Eur Polym J 42:3162–3170

    CAS  Google Scholar 

  149. Spinks GM, Shin SR, Wallace GG, Whitten PG, Kim SI, Kim SJ (2006) Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sens Actuator B Chem 115:678–684

    Google Scholar 

  150. Zhang MG, Smith A, Gorski W (2004) Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76:5045–5050

    CAS  Google Scholar 

  151. Luo XL, Xu JJ, Wang JL, Chen HY (2005) Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem Commun 2169–2171

    Google Scholar 

  152. Zhai XR, Wei WZ, Zeng JX, Gong SG, Yin J (2006) Layer-by-layer assembled film based on chitosan/carbon nanotubes, and its application to electrocatalytic oxidation of NADH. Microchim Acta 154:315–320

    CAS  Google Scholar 

  153. Chakraborty S, Raj CR (2007) Mediated electrocatalytic oxidation of bioanalytes and biosensing of glutamate using functionalized multiwall carbon nanotubes-biopolymer nanocomposite. J Electroanal Chem 609:155–162

    CAS  Google Scholar 

  154. Gutierrez MC, Hortiguela MJ, Amarilla JM, Jimenez R, Ferrer ML, del Monte F (2007) Macroporous 3D architectures of self-assembled MWCNT surface decorated with Pt nanoparticles as anodes for a direct methanol fuel cell. J Phys Chem C 111:5557–5560

    CAS  Google Scholar 

  155. Galandova J, Ziyatdinova G, Labuda J (2008) Disposable electrochemical biosensor with multiwalled carbon nanotubes—Chitosan composite layer for the detection of deep DNA damage. Anal Sci 24:711–716

    CAS  Google Scholar 

  156. Gutierrez MC, Garcia-Carvajal ZY, Hortiguela MJ, Yuste L, Rojo F, Ferrer ML, del Monte F (2007) Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli. J Mater Chem 17:2992–2995

    CAS  Google Scholar 

  157. Hortiguela MJ, Gutierrez MC, Aranaz I, Jobbagy M, Abarrategi A, Moreno-Vicente C, Civantos A, Ramos V, Lopez-Lacomba JL, Ferrer ML, del Monte F (2008) Urea assisted hydroxyapatite mineralization on MWCNT/CHI scaffolds. J Mater Chem 18:5933–5940

    Google Scholar 

  158. Lau C, Cooney MJ, Atanassov P (2008) Conductive macroporous composite chitosan-carbon nanotube scaffolds. Langmuir 24:7004–7010

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding from CICYT (Spain), project MAT2009-09960 and from CSIC-Academie Hassan II, project 2010MA0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Ruiz-Hitzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Darder, M., Aranda, P., Ruiz-Hitzky, E. (2012). Chitosan-Clay Bio-Nanocomposites. In: Avérous, L., Pollet, E. (eds) Environmental Silicate Nano-Biocomposites. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4108-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4108-2_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4101-3

  • Online ISBN: 978-1-4471-4108-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics