Skip to main content

Theories of Causation

  • Chapter
Book cover Motor Neuron Disease
  • 276 Accesses

Abstract

Amyotrophic lateral sclerosis (ALS) or motor neuron disease is a devastating human illness of unknown aetiology. Many different disorders have been associated with certain facets of the clinical syndrome of ALS, and thus the concept of different ALS syndromes with diverse aetiologies has been proposed (Rowland 1982). It is true that certain intoxications such as lead, viral infections such as enterovirus, endocrine dysfunction such as hyperparathyroidism, genetic disturbances such as hexosaminidase deficiency, as well as other disturbances, may simulate ALS. However, these cases together comprise only a small percentage of the total number of patients presenting with sporadic amyotrophic lateral sclerosis, and do not appear to offer insights into the aetiology of the sporadic disease. Similarly, although prior trauma has been more frequently encountered in ALS patients than in controls (Kurtzke and Beebe 1980; Gawel et al. 1983), there are no data to explain how such trauma participates in either the aetiology of the disease or the pathogenesis of motoneuron destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams CR, Ziegler DK, Lin JT (1983) Mercury intoxication simulating amyotrophic lateral sclerosis. JAMA 250: 642–643

    PubMed  CAS  Google Scholar 

  • Antel JP, Medof ME, Richman DP, Aranson BGW (1979) Immunological considerations in amyotrophic lateral sclerosis. In: Rose FC (ed) Clinical neuroimmunology. Blackwell Scientific, Oxford, pp 277

    Google Scholar 

  • Antel JP, Noronha ABC, Oger JJ-F, Arnason BGW (1982) Immunology of amyotrophic lateral sclerosis. In Rowland LP (ed) Human motor neuron diseases. Raven Press, New York, pp 395–492

    Google Scholar 

  • Appel SH (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann Neurol 10: 499–505

    PubMed  CAS  Google Scholar 

  • Appel SH (1993) Excitotoxic neuronal cell death in amyotrophic lateral sclerosis. Trends Neurosci 16: 3–5

    PubMed  CAS  Google Scholar 

  • Appel SH, Stockton-Appel V, Stewart SS, Kerman RH (1986) Amyotrophic lateral sclerosis: Associated clinical disorders and immunologic evaluations. Arch Neurol 43:234–238

    PubMed  CAS  Google Scholar 

  • Appel SH, Stewart SS, Apel V et al. (1988) A double-blind study of cyclosporine in amyotrophic lateral sclerosis. Arch Neurol 45: 381–386

    PubMed  CAS  Google Scholar 

  • Appel SH, Engelhardt J, Garcia J, Stefani E (1991) Immunoglobulins from animal models of motor neuron disease and human ALS passively transfer physiological abnormalities of the neuromuscular junction. Proc Natl Acad Sci (USA) 88: 647–651

    CAS  Google Scholar 

  • Araga S, Irie H, Trakahashi K (1984) Conglutinin microtiter plate ELISA system for detecting circulating immune complexes. J Neuroimmunol 6: 161–168

    PubMed  CAS  Google Scholar 

  • Arnold AP, Gorski RA (1984) Gonadal steroid induction of structural sex differences in the central nervous system. Ann Rev Neurosci 7: 413–432

    PubMed  CAS  Google Scholar 

  • Aspin J, Harrison R, Jehanli A, Lunt G, Campbell M (1986) Stimulation by mitogens and neuronal membranes from patients with motor neuron disease. J Neuroimmunol 11: 31–40

    PubMed  CAS  Google Scholar 

  • Astin KJ, Wilde CE, Davies-Jones GAB (1975) Glucose metabolism and insulin response in the plasma and CSF in motor neuron disease. J Neurol Sci 25: 205–210

    PubMed  CAS  Google Scholar 

  • Averback P, Crocker P (1982) Regular involvement of Clarke’s nucleus in sporadic amyotrophic lateral sclerosis. Arch Neurol 39: 155–156

    PubMed  CAS  Google Scholar 

  • Bahmanyar S, Gajdusek DC, Soleto J, Gibbs CJ Jr (1982) Longitudinal spinal cord sections as substratum for anti-neurofilament antibody detection. J Neurol Sci 53: 85–90

    PubMed  CAS  Google Scholar 

  • Bahmanyar S, Moreau-Dubois ML, Brown P, Cathala F, Gajdusek DC (1983) Serum antibodies to neurofilament antigens in patients with neurological and other diseases and in healthy controls. J Neuroimmunol 5: 191–196

    PubMed  CAS  Google Scholar 

  • Barber FE (1978) Inorganic mercury intoxication reminiscent of amyotrophic lateral sclerosis. J Occup Med 20: 667–669

    PubMed  CAS  Google Scholar 

  • Barris RW (1953) Pancreatic adenoma (hyperinsulinism) associated with neuromuscular disorders. Ann Intern Med 38: 124–129

    PubMed  CAS  Google Scholar 

  • Barry PSI, Mossman DB (1979) Lead concentrations in human tissues. Br J Ind Med 27: 339

    Google Scholar 

  • Bartfeld H, Dham C, Donnenfeld H et al. (1982a) Immunological profile of amyotrophic lateral sclerosis patients and their cell-mediated immune responses to viral and CNS antigens. Clin Exp Immunol 48: 137–147

    PubMed  CAS  Google Scholar 

  • Bartfeld H, Pollack MS, Cunningham-Rundles S, Donnenfeld H (1982b) HLA frequencies in amyotrophic lateral sclerosis. Arch Neurol 39: 270–271

    PubMed  CAS  Google Scholar 

  • Bartfeld H, Dham C, Donnenfeld H (1985) Immunoregulatory and activated T cells in amyotrophic lateral sclerosis patients. J Neuroimmunol 9: 131–137

    PubMed  CAS  Google Scholar 

  • Behan PO, Durward WF, Dick H (1976) Histocompatibility antigens associated with motor neuron disease. Lancet ii:803

    Google Scholar 

  • Behan PO, Behan WM, Bell E, Lannigan C, McQueen A, More IA (1977) Possible persistent virus in motor neuron disease (letter). Lancet ii: 1176

    Google Scholar 

  • Behan PO (1979) Cell-mediated immunity in motor neuron disease and polio-myelitis. In: Rose FC (ed) Clinical neuroimmunology. Blackwell Scientific, Oxford, pp 259–272

    Google Scholar 

  • Binet S, Meininger V (1988) Modifications of microtubule proteins in ALS nerve precede detectable histologic and ultrastructural changes. Neurology 38: 1596–1600.

    PubMed  CAS  Google Scholar 

  • Boothby JA, deJesus PV, Rowland LP (1974) Reversible forms of motor neuron disease. Arch Neurol 31: 18–23

    PubMed  CAS  Google Scholar 

  • Bornstein MB, Appel SH (1965) Tissue culture studies of demyelination. Ann NY Acad Sci 122: 280–286

    PubMed  CAS  Google Scholar 

  • Bradley WG, Krasin F (1982a) A new hypothesis of the etiology of amyotrophic lateral sclerosis: the DNA hypothesis. Arch Neurol 39: 677–680

    PubMed  CAS  Google Scholar 

  • Bradley WG, Krasin F (1982b) DNA hypothesis of amyotrophic lateral sclerosis. Adv Neurol 36: 493–502

    PubMed  CAS  Google Scholar 

  • Brahic M, Smith RA, Gibbs CJ Jr, Garruto RM, Tourtellote WW, Cash E (1985) Detection of picornavirus sequences in nervous tissue of amyotrophic lateral sclerosis and control patients. Ann Neurol 18: 337–343

    PubMed  CAS  Google Scholar 

  • Breedlove SM, Arnold AP (1983) Sex differences in the pattern of steroid accumulation by motoneurons of the rat lumbar spinal cord. J Comp Neurol 215: 211–216

    PubMed  CAS  Google Scholar 

  • Breuer AC, Lynn MP, Atkinson MB et al. (1987) Fast axonal transport in amyotrophic lateral sclerosis: an intra-axonal organelle traffic analysis. Neurology 37: 738–748

    PubMed  CAS  Google Scholar 

  • Brooke MH, Florence JM, Heller SL et al. (1986) Controlled trial of thyrotropin-releasing hormone in amyotrophic lateral sclerosis. Neurology 36: 146–151

    PubMed  CAS  Google Scholar 

  • Brooks BR, Sode J, Engel WK (1976) Cyclic nucleotide metabolism in neuromuscular disease. UCLA Forum Med Sci 19: 101–118

    PubMed  CAS  Google Scholar 

  • Brown MC, Holland RL, Hopkins WG (1981) Motor nerve sprouting. Ann Rev Neurosci 4: 17–42

    PubMed  CAS  Google Scholar 

  • Brown P, Gajdusek DC, Gibbs JC Jr, Asher DM (1985) Potential epidemic of Creutzfeldt-Jakob disease from human growth hormone therapy. N Engl J Med 313: 728–731

    PubMed  CAS  Google Scholar 

  • Brown RH Jr, Johnson D, Ogonowski M, Weiner HL (1987) Antineural antibodies in the serum of the patients with amyotrophic lateral sclerosis. Neurology 37: 152–155

    PubMed  Google Scholar 

  • Bunina TL (1962) Intracellular inclusions in familial amyotrophic lateral sclerosis. Korsakov J Neuropathol Psychiatry 62: 1293–1299

    CAS  Google Scholar 

  • Campbell AMG (1955) Calcium versenate in motor neurone disease. Lancet ii:376–377

    Google Scholar 

  • Campbell AMG, Williams ER, Baltrop D (1970) Motor neurone disease and exposure to lead. J Neurol Neurosurg Psychiatry 33: 877–885

    PubMed  CAS  Google Scholar 

  • Cashman NR, Gurney ME, Antel JP (1985) Immunology of amyotrophic lateral sclerosis. Springer Sem Immunopathol 8: 141–152

    CAS  Google Scholar 

  • Catalano LW (1972) Herpes virus hominis antibody in multiple sclerosis and amyotrophic lateral sclerosis. Neurology 22: 473–478

    PubMed  Google Scholar 

  • Chaput M, Claes V, Portetelle D et al. (1988) The neurotrophic factor neurokin is 90% homologous with phosphohexose isomerase. Nature 332: 454–455

    PubMed  CAS  Google Scholar 

  • Ciechanover A, Finley D, Varshavsky A (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant. Cell 37: 57–66

    PubMed  CAS  Google Scholar 

  • Cole GM, Timiras PS (1987) Ubiquitin-protein conjugates in Alzheimer’s lesions. Neurosci Lett 79: 207–212

    PubMed  CAS  Google Scholar 

  • Colin Brown J, Kater RMH (1969) Pancreatic function in patients with amyotrophic lateral sclerosis. Neurology 19: 185–189

    Google Scholar 

  • Collis WJ, Engel WK (1968) Glucose metabolism in five neuromuscular disorders. Neurology 18: 915–923

    PubMed  CAS  Google Scholar 

  • Conradi S, Ronnevi L-O, Vesterberg O (1976) Abnormal tissue distribution of lead in amyotrophic lateral sclerosis. J Neurol Sci 29: 259–265

    PubMed  CAS  Google Scholar 

  • Conradi S, Ronnevi L-O, Vesterberg O (1980a) Abnormal tissue distribution of lead in amyotrophic lateral sclerosis. Re-estimation of lead in the cerebrospinal fluid. J Neurol Sci 48:413–418

    CAS  Google Scholar 

  • Conradi S, Eriksson H, Ronnevi L-O (1980b) Cholinesterase activity of whole blood and plasma in amyotrophic lateral sclerosis. Acta Neurol Scand 62: 191–192

    PubMed  CAS  Google Scholar 

  • Conradi S, Ronnevi L, Norris F (1982a) Motor neuron disease and toxic metals. Adv Neurol 36: 201–231

    PubMed  CAS  Google Scholar 

  • Conradi S, Ronnevi L-O, Nise G, Vesterberg O (1982b) Long-time penicillamine treatment in amyotrophic lateral sclerosis with parallel determination of lead in blood, plasma and urine. Acta Neurol Scand 65: 203–211

    PubMed  CAS  Google Scholar 

  • Cornblath DR, McArthur J (1988) Predominantly sensory neuropathy in patients with AIDS and AIDS- related complex. Neurology 38: 794–796

    PubMed  CAS  Google Scholar 

  • Cornblath DR, McArthur JC, Kennedy RGE, Witte AS, Griffin JW (1987) Inflammatory demyelinating peripheral neuropathies associated with human T-cell lymphotropic virus type III infection. Ann Neurol 21: 32–40

    PubMed  CAS  Google Scholar 

  • Cremer NE, Norris FH, Shinomoto T, Lennette EH (1976) Antibody titers to Coxsackie viruses in amyotrophic lateral sclerosis. N Engl J Med 295: 107–108

    PubMed  CAS  Google Scholar 

  • Cumings JW (1962) Discussion on motor neurone disease. Biochemical aspects. Proc R Soc Med 55: 1023–1024

    PubMed  CAS  Google Scholar 

  • Cunningham-Rundles S, Dupont B, Posner J, Hansen J A, Good RA (1977) Cell-mediated immune response to polio virus antigen in amyotrophic lateral sclerosis. Fed Proc 36: 1190A

    Google Scholar 

  • Currier RD, Haerer AF (1968) Amyotrophic lateral sclerosis and metallic toxins. Arch Environ Health 17: 712–719

    PubMed  CAS  Google Scholar 

  • Dalakas MC, Elder G, Hallett M et al. (1986) A long-term follow-up study of patients with post poliomyelitis neuromuscular symptoms. N Engl J Med 314: 959–963

    PubMed  CAS  Google Scholar 

  • Dalakas MC, Hatazawa J, Brooks RA, DiChiro G (1987) Lowered cerebral glucose utilization in amyotrophic lateral sclerosis. Ann Neurol 22: 580–586

    PubMed  CAS  Google Scholar 

  • Davidson TJ, Hartmann HA (1981a) RNA content and volume of motor neurons in amyotrophic lateral sclerosis. II. The lumbar intumescence and nucleus dorsalis. J Neuropathol Exp Neurol 40:187–192

    CAS  Google Scholar 

  • Davidson TJ, Hartmann HA (1981b) Base composition of RNA obtained from motor neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 40: 193–198

    PubMed  CAS  Google Scholar 

  • Davidson T, Hartmann HA, Johnson PC (1981) RNA content and volume of motor neurons in amyotrophic lateral sclerosis. I. The cervical swelling. J Neuropathol Exp Neurol 40:32–36

    PubMed  CAS  Google Scholar 

  • Delbono O, Carcia J, Appel SH, Stefani E (1991a) IgG from amyotrophic lateral sclerosis affects tubular calcium channels of skeletal muscle. Am J Physiol 260: C1347–C1351

    PubMed  CAS  Google Scholar 

  • Delbono O, Garcia J, Appel SH, Stefani E (1991b) Calcium current and charge movement of mammalian muscle: action of amyotrophic lateral sclerosis immunoglobulins. J Physiol 444: 723–742

    PubMed  CAS  Google Scholar 

  • Delbono O, Magnelli V, Sawada T, Smith RG, Appel SH, Stefani E (1993) The Fab fragments from amyotrophic lateral sclerosis IgG affect the calcium channels of skeletal muscle. Am J Physiol 264 (Cell Physiol 33): C537–C543

    PubMed  CAS  Google Scholar 

  • Deng H-X, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung W-Y et al. (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261:1047–1051

    PubMed  CAS  Google Scholar 

  • Donnenfeld H, Kascsak RJ, Bartfeld H (1984) Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. J Neuroimmunol 6: 51–57

    PubMed  CAS  Google Scholar 

  • Endo T, Scott DD, Stewart SS, Kundu SK, Marcus DM (1984) Antibodies to glycosphingolipids in patients with multiple sclerosis and SLE. J Immunol 132: 1793–1797

    PubMed  CAS  Google Scholar 

  • Engel WK, Siddique T, Nicoloff JT (1983a) Effect on weakness and spasticity in amyotrophic lateral sclerosis of thyrotropin-releasing hormone. Lancet ii:73–75

    Google Scholar 

  • Engel WK, Siddique T, Nicoloff JT, Wilbur JF (1983b) TRH levels are reduced in CSF of amyotrophic lateral sclerosis (ALS) and other spastic patients and rise with intravenous treatment. Neurology 53 (Suppl 2): 176

    Google Scholar 

  • Engelhardt JI, Appel SH, Killian JM (1989) Experimental autoimmune motoneuron disease. Ann Neurol 26: 368–376

    PubMed  CAS  Google Scholar 

  • Engelhardt JI, Appel SH, Killian JM (1990) Experimental autoimmune gray matter disease. J Neuroimmunol.

    Google Scholar 

  • Engelhardt JI, Taiji J, Appel SH (1993) Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis. Arch Neurol 50: 30–36

    PubMed  CAS  Google Scholar 

  • Falk P, Walker JIN, Redwill AAM, Morgan MJ (1988) Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3’ sequences. Nature 332: 445–457

    Google Scholar 

  • Felmus MT, Patten BM, Swanke L (1976) Antecedent events in amyotrophic lateral sclerosis. Neurology 26: 167–172

    PubMed  CAS  Google Scholar 

  • Field EJ, Hughes D (1965) Toxicity of motor neurone disease serum for myelin in tissue culture. BMJ ii: 1399–1401

    Google Scholar 

  • Freddo L, Yu RK, Latov N et al. (1986) Gangliosides GM1 and GDlb are antigens for IgM M-protein in a patient with motor neuron disease. Neurology 36: 454–458

    PubMed  CAS  Google Scholar 

  • Friedman HM, Tzagournis M, Ruppert RD (1969) Pancreatic exocrine and endocrine function in amyotrophic lateral sclerosis. Neurology 19: 283

    Google Scholar 

  • Gajdusek DC (1985) Hypothesis: interference with axonal transport of neurofilament as a common pathogenetic mechanism in certain diseases of the central nervous system. N Engl J Med 312: 714–719

    PubMed  CAS  Google Scholar 

  • Gandy G, Jacobson W, Sidman R (1973) Inhibition of transmethylation reaction in the central nervous system - an experimental model for subacute combined degeneration of the cord. J Physiol 233: 1–3

    Google Scholar 

  • Gardner MA, Rasheed S, Klement V et al. (1976) Lower motor neuron disease in wild mice caused by indigenous type C virus and search for a similar etiology in human amyotrophic lateral sclerosis. In: Andrews JM, Johnson RT, Brazier MAP (eds) Amyotrophic lateral sclerosis. Recent research trends. Academic Press, New York, pp 217–234

    Google Scholar 

  • Gardner MA, Rasheed S, Klement V et al. (1976) Lower motor neuron disease in wild mice caused by indigenous type C virus and search for a similar etiology in human amyotrophic lateral sclerosis. In: Andrews JM, Johnson RT, Brazier MAP (eds) Amyotrophic lateral sclerosis. Recent research trends. Academic Press, New York, pp 217–234

    Google Scholar 

  • Gawel M, Zaowalla Z, Rose FC (1983) Antecedent events in motor neuron disease. J Neurol Neurosurg Psychiatry 46: 1041–1043

    PubMed  CAS  Google Scholar 

  • Gensler HL, Bernstein H (1981) DNA damage as the primary cause of aging. Q Rev Biol 56: 279–303

    PubMed  CAS  Google Scholar 

  • Gillberg P-G, Aquilonius S-M, Eckernsas S-A, Lundqvist G, Winblad B (1982) Choline acetyltransferase and substance P-like immunoreactivity in the human spinal cord: changes in amyotrophic lateral sclerosis. Brain Res 250: 394–397

    PubMed  CAS  Google Scholar 

  • Gillberg P-G, Aquilonius S-M (1985) Cholinergic opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography. Acta Neurol Scand 72: 299–306

    PubMed  CAS  Google Scholar 

  • Gotoh F, Kitamara A, Koto A, Kataoka K, Atsuld H (1972) Abnormal insulin secretion in amyotrophic lateral sclerosis. J Neurol Sci 16: 201–207

    Google Scholar 

  • Gurney ME (1984) Suppression of sprouting at the neuromuscular junction by immune sera. Nature 307: 546–548

    PubMed  CAS  Google Scholar 

  • Gurney ME, Belton AC, Cashman N, Antel JP (1984) Inhibition of terminal axonal sprouting by serum from patients with amyotrophic lateral sclerosis. N Engl J Med 311: 933–939

    PubMed  CAS  Google Scholar 

  • Hamburger V (1975) Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol 160: 535–546

    PubMed  CAS  Google Scholar 

  • Harno K, Rissanen A, Palo J (1984) Glucose tolerance in amyotrophic lateral sclerosis. Acta Neurol Scand 70: 451–455

    PubMed  CAS  Google Scholar 

  • Hart RW, D’Ambrosio SM, Ng KJ, Modak SP (1979) Longevity, stability, and DNA repair. Mech Aging Dev 9: 203–223

    PubMed  CAS  Google Scholar 

  • Hauser SL, Cazenave PA, Lyon-Caen O et al. (1986) Immunoblot analysis of circulating antibodies against muscle proteins in amyotrophic lateral sclerosis and other neurological diseases. Neurology 36: 1614–1618

    PubMed  CAS  Google Scholar 

  • Hausmanowa-Petrusewicz I, Borkowska J, Janczewski Z (1983) X-linked adult form of spinal muscular atrophy. J Neurol 229: 175–188

    PubMed  CAS  Google Scholar 

  • Hayashi H, Suga M, Satake M, Tsubaki T (1981) Reduced glycine receptor in the spinal cord in amyotrophic lateral sclerosis. Ann Neurol 9: 292–294

    PubMed  CAS  Google Scholar 

  • Hoffman PM, Festoff BW, Giron LT, Jr, Hallenbeck LC, Garruto RM, Ruscetti FW (1985) Isolation of LAV/HTLV-III from a patient with amyotrophic lateral sclerosis. N Engl J Med 313: 324

    PubMed  CAS  Google Scholar 

  • Hoffman PM, Robbins DS, Gibbs CJ, Gajdusek DC, Garruto RM, Terasaki GL(1971) Histocompatibility antigens in amyotrophic lateral sclerosis and parkinsonism-dementia on Guam. Lancet ii:717

    Google Scholar 

  • Hoffman PM, Robbins DS, Nolte MT, Gibbs CJ Jr, Gajdusek DC (1978) Cellular immunity in Guamanians with amyotrophic lateral sclerosis and parkinsonism-dementia. N Engl J Med 299: 680–685

    PubMed  CAS  Google Scholar 

  • Hollander H, Stringari S (1987) Human immunodeficiency virus associated meningitis, clinical course and correlation. Am J Med 83: 813–185

    PubMed  CAS  Google Scholar 

  • Horoupian DS, Pick P, Spigland I, Smith P, Portenoy R, Katzman R, Cho S (1984) Acquired immune deficiency syndrome and multiple tract degeneration in a homosexual man. Ann Neurol 15: 502–505

    PubMed  CAS  Google Scholar 

  • Horwich MS, Engel WK, Chauvin PB (1974) Amyotrophic lateral sclerosis sera applied to cultured motor neurons. Arch Neurol 30: 332–333

    PubMed  CAS  Google Scholar 

  • Hugon J, Ludolph A, Roy DN, Schaumburg HH, Spencer PS (1988) Studies on the etiology and pathogenesis of motor neuron diseases. II. Clinical and electrophysiological features of pyramidal dysfunction in macaques fedLathyrus sativus and IPPN. Neurology 38: 435–442

    PubMed  CAS  Google Scholar 

  • Imoto K, Saida K, Iwamura K, Saida T, Nishitani H (1984) Amyotrophic lateral sclerosis: a double-blind crossover trial of thyrotropin-releasing hormone. J Neurol Neurosurg Psychiatry 47:1332–1334

    PubMed  CAS  Google Scholar 

  • Imoto K, Saida K, Iwamura K, Saida T, Nishitani H (1984) Amyotrophic lateral sclerosis: a double-blind crossover trial of thyrotropin-releasing hormone. J Neurol Neurosurg Psychiatry 47: 1332–1334

    PubMed  CAS  Google Scholar 

  • Ingvar-Marden M, Regli F, Steck AJ (1986) Search for antibodies to skeletal muscular proteins in amyotrophic lateral sclerosis. Arch Neurol Scand 74: 218–223

    Google Scholar 

  • Ionasescu V, Luca N (1964) Studies on carbohydrate metabolism in amyotrophic lateral sclerosis and hereditary proximal spinal muscular atrophy. Acta Neurol Scand 40: 47–57

    PubMed  CAS  Google Scholar 

  • Iwata M, Hirano A (1979) Current problems in the pathology of amyotrophic lateral sclerosis. Prog Neuropathol 4: 277–298

    Google Scholar 

  • Jackson I, Adelman LS, Munsat TL, Forte S, Lechan RM (1986) Amyotrophic lateral sclerosis: thyrotropin-releasing hormone and histidyl proline diketopiperazine in the spinal cord and cerebrospinal fluid. Neurology 287: 34–36

    Google Scholar 

  • Jokelainen M, Tiilikainen A, Lapinleimu K (1977) Polio antibodies and HLA antigens in amyotrophic lateral sclerosis. Tissue Antigens 10: 259–266

    PubMed  CAS  Google Scholar 

  • Kantarjian AD (1961) A syndrome clinically resembling amyotrophic lateral sclerosis following chronic mercurialism. Neurology 11: 639–644

    PubMed  CAS  Google Scholar 

  • Kascsak RJ, Shope RE, Donnenfeld H, Bartfeld H (1978) Antibody response to arboviruses. Absence of increased response in amyotrophic lateral sclerosis and multiple sclerosis. Arch Neurol 35:440–442

    PubMed  CAS  Google Scholar 

  • Kascsak RJ, Carp RI, Vilcek JT, Donenfield H, Bartfeld H (1982) Virological studies in amyotrophic lateral sclerosis. Muscle Nerve 5: 93–101

    PubMed  CAS  Google Scholar 

  • Kawamura Y, Dyck PJ (1981) Permanent axotomy by amputation results in loss of motor neurons in man. J Neuropathol Exp Neurol 40: 658–666

    PubMed  CAS  Google Scholar 

  • Keleman J, Hedlund W, Orlin JB, Berkman EM, Munsat TL (1983) Plasmapheresis with immunosuppression in amyotrophic lateral sclerosis. Arch Neurol 40: 752–753

    Google Scholar 

  • Kilness AW, Hochberg FH (1977) Amyotrophic lateral sclerosis in a high selenium environment. JAMA 237: 2843–2844

    PubMed  CAS  Google Scholar 

  • Kimura F, Smith RG, Nyormoi O, Schneider T, Nastainczyk W, Hofmann F, Stefani E, Appel SH. (1994) Amyotrophic lateral sclerosis patient antibodies label Ca2+ channel α1 subunit. Ann Neurol 35: 164–171

    PubMed  CAS  Google Scholar 

  • Koerner DR (1976) Abnormal carbohydrate metabolism in amyotrophic lateral sclerosis and parkinsonism-dementia on Guam. Diabetes 25: 1055–1065

    PubMed  CAS  Google Scholar 

  • Kohne DE, Gibbs CJ, White L, Tracy SM, Meinke W, Smith RA (1981) Virus detection by nucleic acid hybridization: examination of normal and ALS tissues for the presence of poliovirus. J Gen Virol 56: 223–233

    PubMed  CAS  Google Scholar 

  • Kondo K, Tsubaki T (1981) Case-control studies of motor neuron disease. Arch Neurol 38: 220–226

    PubMed  CAS  Google Scholar 

  • Kondo H, Osborne ML, Kolhouse JF (1981) Nitrous oxide has multiple deleterious effects on cobalamin metabolism and causes decreases in activities of both mammalian cobalamin-dependent enzymes in rats. J Clin Invest 12: 1270–1283

    Google Scholar 

  • Kott E, Livni E, Zamir R, Kuritzky A (1976) Amyotrophic lateral sclerosis: cell-mediated immunity to poliovirus and myelin basic protein in patients with high frequency of HLA-BW35. Neurology 26: 376–377

    Google Scholar 

  • Kott E, Livni E, Zamir R, Kuritzky A (1979) Cell-mediated immunity to polio and HLA antigens in amyotrophic lateral sclerosis. Neurology 29: 1040–1044

    PubMed  CAS  Google Scholar 

  • Kurent JE, Brooks BR, Madden DL, Sever JL, Engel WK (1979) CSF viral antibodies. Evaluation in amyotrophic lateral sclerosis and late-onset postpoliomyelitis progressive muscular atrophy. Arch Neurol 36:269–273

    PubMed  CAS  Google Scholar 

  • Kurlander HM, Patten BM (1979) Metals in spinal cord tissue of patients dying of motor neuron disease. Ann Neurol 6: 21–24

    PubMed  CAS  Google Scholar 

  • Kurtzke JF, Beebe GW (1980) Epidemiology of amyotrophic lateral sclerosis. I. A case-control comparison based on ALS deaths. Neurology 30:453–462

    PubMed  CAS  Google Scholar 

  • Lambert WC, Ororodudu AO, Lambert MW (1986) Hypersensitivity of ALS lymphoblastoid cells in culture to the mutagen methyl methane sulfonate. Neurology 36 (Suppl 1): 136

    Google Scholar 

  • Lampson LA, Kushner PD, Sobel RA (1988) Strong expression class II major histocompatibility complex (MHC) antigens in the absence of detectable T-cell infiltration in amyotrophic lateral sclerosis. J Neuropath Exp Neurol 47:353

    Google Scholar 

  • Lang B, Newson-Davis, Wray D, Vincent A, Murphy N (1981) Autoimmune etiology for myasthenia (Eaton-Lambert) syndrome. Lancet 11:224–226

    Google Scholar 

  • Latov N, Hays AP, Donoftio PD et al. (1988) Monoclonal IgM with unique specificity to gangliosides GM1 and GDlb and to lacto-N-tetraose associated with human motor neuron disease. Neurology 38: 763–768

    PubMed  CAS  Google Scholar 

  • Lehrich JR, Couture J (1978) Amyotrophic lateral sclerosis sera are not cytotoxic to neuroblastoma cells in tissue culture. Ann Neurol 4: 384

    PubMed  CAS  Google Scholar 

  • Lehrich JR, Oger J, Arnason BGW (1974) Neutralizing antibodies to poliovirus and mumps virus in amyotrophic lateral sclerosis. J Neurol Sci 23: 537–540

    PubMed  CAS  Google Scholar 

  • Leigh PN, Anderton BH, Dobson A, Gallo J-M, Swash M, Power DM (1988) Ubiquitin deposits in anterior horn cells in motoneuron disease. J Neurosci 93: 197–202

    CAS  Google Scholar 

  • Llinas R, Sugimori M, Cherksey BD, Smith RG, Delbono O, Stefani E, Appel SH (1993) IgG from amyotrophic lateral sclerosis patients increases current through P-type calcium channels in mammalian cerebellar purkinje cells and in isolated channel protein in lipid bilayer. Proc Natl Acad Sci USA 90: 11743–11747

    PubMed  CAS  Google Scholar 

  • Lowe J, Lermoy G, Jefferson D et al. (1988) A filamentous inclusion body within anterior horn neurons in motor neurone disease defined by immunocytochemical localization of ubiquitin. Neurosci Lett 94: 203–210

    PubMed  CAS  Google Scholar 

  • Magnelli V, Sawada T, Delbono O, Smith RG, Appel SH, Stefani E (1993) Amyotrophic lateral sclerosis immunoglobulins action on single skeletal muscle Ca2+ channels. J Physiol 461: 103–118

    PubMed  CAS  Google Scholar 

  • Mandybur TI, Cooper GP (1979) Increased spinal cord lead content in amyotrophic lateral sclerosis - possibly a secondary phenomenon. Med Hypoth 5: 1313–1315

    CAS  Google Scholar 

  • Manetto V, Sternberger NH, Perry G, Sternberger LA, Gambetti P (1988) Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 47: 642–653

    PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO (1974) Motor neuron disease: the nature of the pathogenic mechanisms. J Neurol Neurosurg Psychiatry 37: 1036–1046

    Google Scholar 

  • Manton WI, Cook JD (1979) Lead content of cerebrospinal fluid and other tissue in amyotrophic lateral sclerosis (ALS). Neurology 29:611–612

    Google Scholar 

  • Masui Y, Mozai T, Kakeh K (1985) Functional and morphometric study of the liver in motor neuron disease. J Neurol 232: 15–19

    PubMed  CAS  Google Scholar 

  • Matthews WB (1958) Metabolic disease of the nervous system: clinical aspects. Proc R Soc Med 51: 859–863

    PubMed  CAS  Google Scholar 

  • McComas AJ, Upton ARM, Sica REP (1973) Motor neuron disease and aging. Lancet ii: 1477–1480

    Google Scholar 

  • McEwan-Alvarado G, Hightower N, Carney LR, Barrier CW (1971) Exocrine pancreas function in patients with amyotrophic lateral sclerosis. Dig Dis 16: 107–110

    CAS  Google Scholar 

  • McGeer PL, Itagatei S, McGeer E (1988) Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol 76: 550–557

    PubMed  CAS  Google Scholar 

  • McManaman JL, Crawford FG, Stewart AA, Appel SH (1988) Purification of a skeletal muscle polypeptide which stimulates choline acetyltransferase activity in cultured spinal cord neurons. J Biol Chem 263: 5890–5897

    PubMed  CAS  Google Scholar 

  • Mendell JR, Chase TN, Engel WK (1971) Amyotrophic lateral sclerosis. A study of central monoamine metabolism and therapeutic trial of levodopa. Arch Neurol 25:320–325

    PubMed  CAS  Google Scholar 

  • Mitsuma T, Nogimori T, Adachi K, Mukoyama M, Ando K (1984) Concentrations of immunoreactive TRH releasing hormone in spinal cord of patients with amyotrophic lateral sclerosis. Am J Med Sci 287: 34–36

    PubMed  CAS  Google Scholar 

  • Mitsuma T, Adachi K, Mukoyama M, Ando K (1986) Concentrations of thyrotropin-releasing hormone in the brain of patients with amyotrophic lateral sclerosis. J Neurol Sci 76: 277–281

    PubMed  CAS  Google Scholar 

  • Mitsumoto H, Salgado ED, Negroski D et al. (1986) Amyotrophic lateral sclerosis: effects of acute intravenous and chronic subcutaneous administration of thyrotropin-releasing hormone in controlled trials. Neurology 36: 152–159

    PubMed  CAS  Google Scholar 

  • Miyata S, Nakamura S, Nagata H, Kameyama M (1983) Increased manganese level in spinal cords of amyotrophic lateral sclerosis determined by radiochemical neutron activation analysis. J Neurol Sci 61: 283–293

    PubMed  CAS  Google Scholar 

  • Mora CA, Garruto RM, Brown P et al. (1988) Seroprevalence of antibodies to HTLV-I in patients with chronic neurological disorders other than tropical spastic paraparesis. Ann Neurol 23 (Suppl): S192–S195

    PubMed  Google Scholar 

  • Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235: 1641–1646

    PubMed  CAS  Google Scholar 

  • Moxley RT, Griggs RC, Forbes GB, Goldblatt D (1983) Influence of muscle wasting on oral glucose tolerance testing. Clin Sci 64: 601–609

    PubMed  CAS  Google Scholar 

  • Mueller PS, Quick DT (1970) Studies of glucose, insulin and lipid metabolism in amyotrophic lateral sclerosis and other neuromuscular disorders. J Lab Clin Med 76: 190–201

    PubMed  CAS  Google Scholar 

  • Muller WK, Hilgenstock F (1975) An uncommon case of amyotrophic lateral sclerosis with isolation of a virus from the CSF. J Neurol 211: 11–23

    PubMed  CAS  Google Scholar 

  • Munoz DG, Greene C, Perl DP, Selkoe DJ (1988) Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol 47: 9–18

    PubMed  CAS  Google Scholar 

  • Murai A, Miyahara T, Tanaka T (1983) Abnormalities of lipoprotein and carbohydrate metabolism in degenerative diseases of the nervous system - motor neuron disease and spinocerebellar degeneration. Tohoku J Exp Med 139: 365–376

    PubMed  CAS  Google Scholar 

  • Nagata Y, Okuya M, Watanabe R, Honda M (1982) Regional distribution of cholinergic neurons in human spinal cord transections in the patients with and without motor neuron disease. Brain Res 244: 223–230

    PubMed  CAS  Google Scholar 

  • Nakano Y, Hirayama K, Terao K (1987) Hepatic ultrastructural changes and liver dysfunction in amyotrophic lateral sclerosis. Arch Neurol 44: 103–106

    PubMed  CAS  Google Scholar 

  • Officer JE, Tecson N, Estes JD, Fontanilla E, Rangey RW, Gardner MB (1973) Isolation of a neurotropic type-C virus. Science 181:945–945

    PubMed  CAS  Google Scholar 

  • Olarte MR, Shafer SQ (1985) Levamisole is ineffective in the treatment of amyotrophic lateral sclerosis. Neurology 35: 1063–1066

    PubMed  CAS  Google Scholar 

  • Oldstone MBA, Wilson CB, Perrin LH, Norris FH (1976) Evidence for immune-complex formation in patients with amyotrophic lateral sclerosis. Lancet ii: 169–172

    Google Scholar 

  • Ono S, Mannen T, Toyokura Y (1989) Differential diagnosis between amyotrophic lateral sclerosis and spinal muscular atrophy by skin involvement. J Neurol Sci 91: 301–310

    PubMed  CAS  Google Scholar 

  • Oppenheim RW, Haverkamp LF, Prevette D, McManaman JL, Appel SH (1988) Reduction of naturally occurring motoneuron death in the chick embryo in vivo by a target-derived neurotrophic factor. Science 240: 919–922

    PubMed  CAS  Google Scholar 

  • Ordonez G, Sotelo J (1989) Antibodies against fetal muscle proteins in serum from patients with amyotrophic lateral sclerosis. Neurology 39: 683–686

    PubMed  CAS  Google Scholar 

  • Osame M, Matsumoto M, Usuku K et al. (1987) Chronic progressive myelopathy associated with elevated antibodies to human T-lymphotrophic virus Type I and adult T-cell leukemia-like cells. Ann Neurol 21: 117–122

    PubMed  CAS  Google Scholar 

  • Patrick J, Lindstrom V (1973) Autoimmune response to acetylcholine receptor. Science 180: 871–872

    PubMed  CAS  Google Scholar 

  • Patten BM, Engel WK (1982) Phosphate and parathyroid disorders associated with the clinical syndrome of amyotrophic lateral sclerosis. Adv Neurol 36: 181–200

    PubMed  CAS  Google Scholar 

  • Pedersen L, Platz P, Sersild C, Thomsen M (1977) HLA (SD and LD) in patients with amyotrophic lateral sclerosis (ALS). J Neurol Sci 31:313

    PubMed  CAS  Google Scholar 

  • Peppard RJ, Guttman M, Martin WRW, Eisen A, Calne DB (1989) Dopaminergic deficits demonstrated in Caucasian amyotrophic lateral sclerosis using positron emission tomography. Neurology 39 (Suppl 1): 400

    Google Scholar 

  • Perry G, Friedman R, Shaw G, Chau V (1987a) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer’s disease brains. Proc Natl Acad Sci USA 84: 3033–3036

    PubMed  CAS  Google Scholar 

  • Perry TL, Hansen S, Jones K (1987b) Brain glutamate deficiency in amyotrophic lateral sclerosis. Neurology 37: 1845–1848

    PubMed  CAS  Google Scholar 

  • Pertschuk LP, Cook AW, Gupta JK et al. (1977) Jejunal immunopathology in amyotrophic lateral sclerosis and multiple sclerosis. Identification of viral antigens by immunofluorescence. Lancet i: 1119–1123

    Google Scholar 

  • Pestronk A, Drachman DB, Griffin JW (1980) Effects of aging on nerve sprouting and regeneration. Exp Neurol 70: 65–82

    PubMed  CAS  Google Scholar 

  • Pestronk A, Adams RN, Clawson L et al. (1988) Serum antibodies to GM1 ganglioside in amyotrophic lateral sclerosis. Neurology 38: 1457–1461

    PubMed  CAS  Google Scholar 

  • Pestronk A, Adams RN, Cornblath D et al. (1989) Patterns of serum antibodies to GM1 and GDla ganglioside in ALS. Ann Neurol 25: 98–102

    PubMed  CAS  Google Scholar 

  • Petito CK, Navia BA, Cho EJ, Jordan BD, George DC, Price RW (1985) Vascular myelopathy pathologically resembling subacute combined degeneration in patients with the acquired immunodeficiency syndrome. N Engl J Med 312: 874–879

    PubMed  CAS  Google Scholar 

  • Petkau A, Sawatzky A, Hillier CR, Hoogstraten J (1974) Lead content of neuromuscular tissue in amyotrophic lateral sclerosis: case report and other considerations. Br J Ind Med 31: 275–287

    PubMed  CAS  Google Scholar 

  • Pieper SJL, Fields WS (1957) Failure of ALS to respond to intrathecal steroid and vitamin B12. Arch Neurol 19: 522–526

    Google Scholar 

  • Pierce-Ruhland R, Patten BM (1980) Muscle metals in motor neuron disease. Ann Neurol 8: 193–195

    PubMed  CAS  Google Scholar 

  • Pittman RH, Oppenheim RW (1979) Cell death of motoneurons in the chick embryo spinal cord. J Comp Neurol 187: 425–446

    PubMed  CAS  Google Scholar 

  • Plaitakis A, Caroscio JT (1987) Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 22: 575–579

    PubMed  CAS  Google Scholar 

  • Plaitakis A, Constantakakis E, Smith J (1988a) The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol 24: 446–449

    PubMed  CAS  Google Scholar 

  • Plaitakis A, Smith J, Mandelei J, Yahr MD (1988b) Pilot trial of branched-chain amino acids in amyotrophic lateral sclerosis. Lancet i: 1015–1018

    Google Scholar 

  • Price RW, Brew R, Sidtis J, Rosenblum M, Scheck AC, Cleary P (1988) The brain in AIDS CNS HIV- I infections and AIDS dementia complex. Science 239: 586–592

    PubMed  CAS  Google Scholar 

  • Przedborski S, Lilsnard C, Hildebrand J (1986) HTLV III and vacuolar myelopathy. N Engl J Med 315: 63

    Google Scholar 

  • Quick DT, Greer M (1967) Pancreatic dysfunction in patients with amyotrophic lateral sclerosis. Neurology 17: 112–116

    PubMed  CAS  Google Scholar 

  • Robbins JH, Otsuka F, Tarone RE, Polinski RJ, Brumback RA, Nee LE (1985) Parkinson’s disease and Alzheimer’s disease: hypersensitivity to X-rays in cultured cell lines. J Neurol Neurosurg Psychiatry 48: 916–923

    PubMed  CAS  Google Scholar 

  • Roelofs-Iverson RA, Muldur DW, Elveback LR, Kurland LT, Molguard CA (1984) ALS and heavy metals: a pilot case-control study. Neurology 34: 393–395

    PubMed  CAS  Google Scholar 

  • Roisen FJ, Bartfeld H, Donnenfeld H, Baxter J (1982) Neuron specific in vitro cytotoxicity of sera from patients with amyotrophic lateral sclerosis. Muscle Nerve 5: 48–53

    PubMed  CAS  Google Scholar 

  • Rosen DR, Siddique T, Patterson D et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin U, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326: 1464–1468

    PubMed  CAS  Google Scholar 

  • Rowland LP (1982) Diverse forms of motor neuron diseases. Adv Neurol 36: 1–13

    PubMed  CAS  Google Scholar 

  • Saffer D, Morley J, Bill PLA (1977) Carbohydrate metabolism in motor neurone disease. J Neurol Neurosurg Psychiatry 40: 533–537

    PubMed  CAS  Google Scholar 

  • Salazar AM, Masters CL, Gajdusek C, Gibbs CJ (1983) Syndromes of amyotrophic lateral sclerosis and dementia: relation to transmissible Creutzfeldt-Jakob disease. Ann Neurol 14: 17–26

    PubMed  CAS  Google Scholar 

  • Sar M, Stumpf WE (1977) Androgen concentration in motor neurons of cranial nerves and spinal cord. Science 187: 77–80

    Google Scholar 

  • Schauf CL, Antel JP, Arnason BGW, Davis FA, Rooney MW (1980) Neuroelectric blocking activity and plasmapheresis in amyotrophic lateral sclerosis. Neurology 30: 1011–1013

    PubMed  CAS  Google Scholar 

  • Schwartz M, Sela BA, Esher N (1982) Antibodies to gangliosides and myelin autoantigens are produced in mice following sciatic nerve injury. J Neurochem 38: 1192–1195

    PubMed  CAS  Google Scholar 

  • Scott JM, Dinn JJ, Wilson P, Wier DG (1981) Pathogenesis of subacute combined degeneration: A result of methyl group deficiency. Lancet ii:334–339

    Google Scholar 

  • Seigmaliet J, Cadilhac J, Lapinski H (1979) HLA and amyotrophic lateral sclerosis. Sem Hop Paris 55: 1239

    Google Scholar 

  • Shy ME, Rowland LP, Smith T et al. (1986) Motor neuron disease and plasma cell dyscrasia. Neurology 36: 1429–1436

    PubMed  CAS  Google Scholar 

  • Shy ME, Evans VA, Lublin FD et al. (1987) Anti-GMl antibodies in motor neuron disease patients without plasma cell dyscrasia. Ann Neurol 22: 167

    Google Scholar 

  • Simpson J A (1969) Myasthenia gravis: a new hypothesis. Scott Med J 5: 419–436

    Google Scholar 

  • Smith RG, Hamilton S, Hofmann F et al. (1992) Serum antibodies to skeletal muscle-derived L-type calcium channels in patients with amyotrophic lateral sclerosis. N Engl J Med 327: 1721–1728

    PubMed  CAS  Google Scholar 

  • Smith RG, Alexianu ME, Crawford G, Nyormoi O, Stefani E, Appel SH (1994) The cytotoxicity of immunoglobulins from amyotrophic lateral sclerosis patients on a hybrid motoneuron cell line. Proc Natl Acad Sci USA 91: 3393–3397

    PubMed  CAS  Google Scholar 

  • Spencer PS, Roy DN, Ludolph A, Hugon J, Dwivedi MP, Schaumberg HH (1986) Lathyrism: Evidence for role of the neuroexcitatory amino acid BO A A. Lancet i: 1066–1067

    Google Scholar 

  • Spencer PS, Nunn PB, Hugon J (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237: 465–564

    Google Scholar 

  • Stefansson K, Marton LS, Dieperink ME, Malnar GK, Schlaepfer WW, Helgason CM (1985) Circulating autoantibodies to the 200 kDa protein of neurofilaments in the serum of healthy individuals. Science 228: 1117–1119

    PubMed  CAS  Google Scholar 

  • Steinke J, Tyler HR (1964) The association of amyotrophic lateral sclerosis (motor neuron disease) and carbohydrate intolerance, a clinical study. Metabolism 13: 1376–1381

    PubMed  CAS  Google Scholar 

  • Stober T, Stelte W, Kunze K (1983) Lead concentrations in blood, plasma erythrocytes, and cerebrospinal fluid in amyotrophic lateral sclerosis. J Neurol Sci 61: 21–26

    PubMed  CAS  Google Scholar 

  • Stober T, Schimrigk K, Dietzsch S, Theilen T (1985) Intrathecal thyrotropin-releasing hormone therapy of amyotrophic lateral sclerosis. J Neurol 232: 13–14

    PubMed  CAS  Google Scholar 

  • Swash M, Scholtz CL, Vowles G, Ingram DA (1988) Selective and asymmetric vulnerability of corticospinal and spinocerebellar tracts in motor neuron disease. J Neurol Neurosurg Psychiatry 51: 785–789

    PubMed  CAS  Google Scholar 

  • Tachovsky TG,Lisak RP, Koprovski AN, Theofilotoulos AM, Dixon FJ (1976) Circulating immune complexes in multiple sclerosis and other neurologic diseases. Lancet ii:977–999

    Google Scholar 

  • Tandon R, Robison SH, Munzer JS, Bradley WG (1985) Deficient DNA repair in amyotrophic lateral sclerosis cells. Neurology 35 (Suppl 1): 73

    Google Scholar 

  • Tavolato BF, Licandro AC, Saia A (1975) Motor neurone disease: an immunological study. Eur Neurol 13: 433–440

    PubMed  CAS  Google Scholar 

  • Tom MI, Richardson JC (1951) Hypoglycemia from islet cell tumor of pancreas with amyotrophy and cerebrospinal nerve cell changes. J Neuropathol Exp Neurol 10: 57–66

    PubMed  CAS  Google Scholar 

  • Tomlinson BE, Irving D (1977) The number of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci 34: 213–219

    PubMed  CAS  Google Scholar 

  • Touzeau G, Kato AC (1983) Effects of amyotrophic lateral sclerosis sera on cultured cholinergic neurons. Neurology 33: 317–322

    PubMed  CAS  Google Scholar 

  • Touzeau G, Kato AC (1986) ALS serum has no effect on three enzymatic activities in human spinal cord neurons. Neurology 36: 573–576

    PubMed  CAS  Google Scholar 

  • Troost D, Vanden Oord J J, deJong JMBV (1988) Analysis of the inflammatory infiltrate in amyotrophic lateral sclerosis. J Neuropath Appl Neurobiol 14: 255–256

    Google Scholar 

  • Uemura E, Hartmann HA (1978) Age-related changes in RNA content and the volume of the human hypoglossal neuron. Brain Res Bull 3: 207–211

    CAS  Google Scholar 

  • Urbanek K, Jansa P (1974) Amyotrophic lateral sclerosis. Abnormal cellular inflammatory response. Arch Neurol 30:186–187

    PubMed  CAS  Google Scholar 

  • Utterback RA, Cummins AJ, Cape CA, Goldenberg J (1970) Pancreatic function in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 33: 544–547

    PubMed  CAS  Google Scholar 

  • Vernant JC, Maurs L, Gessain A et al. (1987) Endemic tropical spastic paraparesis associated with human T-lymphotropic virus type I. A clinical and seroepidemiological study of 25 cases. Ann Neurol 21: 123–130

    PubMed  CAS  Google Scholar 

  • Viola MV, Lazarus, Antel J, Roos R (1982) Nucleic acid probes in the study of amyotrophic lateral sclerosis. Adv Neurol 36: 317–329

    PubMed  CAS  Google Scholar 

  • Weiner LP (1980) Possible role of androgen receptors in amyotrophic lateral sclerosis. A hypothesis. Arch Neurol 37: 129–131

    PubMed  CAS  Google Scholar 

  • Westall FC, Rubin R, Nieder J, Jablecki C (1983) Low percentage T-micron cells in amyotrophic lateral sclerosis. Immunol Lett 7: 139–140

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Wamsley JK, Zarbin MA, Tourrellottee WW, Kuhar MJ (1983) Amyotrophic lateral sclerosis: alterations in neurotransmitter receptors. Ann Neurol 14: 8–16

    PubMed  CAS  Google Scholar 

  • Wilson SAK (1907) The amyotrophy of chronic lead poisoning: Amyotrophic lateral sclerosis of toxic origin. Rev Neuronal Psychiatry 5: 441–445

    Google Scholar 

  • Wolfgram F, Myers L (1973) Amyotrophic lateral sclerosis: effect of serum on anterior horn cells in culture. Science 179: 579–580

    PubMed  CAS  Google Scholar 

  • Yase Y (1972) The pathogenesis of amyotrophic lateral sclerosis. Lancet ii:292–296

    Google Scholar 

  • Yoshimasu F, Yasui M, Yase Y et al. (1980) Studies on amyotrophic lateral sclerosis by neutron activation analysis. II. Comparative study of analytical results on Guam PD, Japanese ALS, and Alzheimer’s disease cases. Fol Psychiatry Neurol 34: 75–82

    Google Scholar 

  • Yoshino Y (1984) Possible involvement of folate cycle in the pathogenesis of amyotrophic lateral sclerosis. Neurochem Res 9: 387–391

    PubMed  CAS  Google Scholar 

  • Yoshino Y, Koike H, Akai K (1979) Free amino acids in motor cortex of amyotrophic lateral sclerosis. Experientia 35: 219–220

    PubMed  CAS  Google Scholar 

  • Zolan WJ, Ellis-Neill L (1986) Concentration of aluminium, manganese, iron and calcium in four southern Guam rivers. University of Guam, Agana, Technical report 64:68

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this chapter

Cite this chapter

Appel, S.H., Engelhardt, J.I., Smith, R.G., Stefani, E. (1995). Theories of Causation. In: Leigh, P.N., Swash, M. (eds) Motor Neuron Disease. Springer, London. https://doi.org/10.1007/978-1-4471-1871-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1871-8_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1873-2

  • Online ISBN: 978-1-4471-1871-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics