Skip to main content

The Innervation of Pial Blood Vessels and their Role in Cerebrovascular Regulation

  • Chapter
Book cover Brain Ischemia

Abstract

Thomas Willis noted in his Cerebri Anatome (1664) that brain vessels were accompanied by fibers. Hovelaque (1927) and Sheehan (Northfield 1938) identified neural connections between the trigeminal ganglion and the internal carotid artery, but were unable to determine whether they represented sympathetic innervation of the trigeminal ganglion or a sensory innervation to the cerebral vessels. Levine and Wolff (1932) demonstrated that electrical stimulation of cat pial arteries increased galvanic skin responses, and that this effect was blocked by the application of procaine to the vessel. Motor end-plates were observed microscopically in the adventitia of pial arteries, and were thought to represent afferent nerve endings (McNaughton 1938). In primates, Wall and Pribram (1950) found that the hypertensive response to electrical stimulation of pial arteries was blocked by trigeminal neurotomy. In man, Fay (1932), Penfield and McNaughton (1940) and Ray and Wolff (1940) elicited forehead pain by electrical stimulation of the pial and dural arteries. However, it was not until the axonal tracing studies of Mayberg and colleagues (1981) that direct connections between the trigeminal nerve and the circle of Willis were documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afshar F, Dykes E (1984) Computer–generated three–dimensional visualization of the trigeminal nuclear complex. Surg Neurol 22: 189–196

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature (London) 298: 240–244

    Article  CAS  Google Scholar 

  • Andersen AR, Frieberg L, Skyhoj Olesen TJ (1988) Delayed hyperaemia following hypoperfusion in classic migraine. Arch Neurol 45: 154–160

    PubMed  CAS  Google Scholar 

  • Arbab MA-R, Wiklund L, Svendgaard NA (1986) Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience 19: 695–708

    Article  PubMed  CAS  Google Scholar 

  • Arbab MA-R, Delgado T, Wiklund L, Svendgaard NA (1988) Brain stem terminations of the trigeminal and upper spinal ganglia innervation of the cerebrovascular system: WGAHRP transganglionic study. J Cerebr Blood Flow Metab 8: 54–63

    Article  CAS  Google Scholar 

  • Armstrong D (1970) Pain. Hbk Exp Pharmacol 25: 434–481

    CAS  Google Scholar 

  • Bevan J A, Moskowitz MA, Said SI, Buga G (1984) Evidence that vasoactive intestinal polypeptide is a dilator transmitter to some cerebral and extracerebral cranial arteries. Peptides 5: 385–388

    Article  PubMed  CAS  Google Scholar 

  • Bill A, Linder J (1976) Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol Scand 96: 114–121

    Article  PubMed  CAS  Google Scholar 

  • Broderson P, Gjerris F (1975) Regional cerebral blood flow patients with chronic subdural haematomas. Acta Neurol Scand 51: 233–239

    Article  Google Scholar 

  • Burnstock G (1989) Vascular control by purines with emphasis on the coronary system. Eur Heart J 10 (Suppl F): 15–21

    PubMed  CAS  Google Scholar 

  • Buzzi MG, Moskowitz MA (1990) The antimigraine drug sumatriptan (GR 43175) specifically blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99: 202–206

    PubMed  CAS  Google Scholar 

  • Buzzi MG, Carter B, Moskowitz MA, Shimizu T, Heath HH III (1991) Dihydroergotamine and sumatriptan attenuate the increase in plasma CGRP levels within rat superior sagittal sinus during electrical trigeminal ganglion stimulation. Neuropharmacology 30: 1193–1200

    Article  PubMed  CAS  Google Scholar 

  • Cervero F (1987) Visceral Pain. In: Dubner R, Gebhart GF, Bond MR (eds) Proceedings of the Vth World Congres on Pain. Elsevier, Amsterdam pp 216–226

    Google Scholar 

  • Chorobski J, Penfield W (1932) Cerebral vasodilator nerves and their pathways from the medulla oblongata. Arch Neurol Psych (Chicago) 28: 1257–1289

    Google Scholar 

  • Couture R, Cuello C (1984) Studies on the trigeminal antidromic vasodilation and plasma extravasation in the rat. J Physiol (London) 346: 273–285

    CAS  Google Scholar 

  • Dinsdale HB (1983) Hypertensive encephalopathy. Neurol Clin 1. 1: 3–16

    CAS  Google Scholar 

  • Duckies SP (1983) Innervation of the cerebral vasculature. Ann Biomed Eng 11: 599–605

    Article  Google Scholar 

  • Duff TA, Scott G, Feilbach JA (1986) Ultrastructural evidence of arterial denervation following experimental subarachnoid hemorrhage. J Neurosurg 64: 292–297

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L (1987) Innervation of the cerebral circulation. Ann NY Acad Sci 519: 334–348

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L (1989) Dilatory neuropeptides in the cerebral circulation. In: Seylaz J, Mackenzie ET (eds) Neurotransmission and cerebrovascular function. Elsevier, Amsterdam, pp 229–242

    Google Scholar 

  • Edvinsson L, Mackenzie ET (1977) Amine mechanisms in cerebral circulation. Pharmacol Rev 28: 275–348

    Google Scholar 

  • Edvinsson L, McCulloch J, Uddman R (1982) Noradrenaline-, substance P-, and vasoactive intestinal polypeptide-containing nerve fibers and vasomotor responses of cerebral arteries and veins. In: Heistad DD, Marcus M (eds) Cerebral blood flow: effects of nerves and neurotransmitters. Elsevier, New York, pp 219–222

    Google Scholar 

  • Edvinsson LC, Owman E, Rosengren E, West KA (1972) Concentration of noradrenaline in pial vessels, choroid plexus, and iris during two weeks after sympathetic ganglionectomy or decentralization. Acta Physiol Scand 85: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L, Fredholm BB, Hamel E, Jansen I, Verrechia C (1985) Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endotheliumderived relaxing factor in the cat. Neurosci Lett 58: 213–217

    Article  PubMed  CAS  Google Scholar 

  • Ellis E, Wei EP, Holt SA, Kontos HA (1987) Evidence that bradykinin stimulates the cyclooxygenase-dependent cerebral arteriolar abnormalities following concussive brain injury. (Abstract) Fed Proc 46: 800

    Google Scholar 

  • Enevoldsen EM, Cold G, Jensen FT, Malmros R (1976) Dynamic changes in regional CBF, intraventricular pressure, CSF, pH and lactate levels during the acute phase of head injury. J Neurosurg 44: 191–214

    Google Scholar 

  • European CGRP in Subarachnoid Haemorrhage Study Group (1992) Effect of calcitonin-gene-related peptide in patients with delayed postoperative cerebral ischaemia after aneurysmal subarachnoid haemorrhage. Lancet 339: 831–834

    Google Scholar 

  • Fay T (1932) Atypical facial neuralgia, a syndrome of vascular pain. Ann Otol, Rhinol, Laryngol 41: 1030–1062

    Google Scholar 

  • Fitch W, Ferguson GG, Sengupta D, Garibi J (1975a) Autoregulation of cerebral blood flow during controlled hypotension. In: Langitt TW, McHenry LC, Reivich M, Wollman H (eds) Cerebral circulation and metabolism. Springer-Verlag, New York, pp 18–20

    Google Scholar 

  • Fitch W, McKenzie ET, Harper AM (1975b) Effects of decreasing arterial blood pressure on cerebral blood flow in the baboon; influence of the sympathetic nervous system. Circ Res 37: 550–557

    PubMed  CAS  Google Scholar 

  • Furchgott RF (1983) Role of the endothelium in response of vascular smooth muscle. Circ Res 53: 557–573

    PubMed  CAS  Google Scholar 

  • Gibbins IL, Brayden JE, Bevan JA (1984) Perivascular nerves with immunoreactivity to vasoactive intestinal polypeptide in cephalic arteries of the cat: distribution, possible origins and functional implications. Neuroscience 13: 1327–1346

    Article  PubMed  CAS  Google Scholar 

  • Goadsby PJ, Duckworth JW (1987) Effect of stimulation of trigeminal ganglion on regional cerebral blood flows in cats. Am J Physiol 253: R270–R274

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23: 193–196

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez G, Onofrio BM, Kerr FWL (1975) Vasodilator system for the face. J Neurosurg 42: 696–703

    Article  PubMed  CAS  Google Scholar 

  • Gourley JK, Heistad DD (1984) Characteristics of reactive hyperemia in the cerebral circulation. Am J Physiol 246: H52–H58

    PubMed  CAS  Google Scholar 

  • Graham JR, Wolff HG (1938) Mechanism of migraine headache and action of ergotamine tartrate. Arch Neurol Psych 39: 737–763

    CAS  Google Scholar 

  • Hanko J, Hardebo JE, Kahrstrom J, Owman C, Sundler F (1985) Calcitonin gene-related peptide is present in mammalian cerebrovascular nerve fibres and dilates pial and peripheral arteries. Neurosci Lett 57: 91–95

    Article  PubMed  CAS  Google Scholar 

  • Hansen AJ, Quistorff B, Fjedde A (1980) Relationship between local changes in cortical blood flow and extracellular K+ during spreading depression. Acta Physiol Scand 109: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Weir B (1986) Pathway of acetylcholinesterase-containing nerves to the major cerebral arteries in rats. J Comp Neurol 250: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Nosko M, Weir B (1986) Cerebral perivascular nerves in subarachnoid hemorrhage. A histochemical and immunohistochemical study. J Neurosurg 65: 531–539

    Google Scholar 

  • Hardebo JE, Lindvall O, Nilsson B (1982) On the possible influence of adrenergic and cholinergic mechanisms in normo- and hypercapnia. In: Heistad DD, Marcus M (eds) Cerebral blood flow: effect of nerves and neurotransmitters. Elsevier, New York, pp 377–383

    Google Scholar 

  • Harper AM, Deshmukh VD, Rowan JO, Jennett WB (1972) Influence of sympathetic nervous activity in cerebral blood flow. Arch Neurol 27: 1–6

    PubMed  CAS  Google Scholar 

  • Hart M, Heistad DD, Brody MJ (1980) Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral arteries. Hypertension 2: 419–423

    PubMed  CAS  Google Scholar 

  • Heistad DD, Marcus M (1979) Effects of sympathetic stimulation on permeability of the blood–brain barrier to albumin during acute hypertension in cats. Circ Res 45: 331–338

    PubMed  CAS  Google Scholar 

  • Heistad DD, Marcus M (1982) Cerebral blood flow: effects of nerves and neurotransmitters. Elsevier, New York

    Google Scholar 

  • Heistad DD, Marcus M, Busija D, Sadoshima S (1982) Protective effects of sympathetic nerves in the cerebral circulation. In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effect of nerves and neurotransmitters. Elsevier, New York, pp 267–273

    Google Scholar 

  • Henriksen JH, Bulow JB, Schaffalitzky de Muckadell O, Fahrenkrug J (1986) Do substance P and vasoactive intestinal polypeptide (VIP) play a role in the acute occlusive or chronic ischaemic vasodilatation in man? Clin Physiol 6: 163–170

    PubMed  CAS  Google Scholar 

  • Hovelaque A (1927) Anatomie des nerfs craniens et rachidiens et du systeme grand sympathetique chez l’homme. Paris: Gaston Doin. Cited in Ruskell GL, Simons T (1987) Trigeminal nerve pathways to the cerebral arteries in monkeys. J Anat 155: 23–37

    Google Scholar 

  • Johnston FB, Bell BA, Robertson IAJ et al. (1990) Effect of calcitonin gene-related peptide on postoperative neurological deficits after subarachnoid haemorrhage. Lancet 335: 869–872

    Article  PubMed  CAS  Google Scholar 

  • Juul R, Edvinsson L, Gisvold SE et al. (1990) Calcitonin generelated peptide-LI in subarachnoid haemorrhage in man. Signs of activation of the trigemino-cerebrovascular system? Br J Neurosurg 4: 171–180

    Article  PubMed  CAS  Google Scholar 

  • Kagstrom E, Smith M-L, Siesjo BK (1983) Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat. J Cerebr Blood Flow Metab 3: 170–182

    Article  CAS  Google Scholar 

  • Kano M, Moskowitz MA, Yokota M (1991) Parasympathetic denervation of rat pial vessels significantly increases infarction volume following middle cerebral artery occlusion. J Cerebr Blood Flow Metab 11: 628–637

    Article  CAS  Google Scholar 

  • Keller JT, Beduk A, Saunders MC (1985) Origins of fibers innervating the basilar artery of the cat. Neurosci Lett 58: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Kerr FWL (1970) The organization of primary afferents in the sub-nucleus caudalis of the trigeminal: a light and electron microscopic study of degeneration. Brain Res 23: 127–165

    Google Scholar 

  • Kobayashi S, Waltz AG, Rhoton AL (1971) Effects of stimulation of cervical sympathetic nerves on cortical blood flow and vascular reactivity. Neurology 21: 297–320

    PubMed  CAS  Google Scholar 

  • Koketsu N, Moskowitz MA, Kontos HA, Yokota Y, Shimizu T (1992) Chronic parasympathetic sectioning decreases regional cerebral blood flow during hemorrhagic hypotension and increases infarct size after middle cerebral artery occlusion in spontaneously hypertensive rats. J Cerebr Blood Flow Metab 12: 613–620

    Article  CAS  Google Scholar 

  • Kontos HA, Wei EP, Ellis EF, Dietrich WD, Povlishock JT (1981) Prostaglandins in physiological and in certain pathological responses of the cerebral circulation. Fed Proc 40: 2326–2330

    PubMed  CAS  Google Scholar 

  • Lambert GA, Bogduk N, Goadsby PJ, Duckworth JW, Lance JW (1984) Decreased carotid arterial resistance in cats in response to trigeminal stimulation. J Neurosurg 61: 307–315

    Article  PubMed  CAS  Google Scholar 

  • Lang R, Zimmer R (1974) Neurogenic control of cerebral blood flow. Exp Neurol 43: 143–161

    Article  PubMed  CAS  Google Scholar 

  • Langley JN (1923) Antidromic action. J Physiol (London) 57: 428–446

    CAS  Google Scholar 

  • Larsson L-I, Edvinsson L, Fahrenkrug J et al. (1976) Immunohistochemical localization of a vasodilatory polypeptide ( VIP) in cerebrovascular nerves. Brain Res 113: 400–404

    Article  PubMed  CAS  Google Scholar 

  • Leao AAP (1944a) Spreading depression of activity in the cerebral cortex. Br J Neurophysiol 7: 359–390

    Google Scholar 

  • Leao AAP (1944b) Pial circulation and spreading depression of activity in the cerebral cortex. J Neurophysiol 7: 391–396

    Google Scholar 

  • Lee TJ-F, Hume WR, Su C, Bevan JA (1978) Neurogenic vasodilation of cat cerebral arteries. Circ Res 42: 535–542

    PubMed  CAS  Google Scholar 

  • Lembeck F, Donnerer J (1981) Postocclusive cutaneous vasodilatation mediated by substance P. Naunyn-Schmiedenberg’s Arch Pharmacol 316: 165–171

    Article  CAS  Google Scholar 

  • Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn-Schmiedenbergs Arch Pharmacol 310: 175–183

    Article  CAS  Google Scholar 

  • Leniger–Folert E (1984) Mechanisms of regulation of cerebral microflow during bicuculline-induced seizures in anesthetized cats. J Cerebr Blood Flow Metab 4: 150–165

    Article  Google Scholar 

  • Levine M, Wolff HG (1932) Cerebral circulation: afferent impulses from the blood vessels of the pia. Arch Neurol Psych Chicago 28: 140–150

    Google Scholar 

  • Linder N (1981) Effects of facial nerve section and stimulation on cerebral and ocular blood flow in haemorrhagic hypotension. Acta Physiol Scand 112: 185–193

    Article  PubMed  CAS  Google Scholar 

  • Linnik MD, Sakas DE, Uhl GR, Moskowitz MA (1989) Subarachnoid blood and headache: altered trigeminal tachykinin gene expression. Ann Neurol 25: 179–184

    Article  PubMed  CAS  Google Scholar 

  • Liu-Chen L-Y, Han DH, Moskowitz MA (1983) Pia arachnoid contains substance P originating from trigeminal neurons. Neuroscience 9: 803–808

    Article  PubMed  CAS  Google Scholar 

  • Liu-Chen L-Y, Gillespie SA, Norregaard TV, Moskowitz MA (1984) Co-localization of retrogradely transported wheat germ agglutinin and the putative neurotransmitter substance P within trigeminal ganglion cells projecting to cat middle cerebral artery. J Comp Neurol 225: 187–192

    Article  PubMed  CAS  Google Scholar 

  • Liu-Chen L-Y, Liszczak TM, King JC, Moskowitz MA (1986) Immunoelectron microscopic study of substance P-containing fibers in feline cerebral arteries. Brain Res 369: 12–20

    Article  PubMed  CAS  Google Scholar 

  • McCulloch J, Udmann R, Kingman TA, Edvinsson L (1986) Calcitonin-gene related peptide: functional role in cerebral regulation. Proc Natl Acad Sci USA 83: 5731–5735

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane R, Tasdemiroglu E, Moskowitz MA et al. (1991a) Chronic trigeminal ganglionectomy or topical capsaicin application to pial vessels attenuates postischemic hyperemia but does not influence postischemic hypoperfusion. J Cerebr Blood Flow Metab 11: 261–271

    Article  CAS  Google Scholar 

  • Macfarlane R, Moskowitz MA, Tasdemiroglu E, Wei EP, Kontos HA (1991b) Postischemic cerebral blood flow and neuroeffector mechanisms. Blood Vessels 28: 46–51

    PubMed  CAS  Google Scholar 

  • McMahon MD, Norregaard TV, Beyerl BD, Borges LF, Moskowitz MA (1985) Trigeminal afferents to cerebral arteries and forehead are not divergent axon collaterals in cat. Neurosci Lett 60: 63–68

    Article  PubMed  CAS  Google Scholar 

  • McNaughton F (1938) The innervation of the intracranial blood vessels and dural sinuses. Assoc Res Nerv Dis 18: 178–200

    Google Scholar 

  • Marcus ML, Busija DW, Gross PM, Brooks LA, Heistad DD (1982) Sympathetic escape in the cerebral circulation during normotension and acute severe hypertension. In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effect of nerves and neurotransmitters. Elsevier, New York, pp 281–289

    Google Scholar 

  • Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7: 4129–4136

    PubMed  CAS  Google Scholar 

  • Markowitz S, Saito K, Buzzi MG, Moskowitz MA (1989) The development of neurogenic plasma extravasation in the rat dura mater does not depend upon the degranulation of mast cells. Brain Res 477: 157–165

    Article  PubMed  CAS  Google Scholar 

  • Martin HA, Basbaum Al, Kwiat GC, Goetzel EJ, Levine JD (1987) Leukotriene and prostaglandin sensitization of cutaneous high threshold C- and A-delta mechanonociceptors in the hairy skin of rat hindlimbs. Neurosci 22: 651–659

    Article  CAS  Google Scholar 

  • Mayberg MR, Zervas NT, Moskowitz MA (1984) Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. J Comp Neurol 223: 46–56

    Article  PubMed  CAS  Google Scholar 

  • Mayberg MR, Langer RS, Zervas NT, Moskowitz MA (1981) Perivascular meningeal projections from cat trigeminal ganglia: possible pathway for vascular headache in man. Science 213: 228–230

    Article  PubMed  CAS  Google Scholar 

  • Miles TS (1979) Features peculiar to the trigeminal innervation. Can J Neurol Sci 6: 95–103

    PubMed  CAS  Google Scholar 

  • Moskowitz MA (1984) The neurobiology of vascular head pain. Ann Neurol 16: 157–168

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz MA (1991) The visceral organ brain: implications for the pathophysiology of vascular head pain. Neurology 41: 182–186

    PubMed  CAS  Google Scholar 

  • Moskowitz MA (1992) Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol Sci 13: 307–311

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz MA, Brody M, Liu-Chen L-Y (1983) In vitro release of immunoreactive substance P from putative afferent nerve endings in bovine pia arachnoid. Neuroscience 9: 809–814

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz MA, Sakas DE, Wei EP et al. (1989a) Postocclusive hyperemia in feline cortical gray matter is mediated by trigeminal sensory axons. Am J Physiol 257: H1736–H1739

    PubMed  CAS  Google Scholar 

  • Moskowitz MA, Buzzi MG, Sakas DE, Linnik MD (1989b) Pain mechanisms underlying vascular headaches. Rev Neurol (Paris) 145: 181–193

    CAS  Google Scholar 

  • Moskowitz MA, Wei EP, Saito K, Kontos HA (1988) Trigeminalectomy modifies pial arteriolar responses to hypertension or norepinephrine. Am J Physiol 255: H1–H6

    PubMed  CAS  Google Scholar 

  • Moskowitz MA, Nozaki K, Kraig RP (1993) Neocortical spreading depression provokes the expression of c-fos protein- like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 13: 1167–1177

    PubMed  CAS  Google Scholar 

  • Mueller SM, Heistad DD (1980) Effect of chronic hypertension on the blood-brain barrier. Hypertension 2: 809–812

    PubMed  CAS  Google Scholar 

  • Mueller SM, Rusterholtz DB (1982) Trophic’ influence of sympathetic nerves on the peripheral and cerebral vasculature. In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effects of nerves and neurotransmitters. Elsevier, New York, pp 317–325

    Google Scholar 

  • Mueller SM, Heistad DD, Marcus ML (1977) Total and regional cerebral blood flow during hypotension, hypertension and hypocapnia: effect of sympathetic denervation in dogs. Circ Res 41: 350–359

    PubMed  CAS  Google Scholar 

  • Nielsen KC, Owman C (1967) Adrenergic innervation of pial arteries related to the circle of Willis of the cat. Brain Res 6: 773–776

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KC, Owman C (1971) Contractile response and amine receptor mechanisms in isolated middle cerebral artery of the cat. Brain Res 27: 33–42

    Article  PubMed  CAS  Google Scholar 

  • Norregaard TV, Moskowitz MA (1985) Substance P and the sensory innervation of intracranial and extracranial feline cephalic arteries. Implications for vascular pain mechanisms in man. Brain 108: 517–533

    Google Scholar 

  • Northfield DWC (1938) Some observations on headache. Brain 61: 133–162

    Article  Google Scholar 

  • Nozaki K, Boccalini P, Moskowitz MA (1992a) Expression of c-/os-like immunoreactivity in brainstem after meningeal irritation by blood in the subarachnoid space. Neuroscience 49: 669–680

    Article  PubMed  CAS  Google Scholar 

  • Nozaki K, Moskowitz MA, Boccalini P (1992b) CP-93,129, sumatriptan, dihydroergotamine block c-fos expression within rat trigeminal nucleus caudalis caused by chemical stimulation of the meninges. Br J Pharmacol 106: 409–415

    PubMed  CAS  Google Scholar 

  • Nozaki K, Moskowitz MA, Maynard KI et al. (1993) Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibres in rat and human cerebral arteries. J Cerebr Blood Flow Metab 13: 70–79

    Article  CAS  Google Scholar 

  • O’Connor TP, van der Kooy D (1986) Pattern of intracranial and extracranial projections of trigeminal ganglion cells. J Neurosci 6: 2200–2207

    PubMed  Google Scholar 

  • Olsen TS (1986) Regional cerebral blood flow after occlusion of the middle cerebral artery. Acta Neurol Scand 73: 321–337

    Article  PubMed  CAS  Google Scholar 

  • Olsen TS, Lassen NA (1984) A dynamic concept of middle cerebral artery occlusion and cerebral infarction in the acute state based on interpreting severe hyperemia as a sign of embolic migration. Stroke 15: 458–468

    Article  PubMed  CAS  Google Scholar 

  • Ostfeld AM, Reis DJ, Goodell H, Wolff HG (1957) Headache and hydration. Arch Intern Med 96: 142–152

    Google Scholar 

  • Penfield W, McNaughton F (1940) Dural headache and innervation of the dura mater. Arch Neurol Psych Chicago 4: 43–75

    Google Scholar 

  • Pinard E, Purves MJ, Seylaz J, Vasquez JV (1979) The cholinergic pathway to cerebral blood vessels. II. Physiological studies. Pflugers Arch 379: 165–172

    Google Scholar 

  • Plum F, Posner JB, Troy B (1968) Cerebral metabolic and circulatory responses to induced convulsions in animals. Arch Neurol 18: 1–13

    PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Levy DE, Duffy TE (1982) Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 11: 499–509

    Article  PubMed  CAS  Google Scholar 

  • Purves MJ (1978) Do vasomotor nerves significantly regulate cerebral blood flow? Circ Res 43: 485 - 493

    PubMed  CAS  Google Scholar 

  • Raichle ME, Posner JB, Plum F (1971) Cerebral blood flow during and after hyperventilation. In: Russell RWR (ed) Brain and blood flow. Proceedings of the 4th International Symposium on regulation of cerebral blood flow. Pitman, London, pp 223–228

    Google Scholar 

  • Ray BS, Wolff HG (1940) Experimental studies on headache: pain-sensitive structures of the head and their significance in headache. Arch Surg 41: 813–856

    Google Scholar 

  • Ruskell GL, Simons T (1987) Trigeminal nerve pathways to the cerebral arteries in monkeys. J Anat 155: 23–37

    PubMed  CAS  Google Scholar 

  • Saito K, Greenberg S, Moskowitz MA (1987) Trigeminal origin of beta-preprotachykinin products in feline pial blood vessels. Neurosci Lett 76: 69–73

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Markowitz S, Moskowitz MA (1988) Ergot alkaloids block neurogenic extravasation in dura mater: proposed action in vascular headaches. Ann Neurol 24: 732–737

    Article  PubMed  CAS  Google Scholar 

  • Sakas DE, Moskowitz MA, Wei EP et al. (1989) Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension and seizures. Proc Natl Acad Sci USA 86: 1401–1405

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Kibbe MR, Murley KM, Spencer S (1990) Brain natriuretic peptide-like immunoreactive innervation of the cerebrovascular system in the rat. Stroke 21 ( Suppl III ): III– 166–167

    Google Scholar 

  • Seylaz J, Hara H, Pinard E et al. (1988) Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat. J Cerebr Blood Flow Metab 8: 875–878

    Article  CAS  Google Scholar 

  • Sherrington CS (1900) In: Schafer EA (ed) Textbook of physiology. Portland, London, pp 920–1001

    Google Scholar 

  • Shima T, Hossmann K-A, Date H (1983) Pial arterial pressure in cats following middle cerebral artery occlusion. I. Relationship of blood flow, regulation of blood flow and electrophysiological function. Stroke 14: 713–719

    Google Scholar 

  • Spetzler RF, Wilson CB, Weinstein P (1978) Normal perfusion pressure breakthrough theory. Clin Neurosurg 25: 651–672

    PubMed  CAS  Google Scholar 

  • Sundt TM Jr, Sharbrough FW, Piepgras DG et al. (1981) Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy. With results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc 56: 533–543

    PubMed  Google Scholar 

  • Suzuki N, Hardebo JE, Owman C (1988) Origins and pathways of cerebrovascular vasoactive intestinal polypeptidepositive nerves in rat. J Cerebr Blood Flow Metab 8: 697–712

    Article  CAS  Google Scholar 

  • Suzuki N, Hardebo JE, Owman C (1989a) Origins and pathways of cerebrovascular nerves storing substance P and calcitonin gene-related peptide in rat. Neuroscience 31: 427–438

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Hardebo JE, Owman C (1989b) Trigeminal fiber collaterals storing substance P and calcitonin gene-related peptide associate with ganglion cells containing choline acetyltransferase and vasoactive intestinal polypeptide in the sphenopalatine ganglion of the rat. An axon reflex modulating parasympathetic ganglionic activity? Neuroscience 30: 595–604

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, McMaster D, Lederis K, Rostad OP (1984) Characterization of the relaxant effects of vasoactive intestinal polypeptide ( VIP) and PHI on isolated brain arteries. Brain Res 322: 9–16

    Google Scholar 

  • Suzuki N, Hardebo JE, Kahrstrom J, Owman C (1990a) Selective electrical stimulation of postganglionic cerebrovascular nerve fibers originating from the sphenopalatine ganglion enhances cortical blood flow in the rat. J Cerebr Blood Flow Metab 10: 383–391

    Article  CAS  Google Scholar 

  • Suzuki N, Hardebo JE, Kahrstrom J, Owman C (1990b) Effect on cortical blood flow of electrical stimulation of trigeminal cerebrovascular nerve fibres in the rat. Acta Physiol Scand 138: 307–316

    Article  PubMed  CAS  Google Scholar 

  • Sweet WH, Wepsic JG (1974) Controlled thermocoagulation of trigeminal ganglion and rootlets for differential destruction of fibers. Part I: Trigeminal neuralgia. J Neurosurg 40: 143–156

    Google Scholar 

  • Symon L, Ganz JC, Dorsch NWC (1972) Experimental studies of hyperaemic phenomena in the cerebral circulation of primates. Brain 95: 265–278

    Article  PubMed  CAS  Google Scholar 

  • Uddman R, Edvinsson L, Ekman R, Kingman T, McCulloch J (1985) Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci Lett 62: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Uemura Y, Sugimoto T, Kikuchi H, Mizuno N (1988) Possible origins of cerebrovascular nerve fibers showing vasoactive intestinal polypeptide-like immunoreactivity: an immunohistochemical study in the dog. Brain Res 448: 98–105

    Article  PubMed  CAS  Google Scholar 

  • Vasquez J, Purves MJ (1979) The cholinergic pathway to cerebral blood vessels. 1. Morphological studies. Pfluegers Arch 379: 157–163

    Article  CAS  Google Scholar 

  • Wahl M, Kuschinsky W, Bosse O et al. (1972) Effect of L-epinephrine on the diameter of pial arterioles and arteries in the cat. Circ Res 31: 248–256

    PubMed  CAS  Google Scholar 

  • Wall PD, Pribram KH (1950) Trigeminal neurotomy and blood pressure responses from stimulation of lateral cerebral cortex of Macaca mulatta. J Neurophysiol 13: 409–412

    PubMed  CAS  Google Scholar 

  • Walters BB, Gillespie SA, Moskowitz MA (1986) Cerebrovascular projections from the sphenopalatine and otic ganglia to the middle cerebral artery of the cat. Stroke 17: 488–494

    Article  PubMed  CAS  Google Scholar 

  • Wei EP, Kontos HA, Patterson JL (1980) Dependence of pial arteriolar response to hypercapnia on vessel size. Am J Physiol 238: H697–H705

    CAS  Google Scholar 

  • Wei EP, Moskowitz MA, Boccalini P, Kontos HA (1992) Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ Res 70: 1313–1319

    PubMed  CAS  Google Scholar 

  • Wei EP, Raper AJ, Kontos HA, Patterson JL (1975) Determinants of response of pial arteries to norepinephrine and sympathetic nerve stimulation. Stroke 6: 654–659

    Article  PubMed  CAS  Google Scholar 

  • Wolff HC, Forbes HS (1928) The cerebral circulation. V. Observations of the pial circulation during changes in intracranial pressure. Arch Neurol Psych Chicago 20: 1035–1047

    Google Scholar 

  • Yamamoto K, Matsuyama T, Shiosaka S et al. (1983) Overall distribution of substance P-containing nerves in the wall of the cerebral arteries of the guinea pig and its origins. J Comp Neurol 215: 421–426

    Article  PubMed  CAS  Google Scholar 

  • Young RF (1990) The trigeminal nerve and its central pathways. Physiology of facial sensation and pain. In: Rovit RL, Murali R, Jannetta PJ (eds) Trigeminal neuralgia. Williams and Wilkins, Baltimore, pp 27–51

    Google Scholar 

  • Zapol WM, Liggins GC, Schneider RC, Qvist J, Sider MT, Creasy RK et al. (1979) Regional blood flow during simulated diving in the conscious Weddell seal. J Appl Physiol: Resp Env Exercise Physiol 47: 968–973

    CAS  Google Scholar 

  • Zawadzki JV, Furchgott RF, Cherry PD (1983) Endotheliumdependent relaxation of arteries by octa-substance P, kassinin and octa-cholecystokinin. (Abstract) Fed Proc 42: 619

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this chapter

Cite this chapter

Macfarlane, R., Moskowitz, M.A. (1995). The Innervation of Pial Blood Vessels and their Role in Cerebrovascular Regulation. In: Caplan, L.R. (eds) Brain Ischemia. Springer, London. https://doi.org/10.1007/978-1-4471-2073-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2073-5_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2075-9

  • Online ISBN: 978-1-4471-2073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics