Skip to main content

Abstract

The High Electron Mobility Transistor (HEMT) is a contender for the coveted place as the fastest solid state device, even though this claim is being challenged from time to time by MESFET technology (see Feng et al. 1990). This prominence has caused a great deal of activity in the area of HEMT modeling. HEMTs (which are also called HFETs — for Heterostructure Field Effect Transistors or MODFETs — for Modulation Doped Field Effect Transistors, or even TEGFETs — for Two-dimensional Electron Gas Field Effect Transistors) have been modeled at different levels — from advanced (relying primarily on self-consistent Monte Carlo simulations), to intermediate (utilizing the numerical solutions of phenomenological semiconductor equations), to analytical or semi-analytical (based on the calculation of the drift current and the total sheet charge in the HEMT channel.) These models of varying degrees of sophistication have different applications. Self-consistent Monte Carlo models are indispensable for revealing the device physics and verifying novel device concepts and ideas (see Hess and Kizilyalli 1986, and Jensen et al. 1991). Two-dimensional HEMT simulators can be used to optimize the device design and fine tune the HEMT fabrication process (e.g., PRIZM 1991). The analytical or semi-analytical HEMT models help understand the device operation, are suitable for engineering design, and are used in modern circuit simulator such as AIM-Spice (see Lee at al. 1993). In this Chapter, we will primarily consider analytical models suitable for circuit simulators, but we will also discuss more sophisticated techniques, such as full two-dimesional simulation and Monte Carlo technique. Quasi two-dimensional models are considered in other Chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baek JH, Shur M (1990) Mechanism of Negative Transconductance in Heterostructure Field Effect Transistors. IEEE Trans. Electron Devices ED-37:1917–1921

    Article  Google Scholar 

  • Brennan K, Mansour N, Wang Y (1991) Simulation of Advanced Semiconductor Devices Using Supercomputers. Computer Physics Communications 67:73–92 (Proceedings of MSI Symposium on Supercomputer Simulation of Semiconductor Devices, Minneapolis, Nov. 1990 )

    Article  MATH  Google Scholar 

  • Brudevoll T, Fjeldly TA, Baek J, Shur M (1992) Scattering Rates for Holes near the Valence Band Edge in Semiconductors. J. Appl. Phys. 67:7373–7382

    Article  Google Scholar 

  • Brudevoll T (1991) Monte Carlo Algorithms for Simulation of Hole Transport in Homogeneous Semiconductors. Dr. Ing. Thesis, Norwegian Institute of Technology, University of Trondheim, Norway

    Google Scholar 

  • Byun Y, Lee K, Shur M (1990) Unified Charge Control Model and Subthreshold Current in Heterostructure Field Effect Transistors. IEEE Electron Device Letters EDL-11: 50–53 (see erratum IEEE Electron Device Letters EDL-11:273)

    Article  Google Scholar 

  • Carnez B, Cappy A, Kaszinski A, Constant E, Salmer G (1980) Modeling of Submicron Gate Field-Effect Transistor Including Effects of Non-Stationary Electron Dynamics. J. Appl. Phys. 51:784–790

    Article  Google Scholar 

  • Chao PC, Shur M, Tiberio RC, Duh KHG, Smith PM, Ballingall JM, Ho P, Jabra AA (1989) DC and Microwave Characteristics of Sub-0.1 µm Gate-Length Planar-Doped Pseudomorphic HEMTS. IEEE Trans. Electron Devices ED-36:461–473

    Article  Google Scholar 

  • Chen CH, Baier S, Arch D, Shur M (1988) A New and Simple Model for GaAs Heterojunction FET Characteristics. IEEE Trans. Electron Devices ED-35:570–577

    Article  Google Scholar 

  • Delagebeaudeuf D, Linh NT (1982) Metal-(n)AlGaAs-GaAs Two-Dimensional Electron GaAs FET. IEEE Trans. Electron Devices ED-29:955–960

    Article  Google Scholar 

  • Feng YK, Hintz A (1988) Simulation of submicron GaAs MESFET’s using a full dynamic transport model. IEEE Trans. on Electron Devices ED-35:1419–1431

    Article  Google Scholar 

  • Feng M, Lau CL, Eu V, Ito C (1990) Does the Two-Dimensional Electron Gas Effect Contribute to High-Frequency and High Speed Performance of Field-Effect Transistors? Appl. Phys. Lett. 57:1233

    Article  Google Scholar 

  • Fischetti MV, Laux SE (1988) Monte Carlo Analysis of Electron Transport in Small Semiconductor Devices Including Band-Structure and Space-Charge Effects. Phys. Rev. B38:9721

    Google Scholar 

  • Fjeldly TA, Shur M (1991) Unified CAD Models for HFETs and MESFETs. Proceedings of the 11th European Microwave Conference, Stuttgart, 1991, Workshop Volume:198–205

    Google Scholar 

  • Gelmont, B, Shur M, Mattauch RJ (1991) Capacitance-Voltage Characteristics of Microwave Schottky Diodes. IEEE Trans. Microwave Theory and Technique 39:857–863

    Article  Google Scholar 

  • Hess K, Kizilyalli C (1986) Scaling and Transport Properties of High Electron Mobility Transistors. IEDM Technical Digest, Los Angeles:556–558

    Google Scholar 

  • Hess K (1990) Supercomputer Images of of Electron Device Physics. Physics Today 43:34–42

    Article  Google Scholar 

  • Jacoboni C, Lugli P (1989) The Monte Carlo Method for Semiconductor Simulation. Springer, New York

    Book  Google Scholar 

  • Jensen GU, Lund B, Fjeldly TA, Shur M (1991) Monte Carlo Simulation of Short Channel Heterostructure Field Effect Transistors. Computer Physics Communications 67:1–61 (Proceedings of MSI Symposium on Supercomputer Simulation of Semiconductor Devices, Minneapolis, Nov. 1990 )

    Article  MATH  Google Scholar 

  • Laux SE, Fischetti MV, Lee W (1989) Monte Carlo Simulation of Hot-Carrier Transport in Real Semiconductor Devices. Solid-State Electron. 32:1723

    Article  Google Scholar 

  • Laux SE, Fischetti MV, Frank DJ (1990) Monte Carlo Analysis of Semiconductor Devices: the DAMOCLES Program. IBM J. Res. Dev. 34:466

    Article  Google Scholar 

  • Lee K, Shur M, T. Drummond, Morkoç H (1983) Current-Voltage and Capacitance-Voltage Characteristics of Modulation-Doped Field Effect Transistors. IEEE Trans. Electron Devices ED-30:207–212

    Google Scholar 

  • Lee K, Shur M, T. Drummond, Morkoç H (1984) Parasitic MESFET in (Al,Ga)As/GaAs Modulation Doped FET. IEEE Trans. Electron Devices ED-31:29–35

    Google Scholar 

  • Lee K, Shur M, Fjeldly TA, Ytterdal T (1993) Semiconductor Device Modeling for VLSI. Prentice Hall, New Jersey

    Google Scholar 

  • Lund B, Fjeldly TA, Shur M, Jensen G (1992) The Monte Carlo Technique as a Testing Ground for New Design Concepts. Proc. 1992 URSI Int. Symp. on Signals, Systems, and Electronics (ISSSE’92):605–609

    Google Scholar 

  • Lund B (1992) Monte Carlo Simulation of Charge Transport in Semiconductors and Semiconductor Devices. Dr. Ing. Thesis, Norwegian Institute of Technology, University of Trondheim, Norway

    Google Scholar 

  • Kanamori M, Jensen G, Shur M, Lee K (1992) Effect of p-i-p + Buffer on Characteristics of n-Channel Heterostructure Field Effect Transistors. IEEE Trans. Electron Devices ED-32:226–233

    Article  Google Scholar 

  • Meyer JE (1971) MOS Models and Circuit Simulation. RCA Review 32:42–63

    Google Scholar 

  • Morkoç H, Unlu H, Ji G (1991) Principles and Technology of MODFETs. John Wiley and Sons, New York

    Google Scholar 

  • PRIZM (1991) User’s Manual, Silvaco

    Google Scholar 

  • Reggiani L, Ed., (1985), Hot-Electron Transport in Semiconductors. Springer, Berlin

    Google Scholar 

  • Ponse F, Masselink WT, Morkoç H (1989) The Quasi-Fermi Level Bending in MODFETS and Its Effects on the FET Transfer Characteristics. IEEE Trans. Electron Devices ED-32:1017–1023

    Google Scholar 

  • Ruden PP, Han CJ, Shur M (1988) Gate Current of Modulation Doped Field Effect Transistors. J. Appl. Phys. 64:1541–1546

    Article  Google Scholar 

  • Ruden PP (1989) Heterostructure FET Model Including Gate Leakage. IEEE Trans. Electron Devices ED-37:2267–2270

    Google Scholar 

  • Ruden PP, Shur M, Akinwande AI, Jenkins P (1989a) Distributive Nature of Gate Current and Negative Transconductance in Heterostructure Field Effect Transistors. IEEE Trans. Electron Devices ED-36:453–456

    Article  Google Scholar 

  • Sandborn PA, Rao P, Blakey PA (1989) An Assessment of Approximate Nonstationary Charge Transport Models Used for GaAs Device Modeling. IEEE Trans. on Electron Devices ED-36:1244–1253

    Article  Google Scholar 

  • Schuermeyer FL, Shur M, Grider D (1991) Gate Current in Self-Aligned n-channel Pseudomorphic Heterostructure Field-Effect Transistors. IEEE Electron Device Lett. EDL-12:571–573

    Article  Google Scholar 

  • Schuermeyer FL, Martinez E, Shur M, Grider DE, Nohava J (1992) Subthreshold and Above Threshold Gate Current in Heterostructure Insulated Gate Field Effect Transistors, Electronics Letters 28:1024–1026

    Article  Google Scholar 

  • Shur M (1976) Influence of Non-Uniform Field Distribution on Frequency Limits of GaAs Field-Effect Transistors. Electron Letters 12:615–616

    Article  Google Scholar 

  • Shur M (1987) GaAs Devices and Circuits. Plenum, New York

    Google Scholar 

  • Shur M (1990) Physics of Semiconductor Devices. Prentice Hall, New Jersey

    Google Scholar 

  • Shur M, Fjeldly TA, Ytterdal, Lee K (1992) Unified GaAs MESFET Model for Circuit Simulations. Intern. J. of High Speed Electronics 3:201–233

    Article  Google Scholar 

  • Stern F (1972) Self-Consistent Results for n-type Si Inversion Layers. Phys. Rev. B-5:4891–4899

    Google Scholar 

  • Subramanian S (1988) Frequency Dependence of Response of the DX Center in AlGaAs and its Influence on the Determination of the Band Discontinuity of GaAs/AlGaAs Heterojunctions. J. Appl. Phys. 64:1211–1214 )

    Article  Google Scholar 

  • Yamada Y, Tomita T (1992) Accuracy of Relaxation Time Approximation for Device Simulation of Submicrometer GaAs MESFET’s. Electronics Letters 28:393–395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shur, M., Fjeldly, T.A. (1993). HEMT Modelling. In: Snowden, C.M., Miles, R.E. (eds) Compound Semiconductor Device Modelling. Springer, London. https://doi.org/10.1007/978-1-4471-2048-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2048-3_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2050-6

  • Online ISBN: 978-1-4471-2048-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics