Skip to main content

The Advanced Appreciation of Upper Limb Rehabilitation in Cervical Spinal Cord Injury

  • Chapter
  • First Online:
Neurorehabilitation Technology
  • 1780 Accesses

Abstract

The nature of an upper limb function impairment following a cervical spinal cord injury (SCI) is bilateral and rather symmetric, which increases the impact of the injury on the independence and quality of life of the affected patient. Therefore, this disorder is very different from stroke and other damages within the peripheral nervous system. Physical training therapy is of high clinical importance in patients with a cervical SCI so as to increase neural plasticity, and thereby improve motor recovery. New rehabilitation therapies based on robots, passive workstations, and functional electrical stimulation (FES) systems have been developed. However, the overall clinical value of these new technology-based therapies in SCI patients needs to be evaluated. Different methods can be used to test or describe the condition of the upper limb function before and after a novel physical training therapy session. We present a detailed functional classification of the hand that can distinguish different levels of impairment with typical impacts on activities of daily living. In consequence, changes between these levels (improvement or deterioration) can be considered clinically meaningful. In addition, upper limb function following SCI can be assessed with measures of capacity and performance, as well as surrogates (electrophysiological and biomedical recordings). While performance tests target on clinically relevant changes by assessing activities related to daily life (i.e., hand function), measures of capacity and surrogates focus on detailed functions (motor and sensory scores, conduction velocity) that do not necessarily correlate with clinically meaningful changes. Nevertheless, capacity tests and surrogates can detect subtle changes induced by interventions that might be missed by clinical measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21(10):1371–83.

    Article  PubMed  Google Scholar 

  2. Snoek GJ, Ijzerman MJ, Hermens HJ, Maxwell D, Biering-Sorensen F. Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics. Spinal Cord. 2004;42:526–32.

    Article  PubMed  CAS  Google Scholar 

  3. Waters RL, Adkins RH, Yakura JS, Sie I. Motor and sensory recovery following complete tetraplegia. Arch Phys Med Rehabil. 1993;74:242–7.

    PubMed  CAS  Google Scholar 

  4. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6(1):75–87.

    Article  PubMed  CAS  Google Scholar 

  5. Nef T, Guidali M, Riener R. ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionic Biomech. 2009;6(2):127–42.

    Article  Google Scholar 

  6. Micera S, Carrozza MC. A simple robotic system for neurorehabilitation. Auton Robots. 2005;19:271–84.

    Article  Google Scholar 

  7. Sanchez RJ, Liu J, Rao S, et al. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):378–89.

    Article  PubMed  Google Scholar 

  8. Kowalczewski J. Upper extremity neurorehabilitation. Ph.D. dissertation, Department of Medicine, Alberta University, Alberta; 2009.

    Google Scholar 

  9. Popovic MR, Keller T. Modular transcutaneous functional electrical stimulation system. Med Eng Phys. 2005;27:81–92.

    Article  PubMed  Google Scholar 

  10. Popovic MR, Curt A, Keller T, Dietz V. Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord. 2001;39:403–12.

    Article  PubMed  CAS  Google Scholar 

  11. American Spinal Injury Association. International standards for neurological classification of spinal cord injury. Chicago: American Spinal Injury Association (ASIA); 2002. p. 1–24.

    Google Scholar 

  12. Catz A, Itzkovich M, Agranov E, Ring H, Tamir A. SCIM – spinal cord independence measure: a new disability scale for patients with spinal cord lesions. Spinal Cord. 1997;35:850–6.

    Article  PubMed  CAS  Google Scholar 

  13. Catz A, Itzkovich M, Steinberg F, et al. The Catz-Itzkovich SCIM: a revised version of the spinal cord independence measure. Disabil Rehabil. 2001;23(6):263–8.

    Article  PubMed  CAS  Google Scholar 

  14. Catz A, Itzkovich M, Tesio L, et al. A multicenter international study on the spinal cord independence measure, version III: Rasch psychometric validation. Spinal Cord. 2007;45:275–91.

    Article  PubMed  CAS  Google Scholar 

  15. Fattal C. Critical review of the evaluation of the results of upper limb functional surgery in tetraplegia since 50 years. Ann Réadap Méd Phys. 2004;47:30–47.

    Article  CAS  Google Scholar 

  16. Buck M, Beckers D. Rehabilitation bei Querschnittlähmung. Berlin/Heidelberg: Springer-Verlag, Inc.; 1993. p. 288–94.

    Book  Google Scholar 

  17. Nigst H. Band 3 Operationen an Tetraplegikern. In: Buck-Gramcko D, Nigst H, editors. Motorische Ersatzoperationen der Oberen Extremität. Stuttgart: Hippokrates-Verlag; 1991. p. 11–8.

    Google Scholar 

  18. Moberg E. Surgical treatment for absent single-hand grip and elbow extension in quadriplegia. J Bone Joint Surg. 1975;57-A(2):196–206.

    Google Scholar 

  19. McDowell CL, Moberg EA, Smith AG. International conference on surgical rehabilitation of the upper limb in tetraplegia. J Hand Surg. 1979;4(4):387–90.

    CAS  Google Scholar 

  20. McDowell CL, Moberg EA, House JH. The second international conference on surgical rehabilitation of the upper limb in tetraplegia (quadriplegia). J Hand Surg. 1986;11-A(4):604–8.

    Google Scholar 

  21. MacAvoy MC, Green DP. Critical reappraisal of medical research council muscle testing for elbow flexion. J Hand Surg. 2007;32-A(2):149–53.

    Google Scholar 

  22. Freehafer AA, Vonhaam E, Allen V. Tendon transfers to improve grasp after injuries of the cervical spinal cord. J Bone Joint Surg. 1974;56-A(5):951–9.

    Google Scholar 

  23. Hentz VR, Brown M, Keoshian LA. Upper limb reconstruction in quadriplegia: functional assessment and proposed treatment modifications. J Hand Surg. 1983;8(2):119–31.

    CAS  Google Scholar 

  24. Edgerton VR, Roy RR. Robotic training and spinal cord plasticity. Brain Res Bull. 2009;78:4–12.

    Article  PubMed  Google Scholar 

  25. Girgis J, Merrett D, Kirkland S, Metz GA, Verge V, Fouad K. Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain. 2007;130:2993–3003.

    Article  PubMed  CAS  Google Scholar 

  26. Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362:1772–83.

    Article  PubMed  CAS  Google Scholar 

  27. Staubli P, Nef T, Klamroth-Marganska V, Riener R. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 2009;6(46):1–10.

    Google Scholar 

  28. Colombo R, Pisano F, Micera S, et al. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair. 2008;22:50–63.

    PubMed  CAS  Google Scholar 

  29. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–14.

    Article  PubMed  Google Scholar 

  30. GRASSP Version 1.0 [user’s guide]. Toronto: Axal Inc; 2008.

    Google Scholar 

  31. Kalsi-Ryan S, Curt A, Fehlings MG, Verrier MC. Assessment of the hand in tetraplegia using the graded redefined assessment of strength, sensibility and prehension (GRASSP): impairment versus function. Top Spinal Cord Inj Rehabil. 2009;14(4):34–46.

    Article  Google Scholar 

  32. Post MW, Van Lieshout G, Seelen HA, Snoek GJ, Ijzerman MJ, Pons C. Measurement properties of the short version of the Van Lieshout test for arm/hand function of persons with tetraplegia after spinal cord injury. Spinal Cord. 2006;44:763–71.

    Article  PubMed  CAS  Google Scholar 

  33. Fattal C. Motor capacities of upper limbs in tetraplegics: a new scale for the assessment of the results of functional surgery on upper limbs. Spinal Cord. 2004;42:80–90.

    Article  PubMed  CAS  Google Scholar 

  34. Land NE, Odding E, Duivenvoorden HJ, Bergen MP, Stam HJ. Tetraplegia hand activity questionnaire (THAQ): the development, assessment of arm/hand function-related activities in tetraplegic patients with a spinal cord injury. Spinal Cord. 2004;42:294–301.

    Article  PubMed  CAS  Google Scholar 

  35. Rogers JC, Figone JJ. Traumatic quadriplegia: follow-up study of self-care skills. Arch Phys Med Rehabil. 1980;61:316–21.

    PubMed  CAS  Google Scholar 

  36. Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Can J Occup Ther. 1990;57(2):82–7.

    PubMed  CAS  Google Scholar 

  37. Kalsi-Ryan S, Beaton D, Curt A, Duff S, Popovic MR, Rudhe C, Fehlings MG, Verrier MC. J Neurotrauma. 2011 Aug 12. [Epub ahead of print]

    Google Scholar 

  38. Thorsen R, Ferrarin M, Spadone R, Figo C. Functional control of the hand in tetraplegics based on residual synergistic EMG activity. Artif Organs. 1999;23(5):470–3.

    Article  PubMed  CAS  Google Scholar 

  39. Marino RJ, Shea JA, Stineman MG. The capabilities of upper extremity instrument: reliability and validity of a measure of functional limitation in tetraplegia. Arch Phys Med Rehabil. 1998;79(December):1512–71.

    Article  PubMed  CAS  Google Scholar 

  40. Sollerman C, Ejeskär A. Sollerman hand function test: a standardized method and its use in tetraplegic patients. Scand J Plast Reconstr Surg Hand Surg. 1995;29:167–76.

    Article  PubMed  CAS  Google Scholar 

  41. Stroh KS, Van Doren CL, Thrope GB, Keith MW, Peckham PH. Development of a quantitative hand grasp and release test for patients with tetraplegia using a hand neuroprosthesis. J Hand Surg. 1994;19-A(2):209–18.

    Google Scholar 

  42. Mulcahey MJ, Smith BT, Betz RR. Psychometric rigor of the Grasp and Release test for measuring functional limitation of persons with tetraplegia: a preliminary analysis. J Spinal Cord Med. 2004;27(1):41–6.

    PubMed  CAS  Google Scholar 

  43. Vanden BA, Van Laere M, Hellings S, Vercauteren M. Reconstruction of the upper extremity in tetraplegia: functional assessment, surgical procedures and rehabilitation. Paraplegia. 1991;29:103–12.

    Article  Google Scholar 

  44. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104:125–32.

    Article  PubMed  CAS  Google Scholar 

  45. Wolf SL, Catlin PA, Ellis M, Archer LA, Morgan B, Piacentino A. Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke. 2001;32:1635–9.

    Article  PubMed  CAS  Google Scholar 

  46. Gowland C, Stratford P, Ward M, et al. Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke. 1993;24:58–63.

    Article  PubMed  CAS  Google Scholar 

  47. Gowland CA. Staging motor impairment after stroke. Stroke. 1990;21 Suppl 9:II19–21.

    PubMed  CAS  Google Scholar 

  48. Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4(4):483–92.

    Article  PubMed  CAS  Google Scholar 

  49. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13–31.

    PubMed  CAS  Google Scholar 

  50. Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73:447–54.

    PubMed  CAS  Google Scholar 

  51. Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63:1606–9.

    PubMed  CAS  Google Scholar 

  52. Berglund K, Fugl-Meyer AR. Upper extremity function in hemiplegia. A cross-validation study of two assessment methods. Scand J Rehabil Med. 1986;18:155–7.

    PubMed  CAS  Google Scholar 

  53. Hudak PL, Amadio PC, Bombardier C, UECG. Development of an upper extremity outcome measure: the DASH (Disabilities of the Arm, Shoulder, and Hand). Am J Ind Med. 1996;29:602–8.

    Article  PubMed  CAS  Google Scholar 

  54. Jester A, Harth A, Germann G. “Disability of arm, shoulder and hand”-Fragebogen. Trauma Berufskrankh. 2008;10 Suppl 3:381–3.

    Article  Google Scholar 

  55. Cup EH, Scholte op Reimer WJ, Thijssen MC, van Kuyk-Minis MA. Reliability and validity of the Canadian Occupational Performance Measure in stroke patients. Clin Rehabil. 2003;17:402–9.

    Article  PubMed  CAS  Google Scholar 

  56. Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50:311–9.

    PubMed  CAS  Google Scholar 

  57. Davis Sears E, Taylor N, Chung KC. Validity and responsiveness of the Jebsen-Taylor hand function test. J Hand Surg. 1969;35-A:30–7.

    Google Scholar 

  58. Fleishman EA. The structure and measurements of physical fitness. Englewood Cliffs: Prentice-Hall, Inc.; 1964. p. 23–4.

    Google Scholar 

  59. Gloss DS, Wardle MG. Use of the Minnesota rate of manipulation test for disability evaluation. Percept Mot Skills. 1982;55:527–32.

    Article  PubMed  CAS  Google Scholar 

  60. Holser P, Fuchs E. Box and Block test. In: Occupational therapists manual for basic skills assessment: primary prevocational evaluation. Pasadena: Fair Oaks Printing Company; 1960. p. 29–31.

    Google Scholar 

  61. Desrosiers J, Bravo G, Hébert R, Dutil E, Mercier L. Validation of the Box and Block test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil. 1994;75:751–5.

    PubMed  CAS  Google Scholar 

  62. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block test of manual dexterity. Am J Occup Ther. 1985;39(1):386–91.

    Article  PubMed  CAS  Google Scholar 

  63. van de Ven-Stevens LA, Munneke M, Terwee CB, Spauwen PH, van der Linde H. Clinimetric properties of instruments to assess activities in patients with hand injury: a systematic review of the literature. Arch Phys Med Rehabil. 2009;90:151–69.

    Article  PubMed  Google Scholar 

  64. Rousson V, Gasser T, Seifert B. Assessing intrarater, interrater and test-retest reliability of continuous measurements. Stat Med. 2002;21:3431–46.

    Article  PubMed  Google Scholar 

  65. MacKenzie CL, Iberall T. The grasping hand. In: Advances in psychology. Amsterdam: North-Holland; 1994. p. 370.

    Google Scholar 

  66. Iberall T. Human prehension and dexterous robot hands. Int J Robot Res. 1997;16(3):285–99.

    Article  Google Scholar 

  67. Schlesinger G. Der mechanische Aufbau der kunstlichen Glieder. In: Ersatzglieder und Arbeitshilfen. Berlin: Springer; 1919.

    Google Scholar 

  68. Light CM, Chappell PH, Kyberd PJ. Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil. 2002;83:776–83.

    Article  PubMed  Google Scholar 

  69. Napier JR. The prehensile movements of the human hand. J Bone Joint Surg. 1956;38-B(4):902–13.

    CAS  Google Scholar 

  70. Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robot Aut. 1989;5(3):269–79.

    Article  Google Scholar 

  71. Kvien TK, Heiberg T, Hagen KB. Minimal clinically important improvement/difference (MCII/MCID) and patient acceptable symptom state (PASS): what do these concepts mean? Ann Rheum Dis. 2007;66(Suppl III):iii40–1.

    Article  PubMed  Google Scholar 

  72. Perng JK, Fisher B, Hollar S, Pister KS. Accelerating sensing glove. In: Proceedings of the IEEE Wear Comp International Symposium. San Francisco; 1999. p. 178–80.

    Google Scholar 

  73. Ansuini C, Santello M, Tubaldi F, Massaccesi S, Castiello U. Control of hand shaping in response to object shape perturbation. Exp Brain Res. 2007;180:85–96.

    Article  PubMed  Google Scholar 

  74. Simone LK, Sundarrajan N, Elovic EP, et al. Measuring finger flexion and activity trends over a 25 hour period using a low-cost wireless device. In: Proceedings of the IEEE EMBS International Conference, New York; 2006. p. 6281–4.

    Google Scholar 

  75. Vanello N, Hartwig V, Tesconi M, et al. Sensing glove for brain studies: design and assessment of its compatibility for fMRI with a robust test. IEEE/ASME Trans Mechatron. 2008;13(3):345–54.

    Article  Google Scholar 

  76. Dipietro L, Sabatini AM, Dario P. A survey of glove-based systems and their applications. IEEE Trans Syst Man Cyber. 2008;38(4):461–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ninja P. Oess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Oess, N.P., Curt, A. (2012). The Advanced Appreciation of Upper Limb Rehabilitation in Cervical Spinal Cord Injury. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics