Skip to main content

Switchgrass Breeding, Genetics, and Genomics

  • Chapter
  • First Online:
Switchgrass

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Switchgrass was one of the dominant species of the North American tallgrass prairie and savanna ecosystems that once dominated a large portion of the continent. It is currently used for pasture, hay production, soil conservation, and biomass production for conversion to energy. Switchgrass was selected in 1992 as the herbaceous model species to develop dedicated cellulosic bioenergy crops. Breeding and genetics studies began on switchgrass in the 1950s, focused on utilization in livestock agriculture. Recent developments have rapidly increased the rate of gain for biomass yield, largely by increasing the focus and intensity of selection and improving the choice of germplasm and selection methods. Modern genomics tools are rapidly being incorporated into switchgrass breeding programs to increase the rate of gain for important agronomic and bioenergy traits, as well as to create new variability that can be captured in commercial cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ars-grin.gov/

References

  1. Stubbendieck J, Hatch SL, Butterfield CH (1991) North American range plants. University of Nebraska Press, Lincoln

    Google Scholar 

  2. Casler MD, Vogel KP, Taliaferro CM et al (2007) Latitudinal and longitudinal adaptation of switchgrass populations. Crop Sci 47:2249–2260

    Article  Google Scholar 

  3. Casler MD, Vogel KP, Taliferro CM, Wynia RL (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44:293–303

    Google Scholar 

  4. Sanderson MA, Read JC, Roderick RL (1999) Harvest management of switchgrass for biomass feedstock and forage production. Agron J 91:5–10

    Article  Google Scholar 

  5. Stroup JA, Sanderson MA, Muir JP, McFarland MJ, Reed RL (2003) Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress. Bioresource Tech 86:65–72

    Article  Google Scholar 

  6. Morris G, Grabowski P, Borevitz J (2011) Genomic diversity in switchgrass (Panicum virgatum): from the continental scale to a dune landscape. Mol Ecol 20:4938–4952

    Article  Google Scholar 

  7. Young HA, Lanzatella CL, Sarath G, Tobias CM (2011) Chloroplast genome variation in upland and lowland switchgrass. PLoS One 6:e23980

    Article  Google Scholar 

  8. Zhang Y, Zalapa JE, Jakubowski AR et al (2011a) Post-glacial evolution of Panicum virgatum: Centers of diversity and gene pools revealed by SSR markers and cpDNA sequences. Genetica 139:933–948

    Google Scholar 

  9. Bintanja R, van de Wal RSW (2008) North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454:869–872

    Article  Google Scholar 

  10. Deevey ES Jr (1949) Biogeography of the Pleistocene: Part I: Europe and North America. Geog Soc Amer Bull 60:1315–1416

    Article  Google Scholar 

  11. Zhang Y, Zalapa JE, Jakubowski AR et al (2011b) Natural hybrids and gene flow between upland and lowland switchgrass. Crop Sci 51:2626–2641

    Google Scholar 

  12. Zalapa JE, Price DL, Kaeppler SM, Tobias CM, Okada M, Casler MD (2011) Hierarchical classification of switchgrass using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars. Theor Appl Genet 122:805–817

    Article  Google Scholar 

  13. Clark RB, Baligar VC, Zobel RW (2005) Response of mycorrhizal switchgrass to phosphorus fractions in acidic soil. Comm Soil Sci Plant Analysis 36:1337–1359

    Article  Google Scholar 

  14. Kelley DW, Brachfeld SA, Nater EA, Wright HE Jr (2006) Sources of sediment in Lake Pepin on the Upper Mississippi River in response to Holocene climate changes. J Paleoclim 35:193–206

    Article  Google Scholar 

  15. Kneller M, Peteet D (1999) Late-glacial to early Holocene climate changes from a Central Applachian pollen and macrofossil record. Quatern Res 51:133–147

    Article  Google Scholar 

  16. McMillan C (1959) The role of ecotypic variation in the distribution of the central grassland of North America. Ecological Mono 29:285–308

    Article  Google Scholar 

  17. Casler MD, Stendal CA, Kapich L, Vogel KP (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 47:2261–2273

    Article  Google Scholar 

  18. Cortese LM, Honig J, Miller C, Bonos SA (2010) Genetic diversity of twelve switchgrass populations using molecular and morphological markers. Bioenerg Res 3:262–271

    Article  Google Scholar 

  19. Gunter LE, Tuscan GA, Wullshcleger SD (1996) Diversity of switchgrass based on RAPD markers. Crop Sci 36:1017–1022

    Article  Google Scholar 

  20. Missaoui AM, Paterson AH, Bouton JH (2006) Molecular markers for the classification of switchgrass (Panicum virgatum L) germplasm and to assess genetic diversity in three synthetic switchgrass populations. Genet Resour Crop Evol 53:1291–1302

    Article  Google Scholar 

  21. Narasimhamoorthy B, Saha MC, Swaller T, Bouton JH (2008) Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenerg Res 1:136–146

    Article  Google Scholar 

  22. Young HA, Hernlem BJ, Anderton AL, Lanzantella CL, Tobias CM (2010) Dihaploid stocks of switchgrass isolated by a screening approach. Bioenerg Res 3:305–313

    Article  Google Scholar 

  23. Bailey RG (1998) Ecoregions: the ecosystem geography of the oceans and continents. Springer, New York

    Google Scholar 

  24. Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G (2007) Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci 86:1315–1325

    Article  Google Scholar 

  25. Barnett FL, Carver RF (1967) Meiosis and pollen stainability in switchgrass, Panicum virgatum L. Crop Sci 7:301–304

    Article  Google Scholar 

  26. Nielsen EL (1944) Analysis of variation in Panicum virgatum. J Agric Res 69:327–353

    Google Scholar 

  27. Casler MD, Tobias CM, Kaeppler SM et al (2011) The switchgrass genome: tools and strategies. Plant Genome 4(3):273–382

    Article  Google Scholar 

  28. Harlan JR, de Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–369

    Article  Google Scholar 

  29. Costich DE, Friebe B, Sheehan MJ, Casler MD, Buckler ES (2010) Genome-size variation in switchgrass (Panicum virgatum): Flow cytometry and cytology reveal ramp and aneuploidy. Plant Genome 3:130–141

    Article  Google Scholar 

  30. Okada M, Lanzatella C, Saha MC, Bouton JH, Wu R, Tobias CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing, and multilocus interactions. Genetics 185:745–760

    Article  Google Scholar 

  31. Lu K, Kaeppler SM, Vogel KP, Arumuganathan K, Lee DJ (1998) Nuclear DNA content and chromosome numbers in switchgrass. Great Plains Res 8:269–280

    Google Scholar 

  32. Martinez-Reyna JM, Vogel KP, Caha C, Lee DJ (2001) Meiotic stability, chloroplast DNA polymorphisms, and morphological traits of upland x lowland switchgrass reciprocal hybrids. Crop Sci 41:1579–1583

    Article  Google Scholar 

  33. Martinez-Reyna JM, Vogel KP (2002) Incompatibility systems in switchgrass. Crop Sci 42:1800–1805

    Article  Google Scholar 

  34. Talbert LE, Timothy DH, Burns JC, Rawlings JO, Moll RH (1983) Estimates of genetic parameters in switchgrass. Crop Sci 23:725–728

    Article  Google Scholar 

  35. Liu L, Wu Y (2011) Identification of a selfing compatible genotype and its inheritance in switchgrass. Bioenerg Res. doi:10.1007/s12155-011-9173-z

    Google Scholar 

  36. Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses. ASA-CSSA-SSSA, Madison

    Google Scholar 

  37. Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459

    Article  Google Scholar 

  38. Berdahl JD, Frank AB, Krupinsky JM, Carr PM, Hanson JD, Johnson HA (2005) Biomass yield, phenology, and survival of diverse switchgrass cultivars and experimental strains in western North Dakota. Agron J 97:549–555

    Article  Google Scholar 

  39. Eberhardt SA, Newell LC (1959) Variation in domestic collections of switchgrass, Panicum virgatum. Agron J 51:613–616

    Article  Google Scholar 

  40. Tilley JMA, Terry RA (1963) A two stage technique for in vivo digestion of forage crops. J Br Grassl Soc 18:104–111

    Article  Google Scholar 

  41. Godshalk EB, Timothy DH, Burns JC (1988) Effectiveness of index selection for switchgrass forage yield and quality. Crop Sci 28:825–830

    Article  Google Scholar 

  42. Hopkins AA, Vogel KP, Moore KJ (1993) Predicted and realized gains from selection for in vitro dry matter digestibility and forage yield in switchgrass. Crop Sci 33:253–258

    Article  Google Scholar 

  43. Vogel KP, Hopkins AA, Moore KJ, Johnson KD, Carlson IT (2002) Winter survival in switchgrass populations bred for high IVDMD. Crop Sci 42:1857–1862

    Article  Google Scholar 

  44. Casler MD, Buxton DR, Vogel KP (2002) Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor Appl Genet 104:127–131

    Article  Google Scholar 

  45. Casler MD, Pedersen JF, Eizenga GC, Stratton SD (1996) Germplasm and cultivar development. In: Moser LE et al (eds) Cool-season forage grasses. Crop Science Society of America, Madison

    Google Scholar 

  46. Casler MD, Vogel KP (1999) Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci 39:12–20

    Article  Google Scholar 

  47. Sarath G, Akin DE, Mitchell RB, Vogel KP (2008) Cell-wall composition and accessibility to hydrolytic enzymes is differentially altered in divergently bred switchgrass (Panicum virgatum L) genotypes. Appl Biochem Biotechnol 150:1–14

    Article  Google Scholar 

  48. Sarath G, Dien B, Saathoff AJ, Vogel KP, Mitchell RB, Chen H (2011) Ethanol yields and cell wall properties in divergently bred switchgrass genotypes. Bioresource Tech 102:9579–9585

    Article  Google Scholar 

  49. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotech 25:759–761

    Article  Google Scholar 

  50. Vogel KP, Jung HG (2001) Genetic modification of herbaceous plants for feed and fuel. Crit Rev Plant Sci 20:15–49

    Google Scholar 

  51. Boe AR, Ross JG (1998) Registration of ‘Sunburst’ switchgrass. Crop Sci 38:540

    Article  Google Scholar 

  52. Smart AJ, Moser LE, Vogel KP (2003) Establishment and seedling growth of big bluestem and switchgrass populations divergently selected for seedling tiller number. Crop Sci 43:1434–1440

    Article  Google Scholar 

  53. Elbersen HW, Ocumpaugh WR, Hussey MA, Sanderson MA, Tischler CR (1999) Field evaluation of switchgrass seedlings divergently selected for crown node placement. Crop Sci 39:475–479

    Article  Google Scholar 

  54. Gustafson DM, Boe AR, Jin Y (2003) Genetic variation for Puccinia emaculata infection in switchgrass. Crop Sci 43:755–759

    Article  Google Scholar 

  55. Boe AR, Gagné RJ (2011) A new species of gall midge (Diptera: Cecidomyiidae) infesting switchgrass in the Northern Great Plains. Bioenergy Res 4:77–84

    Article  Google Scholar 

  56. Prasifka JR, Bradshaw JD, Boe AR, Lee DK, Adamski D, Gray ME (2010) Symptoms, distribution and abundance of the stem-boring caterpillar, Blastobasis repartella (Dietz), in switchgrass. Bioenerg Res 3:238–242

    Article  Google Scholar 

  57. Thomsen PM, Brummer EC, Shriver J, Munkvold GP (2008) Biomass yield yield reductions in switchgrass due to smut caused by Tilletia maclaganii. Plant Health Prog. doi:10.1094/PHP-2008-0317-01-RS

    Google Scholar 

  58. Perrin RK, Vogel KP, Schmer MR, Mitchell RB (2008) Farm-scale production cost of switchgrass for biomass. Bioenerg Res 1:91–97

    Article  Google Scholar 

  59. Casler MD (2010) Changes in mean and genetic variance during two cycles of within-family selection in switchgrass. Bioenerg Res 3:47–54

    Article  Google Scholar 

  60. Missaoui AM, Fasoula VA, Bouton JH (2005a) The effect of low plant density on response to selection for biomass production in switchgrass. Euphytica 142:1–12

    Google Scholar 

  61. Rose LW IV, Das MK, Fuentes RG, Taliaferro CM (2007) Effects of high- vs low-yield environments on selection for increased biomass yield of switchgrass. Euphytica 156:407–415

    Article  Google Scholar 

  62. Burton GW (1974) Recurrent restricted phenotypic selection increases forage yield of Pensacola bahiagrass. Crop Sci 14:831–835

    Article  Google Scholar 

  63. Vogel KP, Pedersen JF (1993) Breeding systems for cross-pollinated perennial grasses. Plant Breed Rev 11:251–274

    Google Scholar 

  64. Vogel KP, Burson BL (2004) Breeding and genetics. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses. ASA-CSSA-SSSA, Madison

    Google Scholar 

  65. Bhandari HS, Saha MC, Mascia PN, Fasoula VA, Bouton JH (2010) Variation among half-sib families and heritability for biomass yield and other traits in lowland switchgrass (Panicum virgatum L.). Crop Sci 50:2355–2363

    Article  Google Scholar 

  66. Boe AR, Beck DL (2008) Yield components of biomass in switchgrass. Crop Sci 48:1306–1311

    Article  Google Scholar 

  67. Das MK, Fuentes RG, Taliaferro CM (2004) Genetic variability and trait relationships in switchgrass. Crop Sci 44:443–448

    Google Scholar 

  68. Vogel KP, Haskins FA, Gorz HJ (1981) Divergent selection for in vitro dry matter digestibility in switchgrass. Crop Sci 21:39–41

    Article  Google Scholar 

  69. Anderson B, Ward JK, Vogel KP, Ward MG, Gorz HJ, Haskins FA (1988) Forage quality and performance of yearlings grazing switchgrass strains selected for differing digestibility. J Anim Sci 66:2239–2244

    Google Scholar 

  70. Ward MG, Ward JK, Anderson BE, Vogel KP (1989) Grazing selectivity and in vivo digestibility of switchgrass strains selected for differing digestibility. J Anim Sci 67:1418–1424

    Google Scholar 

  71. Castro JC, Boe A, Lee DK (2011) A simple system for promoting flowering of upland switchgrass in the greenhouse. Crop Sci 51:2607–2614

    Article  Google Scholar 

  72. Martinez-Reyna JM, Vogel KP (2008) Heterosis in switchgrass: spaced plants. Crop Sci 48:1312–1320

    Article  Google Scholar 

  73. Vogel KP, Mitchell RB (2008) Heterosis in switchgrass: Biomass yield in swards. Crop Sci 48:2159–2164

    Article  Google Scholar 

  74. Baldwin CM, Brede AD (2011) Plant growth regulator selection and application rate influence annual bluegrass control in creeping bentgrass putting greens. Appl Turf Sci doi:10.1094/ATS-2011-0517-02-RS

    Google Scholar 

  75. Gupta SD, Conger BV (1999) Somatic embryogenesis and plant regeneration from suspension cultures of switchgrass. Crop Sci 39:243–247

    Article  Google Scholar 

  76. Missaoui AM, Paterson AH, Bouton JH (2005b) Investigation of genomic organization in switchgrass (Panicum virgatum L) using DNA markers. Theor Appl Genet 110:1372–1383

    Google Scholar 

  77. Saski CA, Li Z, Feltus FA, Luo H (2011) New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits. BMC Genomics 12:369

    Article  Google Scholar 

  78. Tobias CM, Twigg P, Hayden DM et al (2008) Comparative genomics in switchgrass using 61585 high-quality expressed sequence tags. Plant Genome 1:111–124

    Article  Google Scholar 

  79. Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  80. Casler MD, Brummer EC (2008) Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Sci 48:890–902

    Article  Google Scholar 

  81. Wang Z-Y, Ge Y (2006) Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant 42:1–18

    MathSciNet  MATH  Google Scholar 

  82. Dai S, Zheng P, Marmey P et al (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  Google Scholar 

  83. Hu T, Metz S, Chay C et al (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010–1019

    Article  Google Scholar 

  84. Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087

    Article  Google Scholar 

  85. Fu C, Mielenz JR, Xiao X et al (2011a) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A 108:3803–3808

    Google Scholar 

  86. Fu C, Xiao X, Xi Y et al (2011b) Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. Bioenerg Res 4:153–164

    Google Scholar 

  87. Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z et al (2011) Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 3(611):625

    Google Scholar 

  88. Kenna M, Hallman WK, Auer CA, Casler MD, Hopkins AA, Karnok KJ, Mallory-Smith C, Shearman RC, Stier JC, Taliaferro CM, Yelverton F (2004) Biotechnology derived, perennial turf and forage grasses: criteria for evaluation. CAST Spec Publ 25. CAST, Ames

    Google Scholar 

  89. Watrud LS et al (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci U S A 101:14533–14538

    Article  Google Scholar 

  90. Wolt JD (2009) Advancing environmental risk assessment for transgenic biofeedstock crops. Biotech Biofuels 2:27

    Article  Google Scholar 

  91. Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D, Mack RN (2006) Adding biofuels to the invasive species fire? Science 313:1742

    Article  Google Scholar 

  92. Casler MD, Mitchell RB, Vogel KP (2012) Switchgrass. In: Joshi C et al (eds) Handbook of bioenergy crops, vol 2. Taylor and Francis, London

    Google Scholar 

  93. Cathey HM (1990) USDA Plant Hardiness Zone Map, USDA Misc Pub No 1475. US National Arboretum, Agricultural Research Service, USDA, Washington, DC 20002, 1998 US National Arboretum: www.usna.usda.gov/Hardzone/ushzmap.html

  94. McLaren K (1976) The development of the CIE 1976 (L* a* b*) uniform colour space and colour-difference formula. J Soc Dyers Colorists 92:337–338

    Article  Google Scholar 

  95. Cassida KA, Muir JP, Hussey MA, Read JC, Venuto BC, Ocumpaugh WR (2005) Biomass yield and stand characteristics of switchgrass in south central U.S. environments. Crop Sci 45:673–681

    Article  Google Scholar 

  96. Fike JH, Parrish DJ, Wolf DD, Balasko JA, Green JT Jr, Rasnake M, Reynolds JH (2005) Switchgrass production for the upper southeastern USA: influence of cultivar and cutting frequency on biomass yields. Biomass Bioenergy 30:207–213

    Article  Google Scholar 

  97. Lemus R, Brummer EC, Moore KJ, Molstad NE, Burras CL, Barker MF (2002) Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass Bioenergy 23:433–442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Casler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Casler, M.D. (2012). Switchgrass Breeding, Genetics, and Genomics. In: Monti, A. (eds) Switchgrass. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2903-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2903-5_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2902-8

  • Online ISBN: 978-1-4471-2903-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics