Skip to main content

Signals from the hypothalamus to the pituitary during chronic immune responses

  • Chapter
Steroid Hormones and the T-Cell Cytokine Profile

Abstract

The question of whether stress is good or bad is a pertinent one in relation to pathology. A major component of the host response to stress is the activation of the hypothalamo-pituitary-adrenal (HPA) axis. The end point of this activation is the release of glucocorticoid steroid hormones from the adrenal cortex (predominantly corticosterone in the rat and cortisol in man). The importance of this system to the integrity of the individual can be demonstrated by investigating the extreme situation where the adrenal is removed or no longer functioning. This situation can be created surgically in experimental animals and occasionally in humans, although more frequently it occurs as a result of defective function of the adrenals due to autoimmune disease or tuberculosis leading to adrenal insufficiency (Addison’s disease). In patients with Addison’s disease minor challenges which might only produce mild symptoms in a normal individual can be life threatening. An interesting parallel to this can be seen following injection of the cytokine interleukin-1 (IL-1) or the immune stimulant lipopolysaccharide (LPS) an agent which produces flu-like symptoms for a few hours when given to humans. Doses which only result in “sickness behaviour” in adrenal-intact animals prove fatal in the absence of adrenal glands. In a number of animal models of immune-mediated diseases such as experimental allergic encephalomyelitis (EAE) and adjuvant-induced arthritis (AA) it has been demonstrated that in adrenalectomized animals following induction of the disease there is an earlier onset, an increased severity and, if left untreated, a fatal outcome. In all these cases treatment with steroids diminishes the severity of disease and prevents the fatal outcome. This chapter will draw together our current understanding of the mechanisms, particularly at the central level, underlying the activation of the HPA axis following immune activation. Much of our understanding of these mechanisms comes from studies in experimental animal models and this chapter will concentrate principally but not exclusively on the evidence from these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris G (1948) Neural control of the pituitary gland. Physiol Rev 28:139–179

    PubMed  CAS  Google Scholar 

  2. Guillemin R, Rosenberg B (1955) Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology 57:599–607

    PubMed  CAS  Google Scholar 

  3. Saffran M, Schally AV (1955) In vitro bioassay of corticotropin: modification and statistical treatment. Endocrinology 56:523–532

    PubMed  CAS  Google Scholar 

  4. Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213:1394–1397

    PubMed  CAS  Google Scholar 

  5. Levin N, Blum M, Roberts JL (1989) Modulation of basal and corticotropin-releasing factor-stimulated pro-opiomelanocortin gene expression by vasopressin in rat anterior pituitary. Endocrinology 125:2957–2966

    PubMed  CAS  Google Scholar 

  6. Whitnall MH, Mezey EHG (1985) Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature 317:248–250

    PubMed  CAS  Google Scholar 

  7. Whitnall MH, Smith D, Gainer H (1987) Vasopressin coexists in half of the corticotropin-releasing factor axons present in the external zone of the median eminence in normal rats. Neuroendocrinology 45:420–424

    PubMed  CAS  Google Scholar 

  8. Erkut ZA, Hofman MA, Ravid R, Swaab DF (1995) Increased activity of hypothalamic corticotropin-releasing hormone neurons in multiple sclerosis. J Neuroimmunol 62:27–33

    PubMed  CAS  Google Scholar 

  9. Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin-releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299:355–357

    PubMed  CAS  Google Scholar 

  10. Turkelson CM, Thomas CR, Arimura A, Chang J, Chang JH, Shimiza M (1982) In vitro potentiation of the activity of synthetic-ovine corticotropin-releasing factor by arginine vasopressin. Peptides 1:111–115

    Google Scholar 

  11. Vale W, Vaughan J, Smith M, Yamamoto G, Rivier J, Rivier C (1983) Effects of synthetic ovine CRF, glucocorticoids, catecholamines, neurohypophysial peptides and other substances on cultured corticotropic cells. Endocrinology 113:1121–1131

    PubMed  CAS  Google Scholar 

  12. Rivier C, Vale W (1983) Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo. Endocrinology 113:939–942

    PubMed  CAS  Google Scholar 

  13. Gibbs DM (1985) Measurement of hypothalamic corticotropin-releasing factors in hypophyseal portal blood. Fed Proc 44:203–206

    PubMed  CAS  Google Scholar 

  14. Plotsky PM (1985) Hypophyseotropic regulation of adenohypophyseal adrenocorticotropin secretion. Fed Proc 44:207–213

    PubMed  CAS  Google Scholar 

  15. Verbalis JG, Stricker EM, Robinson AG, Hoffman GE (1991) Cholecystokinin activates c-fos expression in hypothalamic oxytocin and corticotropin-releasing hormone neurons. J Neuroendocrinol 3:205–213

    PubMed  CAS  Google Scholar 

  16. Pesce G, Guillaume V, Jesova D, Faudon M, Grino M, Oliver C (1990) Epinephrine in rat hypophysial portal blood is derived mainly from the adrenal medulla. Neuroendocrinol. 52:322–327

    CAS  Google Scholar 

  17. Hökfelt T, Fahrenkrug J, Tatemoto K, Mutt V, Werner S, Hulting A-L, Terenius L, Chang KJ (1983) The PHI (PHI-27)/corticotropin-releasing factor/enkephalin immunoreactive hypothalamic neuron: possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion. PNAS USA 80:858–898

    Google Scholar 

  18. Hisano S, Tsuruo Y, Katoh S, Daikoku S, Yanaiharan N, Shibasaki T (1987) Intragranular colocalization of arginine vasopressin and methionine-enkephalinoctapeptide in CRF-axons in the median eminence. Cell Tissue Res 249:497–507

    PubMed  CAS  Google Scholar 

  19. Jessop DS, Chowdrey HS, Larsen PJ, Lightman SL (1992) Substance P: multifunctional peptide in the hypothalamo-pituitary system? J Endocrinol 132:331–337

    PubMed  CAS  Google Scholar 

  20. Fink G, Dow RC, Casley D, Johnston CI, Bennie J, Carroll S, Dick H (1992) Atrial natriuretic peptide is involved in the ACTH response to stress and glucocorticoid feedback. J Endocrinol 135:37–43

    PubMed  CAS  Google Scholar 

  21. Cunningham ET, Sawchenko PE (1988) Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 274:60–76

    PubMed  Google Scholar 

  22. Liposits Z, Phelix C, Paull WK (1987) Synaptic interaction of serotoninergic axons and corticotropin-releasing factor (CRF) synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Histochemistry 86:541–549

    PubMed  CAS  Google Scholar 

  23. Larsen PJ, Hay-Schmidt A, Vrang N, Mikkelsen JD (1996) Origin of projections from the mid-brain raphe nuclei to the hypothalamic paraventricular nucleus in the rat: a combined retrograde and anterograde tracing study. Neuroscience 70:963–988

    PubMed  CAS  Google Scholar 

  24. Imaki T, Shibasaki T, Hotta M, Demura H (1992) Early induction of c-fos precedes increased expression of corticotropin-releasing factor messenger ribonucleic acid in the paraventricular nucleus after immobilization stress. Endocrinology 131:240–246

    PubMed  CAS  Google Scholar 

  25. Kononen J, Honkaniemi J, Alho H, Koistinaho J, Iadrola M, Pelto-Huikko M (1992) Fos-like immunoreactivity in the rat hypothalamic-pituitary axis after immobilization stress. Endocrinology 130:3041–3047

    PubMed  CAS  Google Scholar 

  26. Harbuz MS, Chalmers J, De Souza L, Lightman SL (1993) Stress-induced activation of CRF and c-fos mRNAs in the paraventricular nucleus are not affected by serotonin depletion. Brain Res 609:167–173

    PubMed  CAS  Google Scholar 

  27. Kjaer A, Larsen PJ, Knigge U, Moller M, Warberg J (1994) Histamine stimulates c-fos expression in hypothalamic vasopressin-, oxytocin-, and corticotropin-releasing hormone-containing neurons. Endocrinology 134:482–491

    PubMed  CAS  Google Scholar 

  28. Senba E, Umemoto S, Kawai Y, Noguchi K (1994) Differential expression of fos family and jun family mRNAs in the rat hypothalamo-pituitary-adrenal axis after immobilization stress. Mol Brain Res 24:283–294

    PubMed  CAS  Google Scholar 

  29. Helmreich DL, Cullinan WE, Watson SJ (1996) The effect of adrenalectomy on stress-induced c-fos mRNA expression in the rat brain. Brain Res 706:137–144

    PubMed  CAS  Google Scholar 

  30. Ceccatelli S, Villar MJ, Goldstein M, Hökfelt T (1989) Expression of c-fos immunoreactivity in transmitter-characterized neurons after stress. PNAS USA 86:9569–9573

    PubMed  CAS  Google Scholar 

  31. Covenas R, de Leon M, Cintra A, Bjelke B, Gustafsson J-A, Fuxe K (1993) Coexistence of c-fos and glucocorticoid receptor immunoreactivities in the CRF immunoreactive neurons of the paraventricular hypothalamic nucleus of the rat after acute immobilization stress. Neurosci Lett 149:149–152

    PubMed  CAS  Google Scholar 

  32. Ma X-M, Levy A, Lightman SL (1997) Rapid changes of heteronuclear RNA for corticotropin-releasing hormone and arginine vasopressin in response to acute stress. J Endocrinol 152:81–89

    PubMed  CAS  Google Scholar 

  33. Pezzone MA, Lee W-S, Hoffman GE, Pezzone KM, Rabin BS (1993) Activation of brainstem catecholaminergic neurons by conditioned and unconditioned aversive stimuli as revealed by c-fos immunoreactivity. Brain Res 608:310–318

    PubMed  CAS  Google Scholar 

  34. Schreiber SS, Tocco G, Shors TJ, Thompson RF (1991) Activation of immediate early genes after acute stress. NeuroReport 2:17–20

    CAS  Google Scholar 

  35. Matta SG, Foster CA, Sharp BM (1993) Nicotine stimulates the expression of cfos protein in the parvocellular paraventricular nucleus and brainstem catecholaminergic regions. Endocrinology 132:2149–2156

    PubMed  CAS  Google Scholar 

  36. Jingami H, Matsukura S, Numa S, Imura H (1985) Effects of adrenalectomy and dexamethasone administration on the level of prepro-corticotropin-releasing factor messenger ribonucleic acid (mRNA) in the hypothalamus and adrenocorticotropin/ B-lipotropin precursor mRNA in the pituitary in rats. Endocrinology 117:1314–1320

    PubMed  CAS  Google Scholar 

  37. Bugnon CD, Fellman D, Gouget A (1983) Changes in corticoliberin and vasopressinlike immunoreactivities in the zona externa of the median eminence in adrenalectomized rats. Immunocytochemical study. Neurosci Lett 37:43–49

    PubMed  CAS  Google Scholar 

  38. Merchenthaler I, Vigh S, Petrusz P, Schally AV (1983) The paraventriculo-infundibular corticotropin-releasing factor (CRF) pathway as revealed by immunocytochemistry in long-term hypophysectomized or adrenalectomized rats. Regul Pept 5:295–305

    PubMed  CAS  Google Scholar 

  39. Paull WK, Gibbs FP (1983) The corticotropin-releasing factor (CRF) neurosecretory system in intact, adrenalectomized, and adrenalectomized-dexamethasone dexamethasone treated rats. Histochemistry 78:303–316

    PubMed  CAS  Google Scholar 

  40. Suda T, Tomori N, Tozawa F, Mouri T, Demura H, Shizume K (1983) Effects of bilateral adrenalectomy on immunoreactive corticotropin-releasing factor in the rat median eminence and intermediate-posterior pituitary. Endocrinology 113:1182–1184

    PubMed  CAS  Google Scholar 

  41. Swanson LW, P.E. S, Rivier JE, Vale WW (1983) The organization of ovine corti-cotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study. Neuroendocrinology 36:165–186

    PubMed  CAS  Google Scholar 

  42. Tramu G, Croix C, Pillez A (1983) Ability of the CRF immunoreactive neurons of the paraventricular nucleus to produce a vasopressin-like material. Neuroendocrinology 37:467–469

    PubMed  CAS  Google Scholar 

  43. Kiss JZ, Mezey E, Skirboll L (1984) Corticotropin-releasing factor-immunoreactive neurons become vasopressin positive after adrenalectomy. PNAS USA 81:1854–1858

    PubMed  CAS  Google Scholar 

  44. Plotsky PM (1987) Regulation of hypophysiotropic factors mediating ACTH secretion. Ann NY Acad Sci 512:205–217

    PubMed  CAS  Google Scholar 

  45. Young WS III, Mezey E, Siegel RE (1986) Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neurosci Lett 70:198–203

    PubMed  CAS  Google Scholar 

  46. Beyer HS, Matta SG, Sharp BM (1988) Regulation of the messenger ribonucleic acid for corticotropin-releasing factor in the paraventricular nucleus and other brain sites of the rat. Endocrinology 123:2117–2123

    PubMed  CAS  Google Scholar 

  47. Lightman SL, Young WS III (1989) Influence of steroids on the hypothalamic corti-cotropin-releasing factor and preproenkephalin mRNA responses to stress. PNAS USA 86:4306–4310

    PubMed  CAS  Google Scholar 

  48. Swanson LW, Simmons DM (1989) Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat. J Comp Neurol 285:413–435

    PubMed  CAS  Google Scholar 

  49. Wolfson B, Manning RW, Davis LG, Arentzen R, Baldrino FJ (1985) Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy. Nature 315:59–61

    PubMed  CAS  Google Scholar 

  50. Young WS III, Mezey E, Siegel RE (1986) Vasopressin and oxytocin mRNAs in adrenalectomized and Brattleboro rats: analysis by quantitative in situ hybridization histochemistry. Mol Brain Res 1:231–241

    CAS  Google Scholar 

  51. Whitnall MH, Key S, Gainer H (1987) Vasopressin-containing and vasopressin-deficient subpopulations of corticotropin-releasing factor axons are differentially affected by adrenalectomy. Endocrinology 120:2180–2182

    PubMed  CAS  Google Scholar 

  52. Whitnall MH (1988) Distributions of pro-vasopressin expressing and pro-vasopressin deficient CRH neurons in the paraventricular hypothalamic nucleus of colchicine-treated normal and adrenalectomized rats. J Comp Neurol 275:13–28

    PubMed  CAS  Google Scholar 

  53. Kovacs KJ, Mezey E (1987) Dexamethasone inhibits corticotropin-releasing factor gene expression in the rat paraventricular nucleus. Neuroendocrinology 46:365–368

    PubMed  CAS  Google Scholar 

  54. Harbuz MS, Lightman SL (1989) Glucocorticoid inhibition of stress-induced changes in hypothalamic corticotrophin-releasing factor messenger RNA and proenkephalin A messenger RNA. Neuropeptides 14:17–20

    PubMed  CAS  Google Scholar 

  55. Sawchenko PE (1987) Evidence for a local site of action for glucocorticoids in inhibiting CRF and vasopressin expression in the paraventricular nucleus. Brain Res 403:213–224

    PubMed  CAS  Google Scholar 

  56. Kovacs KJ, Makara GB (1988) Corticosterone and dexamethasone act at different brain sites to inhibit adrenalectomy-induced adrenocorticotropin hypersecretion. Brain Res 474:205–210

    PubMed  CAS  Google Scholar 

  57. Hu S-B, Tannahill LA, Biswas S, Lightman SL (1992) Release of corticotropin-releasing factor-41, arginine vasopressin and oxytocin from rat foetal hypothalamic cells in culture: response to activation of intracellular second messengers and to corticosteroids. J Endocrinol 132:57–65

    PubMed  CAS  Google Scholar 

  58. Herman JP, Wiegand SJ, Watson SJ (1990) Regulation of basal corticotropin-releasing hormone and arginine vasopressin messenger ribonucleic acid expression in the paraventricular nucleus: effects of selective hypothalamic deafferentations. Endocrinology 127:2408–2417

    PubMed  CAS  Google Scholar 

  59. Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32

    Google Scholar 

  60. Harbuz MS, Lightman SL (1992) Stress and the hypothalamo-pituitary-adrenal axis: acute, chronic and immunological activation. J Endocrinol 134:327–339

    PubMed  CAS  Google Scholar 

  61. Romero LM, Sapolsky RM (1996) Patterns of ACTH secretagog secretion in response to psychological stimuli. J Neuroendocrinol 8:243–258

    PubMed  CAS  Google Scholar 

  62. Lightman SL, III. YWS (1988) Corticotrophin-releasing factor, vasopressin and proopiomelanocortin mRNA responses to stress and opiates in the rat. J Physiol 403:511–523

    PubMed  CAS  Google Scholar 

  63. Harbuz MS, Lightman SL (1989) Responses of hypothalamic and pituitary mRNA to physical and psychological stress in the rat. J Endocrinol 122:705–711

    PubMed  CAS  Google Scholar 

  64. Lightman SL, Young WSI (1987) Changes in hypothalamic preproenkephalin A mRNA following stress and opiate withdrawal. Nature 328:643–645

    PubMed  CAS  Google Scholar 

  65. Harbuz MS, Chowdrey HS, Jessop DS, Biswas S, Lightman SL (1991) Role of catecholamines in mediating messenger RNA and hormonal responses to stress. Brain Res 551:52–57

    PubMed  CAS  Google Scholar 

  66. Harbuz MS, Russell JA, Sumner BEH, Kawata M, Lightman SL (1991) Rapid changes in the content of proenkephalin A and corticotrophin-releasing hormone mRNAs in the paraventricular nucleus during morphine withdrawal in urethane-anaesthetized rats. Mol Brain Res 9:285–291

    PubMed  CAS  Google Scholar 

  67. Watts AG (1991) Ether anesthesia differentially affects the content of preprocorti-cotropin-releasing hormone, prepro-neurotensin/neuromedin N and preproenkephalin mRNAs in the hypothalamic paraventricular nucleus of the rat. Brain Res 544:353–357

    PubMed  CAS  Google Scholar 

  68. Linton EA, Tilders FJH, Hodgkinson S, Berkenbosch F, Vermes I, Lowry PJ (1985) Stress-induced secretion of adrenocorticotropin in rats is inhibited by administration of antisera to ovine corticotropin-releasing factor and vasopressin. Endocrinology 116:966–970

    PubMed  CAS  Google Scholar 

  69. Harbuz MS, Nicholson SA, Gillham B, Lightman SL (1990) Stress responsiveness of hypothalamic corticotrophin-releasing factor and pituitary proopiomelanocortin mRNAs following high-dose glucocorticoid treatment and withdrawal in the rat. J Endocrinol 127:407–415

    PubMed  CAS  Google Scholar 

  70. Dallman MF, Jones MT (1973) Corticosteroid feedback control of ACTH secretion: effects of stress-induced corticosterone secretion on subsequent stress responses in the rat. Endocrinology 92:1367–1375

    PubMed  CAS  Google Scholar 

  71. Schmidt ED, Binnekade R, Janszen AWJW, Tilders FJH (1996) Short stressor induced long-lasting increases of vasopressin stores in hypothalamic corticotropin-releasing hormone (CRH) neurons in adult rats. J Neuroendocrinol 8:703–712

    PubMed  CAS  Google Scholar 

  72. Schmidt ED, Janszen AWJW, Wouterlood F, Tilders FJH (1995) Interleukin-1-induced long-lasting changes in hypothalamic corticotropin-releasing hormone (CRH)-neurons and hyperresponsiveness of the hypothalomo-pituitary-adrenal axis. J Neurosci 15:7417–7426

    PubMed  CAS  Google Scholar 

  73. Kant GJ, Eggleston T, Landman-Roberts L, Kenion CC, Driver GC, Meyerhoff JL (1985) Habituation to repeated stress is stressor specific. Pharmacol Biochem Behav 22:631–634

    PubMed  CAS  Google Scholar 

  74. Hashimoto K, Suemaru S, Takao T, Sugarwara M, Makino S, Ota S (1988) Corticotropin-releasing hormone and pituitary-adrenocortical responses in chronically stressed rats. Regul Pept 23:117–126

    PubMed  CAS  Google Scholar 

  75. Spencer RL, McEwen BS (1990) Adaptation of the hypothalamo-pituitary-adrenal axis to chronic ethanol stress. Neuroendocrinology 52:481–489

    PubMed  CAS  Google Scholar 

  76. Daniels-Severs A, Goodwin A, Keil LC, Vernikos-Danellis J (1973) Effect of chronic crowding and cold on the pituitary-adrenal system: responsiveness to an acute stimulus during chronic stress. Pharmacology 9:348–356

    PubMed  CAS  Google Scholar 

  77. Sakellaris PC, Vernikos-Danellis J (1975) Increased rate of response of the pituitary-adrenal system in rats adapted to chronic stress. Endocrinology 97:597–602

    PubMed  CAS  Google Scholar 

  78. Vernikos J, Dallman MF, Bonner C, Katzen A, Shinsako J (1982) Pituitary-adrenal function in rats chronically exposed to cold. Endocrinology 110:413–420

    PubMed  CAS  Google Scholar 

  79. Scribner KA, Walker C-D, Cascio CS, Dallman MF (1991) Chronic streptozotocin diabetes in rats facilitates the acute stress response without altering pituitary or adrenal responsiveness to secretagogues. Endocrinology 129:99–108

    PubMed  CAS  Google Scholar 

  80. Scaccianoce S, Muscolo LAA, Cigliana G, Navarra D, Nicolai R, Angelucci L (1991) Evidence for a specific role of vasopressin in sustaining pituitary-adrenocortical stress response in the rat. Endocrinology 128:3138–3143

    PubMed  CAS  Google Scholar 

  81. De Goeij DCE, Kvetnansky R, Whitnall MH, Jesova D, Berkenbosch F, Tilders FJH (1991) Repeated stress-induced activation of corticotropin-releasing factor neurons enhances vasopressin stores and colocalization with corticotropin-releasing factor in the median eminence of rats. Neuroendocrinology 53:150–159

    PubMed  Google Scholar 

  82. Hauger RL, Lorang M, Irwin M, Aguilera G (1990) CRF receptor regulation and sensitization of ACTH responses to acute ether stress during chronic intermittent immobilization stress. Brain Res 532:34–40

    PubMed  CAS  Google Scholar 

  83. Khansari DN, Murgo AJ, Faith RE (1990) Effects of stress on the immune system. Immunol Today 11:170–175

    PubMed  CAS  Google Scholar 

  84. Bertini R, Bianchi M, Ghezzi P (1988) Adrenalectomy sensitizes mice to the lethal effects of interleukin 1 and tumour necrosis factor. J Exp Med 167:1708–1712

    PubMed  CAS  Google Scholar 

  85. Riley V (1981) Psychoneuroendocrine influences on immuno-competence and neoplasia. Science 212:100–1109

    Google Scholar 

  86. Keller SE, Weiss JM, Schleiffer SJ, Miller NE, Stein M (1983) Stress-induced suppression of immunity in adrenalectomized rats. Science 221:1301–1304

    PubMed  CAS  Google Scholar 

  87. Jankovic BD (1989) Neuroimmunomodulation: facts and dilemmas. Immunol Lett 21:101–118

    PubMed  CAS  Google Scholar 

  88. Meickle WA, Dorchuck RW, Araneo BA, Stringham JD, Evans TG, Spruance SL, Daynes RA (1991) The presence of a dehydroepiandrosterone-specific receptor binding complex in murine T cells. J Steroid Biochem Molec Biol 42:293–304

    Google Scholar 

  89. Blauer KL, Poth M, Rogers WM, Bernton EW (1991) Dehydroepiandrosterone antagonizes the suppressive effects of dexamethasone on lymphocyte proliferation. Endocrinology 129:3174–3179

    PubMed  CAS  Google Scholar 

  90. Weksler ME (1993) Immune senesence and adrenal steroids-immune dysregulation and the action of dehydroepiandrosterone (DHEA) in old animals. Eur J Clin Pharmacol 45:21–23

    Google Scholar 

  91. Watson RR, Huls A, Araghinivam M, Chung SB (1996) Dehydroepiandrosterone and diseases of aging. Drugs Aging 9:274–291

    PubMed  CAS  Google Scholar 

  92. Khorram O, Vu L, Yen SSC (1997) Activation of immune function by dehy-droepiandrosterone (DHEA) in age-advanced men. J Gerontol (A) 52:M1–M7

    CAS  Google Scholar 

  93. Blalock JE (1994) The syntax of immune-neuroendocrine communication. Immunol Today 15:504–511

    PubMed  CAS  Google Scholar 

  94. Labeur MS, Arzt E, Wiegers GJ, Holsboer F, Reul JMHM (1995) Long-term intracere-broventricular corticotropin-releasing hormone administration induces distinct changes in rat splenocyte activation and cytokine expression. Endocrinology 136:2678–2688

    PubMed  CAS  Google Scholar 

  95. Meyer WJI III, Smith EM, Richards GE, Cavallo A, Morrill AC, Blalock JE (1987) In vivo immunoreactive adrenocorticotropin (ACTH) production by human mononuclear leukocytes from normal and ACTH-deficient individuals. J Clin Endocrinol Metab 64:98–105

    PubMed  CAS  Google Scholar 

  96. Jain R, Zwickler D, Hollander CS, Brand H, Saperstein A, Hutchinson B, Brown C, Audhya T (1991) Corticotropin-releasing factor modulates the immune response to stress in the rat. Endocrinology 128:1329–1336

    PubMed  CAS  Google Scholar 

  97. Serda SM, Wei ET (1992) Epinephrine-induced pulmonary oedema in rats is inhibited by corticotropin-releasing factor. Pharmacol Res 26:85–91

    PubMed  CAS  Google Scholar 

  98. Wei ET, Thomas HA (1994) Correlation of neuroendocrine and anti-edema activities of alanine-corticotropin-releasing factor analogs. Eur J Pharmacol 263:319–321

    PubMed  CAS  Google Scholar 

  99. Berkenbosch F, Wolvers DAW, Derijk R (1991) Neuroendocrine and immunological mechanisms in stress-induced immunomodulation. J Steroid Biochem Mol Biol 40:639–647

    PubMed  CAS  Google Scholar 

  100. Sundar SK, Cierpial MA, Kilts C, Ritchie JC, Weiss JM (1990) Brain IL-1-induced immunosuppression occurs through activation of both pituitary-adrenal axis and sympathetic nervous system by corticotropin-releasing factor. J Neurosci 10:3701–3706

    PubMed  CAS  Google Scholar 

  101. Karalis K, Sano H, Redwine J, Listwak S, Wilder RL, G.P. C (1991) Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science 254:421–423

    PubMed  CAS  Google Scholar 

  102. Stephanou A, Jessop DS, Knight RA, Lightman SL (1990) Corticotrophin-releasing factor-like immunoreactivity and mRNA in human leukocytes. Brain Behav Immun 4:67–73

    PubMed  CAS  Google Scholar 

  103. Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R, Turnbull AV, Lovejoy D, Rivier C, Rivier J, Sawchenko PE, Vale W (1995) Urocortin, a mammalian neuropeptide related to fish urocortin I and to corticotrophin-releasing factor. Nature 378:287–292

    PubMed  CAS  Google Scholar 

  104. Behan DP, Khongsaly O, Ling N, De Souza EB (1996) Urocortin interaction with corti-cotropin-releasing factor (CRF) binding protein (CRF-BP): a novel mechanism for elevating ‘free’ CRF levels in human brain. Brain Res 725:263–267

    PubMed  CAS  Google Scholar 

  105. Webster EL, De Souza ED (1988) Corticotropin-releasing factor receptors in mouse spleen: identification, autoradiographic localization and regulation by divalent cations and guanine nucleotides. Endocrinology 122:609–617

    PubMed  CAS  Google Scholar 

  106. Weidenfeld J, Abramsky O, Ovadia H (1989) Effect of interleukin-1 on ACTH and corticosterone secretion in dexamethasone and adrenalectomized pretreated male rats. Neuroendocrinology 50:650–654

    PubMed  CAS  Google Scholar 

  107. Berkenbosch F, Van Oers J, Del Rey A, Tilders F, Besedovsky H (1987) Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238:524–526

    PubMed  CAS  Google Scholar 

  108. Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W (1987) Interleukin-1 stimu-lates the secretion of hypothalamic corticotropin-releasing factor. Science 238:522–524

    PubMed  CAS  Google Scholar 

  109. Watanabe T, Morimoto A, Sakata Y, Murakami N (1990) ACTH response induced by interleukin-1 is mediated by CRF secretion stimulated by hypothalamic PGE. Experientia 46:481–484

    PubMed  CAS  Google Scholar 

  110. Berkenbosch F, De Goeij DEC, Del Rey A, Besedovsky HO (1989) Neuroendocrine, sympathetic and metabolic responses induced by interleukin-1. Neuroendocrinology 50:570–576

    PubMed  CAS  Google Scholar 

  111. Suda T, Tozawa F, Ushiyama T, Sumitomo T, Yamada M, Demura H (1990) Interleukin-1 stimulates corticotropin-releasing factor gene expression in rat hypothalamus. Endocrinology 126:1223–1228

    PubMed  CAS  Google Scholar 

  112. Cambronero JC, Borrell J, Guaza C (1989) Glucocorticoids modulate rat hypothalamic corticotrophin-releasing factor release induced by interleukin-1. J Neurosci Res 24:470–476

    PubMed  CAS  Google Scholar 

  113. Tsagarakis S, Gillies G, Rees LH, Besser M, Grossman A (1989) Interleukin-1 directly stimulates the release of corticotrophin releasing factor from rat hypothalamus. Neuroendocrinology 49:98–101

    PubMed  CAS  Google Scholar 

  114. Navarra P, Tsagarakis S, Faria MS, Rees LH, Besser GM, Grossman AB (1991) Interleukins-1 and -6 stimulate the release of corticotropin-releasing hormone-41 from rat hypothalamus in vitro via the eicosanoid cyclooxygenase pathway. Endocrinology 128:37–44

    PubMed  CAS  Google Scholar 

  115. Chover-Gonzalez AJ, Harbuz MS, Lightman SL (1993) Effect of adrenalectomy and stress on interleukin-113 mediated activation of hypothalamic corticotropin releasing factor mRNA. J Neuroimmunol 42:155–160

    PubMed  CAS  Google Scholar 

  116. Ju G, Zhang X, Jin B-Q, Huang CS (1991) Activation of corticotropin-releasing factor-containing neurons in the paraventricular nucleus of the hypothalamus by inter-leukin-1 in the rat. Neurosci Lett 132:151–154

    PubMed  CAS  Google Scholar 

  117. Wan W, Janz L, Vriend CY, Sorensen CM, Greenberg AH, Nance DW (1993) Differential induction of c-fos immunoreactivity in hypothalamus and brain stem nuclei following central and peripheral administration of endotoxin. Brain Res Bull 32:581–587

    PubMed  CAS  Google Scholar 

  118. Elmquist JK, Ackermann MR, Register KB, Rimler RB, Ross LR, Jacobson CD (1993) Induction of fos-like immunoreactivity in the rat brain following Pasteurella multicida endotoxin administration. Endocrinology 133:3054–3057

    PubMed  CAS  Google Scholar 

  119. Hare AS, Clarke G, Tolchard S (1995) Bacterial lipopolysaccharide-induced changes in fos protein expression in the rat brain:correlation with thermoregulatory changes and plasma corticosterone. J Neuroendocrinol 7:791–799

    PubMed  CAS  Google Scholar 

  120. Day HEW, Akil H (1996) Differential pattern of c-fos mRNA in rat brain following central and systemic administration of interleukin-lbeta: implications for mechanism of action. Neuroendocrinology 63:207–218

    PubMed  CAS  Google Scholar 

  121. Cunningham ET, DeSouza E (1994) Interleukin-1 receptors in the brain and endocrine tissues. Immunol Today 14:161–176

    Google Scholar 

  122. Ericsson A, Liu C, Hart RP, Sawchenko PE (1995) Type I interleukin-1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL-1-induced cellular activation. J Comp Neurol 361:681–698

    PubMed  CAS  Google Scholar 

  123. Plotkin SR, Banks WA, Kastin AJ (1996) Comparison of saturable transport and extracellular pathways in the passage of interleukin-la across the blood-brain barrier. J Neuroimmunol 67:41–47

    PubMed  CAS  Google Scholar 

  124. Banks WA, Kastin AJ, Broadwell RD (1995) Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 2:241–248

    PubMed  CAS  Google Scholar 

  125. Burrought M, Cabellos C, Prasad S, Tuomanen E (1992) Bacterial components and the pathophysiology of injury to the blood-brain barrier:does cell wall add to the effects of endotoxin in gram-negative meningitis. J Infect Dis 165 (Suppl 1):S82–S85

    Google Scholar 

  126. deVries HE, Blom-Roosmalen MCM, vanOosten M, deBoer AG, vanBerkel TIC, Briemer DD, Kuiper J (1996) The influence of cytokines on the integrity of the bloodbrain barrier in vitro. J Neuroimmunol 64:37–43

    CAS  Google Scholar 

  127. Fleshner M, Goehler LE, Hermann J, Relton JK, Maier SF, Watkins LR (1995) Interleukin-1β induced corticosterone elevation and hypothalamic NE depletion is vagally mediated. Brain Res Bull 37:605–610

    PubMed  CAS  Google Scholar 

  128. Gaykema RPA, Dijkstra I, Tilders FJH (1995) Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion. Endocrinology 136:4717–4720

    PubMed  CAS  Google Scholar 

  129. Kapcala LP, He JR, Gao Y, Pieper JO, DeTolla LJ (1996) Subdiaphagmatic vagotomy inhibits intra-abdominal interleukin-1β stimulation of adrenocorticotropin secretion. Brain Res 728:247–254

    PubMed  CAS  Google Scholar 

  130. Hori T, Katafuchi T, Take S, Shimizu N, Niijima A (1995) The autonomic nervous system as a communication channel between the brain and the immune system. Neuroimmunomodulation 2:203–215

    PubMed  CAS  Google Scholar 

  131. Naito Y, Fukata J, Nakaishi S, Nakai Y, Tamai S, Mori K, Imura H (1990) Chronic effects of interleukin-1 on hypothalamus, pituitary and adrenal glands in rat. Neuroendocrinology 51:637–641

    PubMed  CAS  Google Scholar 

  132. Mengozzi M, Ghezzi P (1991) Defective tolerance to the toxic and metabolic effects of interleukin-1. Endocrinology 128:1668–1672

    PubMed  CAS  Google Scholar 

  133. Sweep CGJ, Van Der Meer MJM, Hermus ARMM, Smals AGH, Van Der Meer JWM, Pesman GJ, Willemsen SJ, Benraad TJ, Kloppenborg PWC (1992) Chronic stimulation of the pituitary-adrenal axis in rats by interleukin-lβ infusion: in vivo and in vitro studies. Endocrinology 130:1153–1164

    PubMed  CAS  Google Scholar 

  134. Hadid R, Spinedi E, Daneva T, Grau G, Gaillard RC (1995) Repeated endotoxin treatment decreases immune and hypothalamo-pituitary-adrenal axis responses: effects of orchidectomy and testosterone therapy. Neuroendocrinology 62:348–355

    PubMed  CAS  Google Scholar 

  135. Hadid R, Spinedi E, Giovambattista A, Chautrad T, Gaillard RC (1996) Decreased hypothalamo-pituitary-adrenal axis response to neuroendocrine challenge under repeated endotoxemia. Neuroimmunomodulation 3:62–68

    PubMed  CAS  Google Scholar 

  136. Panayi GS (1992) Neuroendocrine modulation of disease expression in rheumatoid arthritis. Eular Congr Rep 2:2–12

    Google Scholar 

  137. Sternberg EM, Hill JM, Chrousos GP, Kamilaris T, Listwak SJ, Gold PW, Wilder RL (1989) Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis susceptible Lewis rats. PNAS USA 86:2374–2378

    PubMed  CAS  Google Scholar 

  138. Mason D, MacPhee I, Antoni F (1990) The role of the neuroendocrine system in determining genetic susceptibility to experimental encephalomyelitis in the rat. Immunology 70:1–5

    PubMed  CAS  Google Scholar 

  139. Harbuz MS, Rees RG, Lightman SL (1993) Hypothalamo-pituitary responses to acute stress and changes in circulating glucocorticoids during chronic adjuvant-induced arthritis in the rat. Am J Physiol 264:R179–R185

    PubMed  CAS  Google Scholar 

  140. Nagy E, Berczi I, Friesen HG (1983) Regulation of immunity in rats by lactogenic and growth hormones. Acta Endocrinol 102:351–357

    PubMed  CAS  Google Scholar 

  141. Berczi I, Nagy E, Asa SL, Kovacs K (1984) The influence of pituitary hormones on adjuvant arthritis. Arthritis Rheum 27:682–688

    PubMed  CAS  Google Scholar 

  142. French RA, Zachary JF, Dantzer R, Frawley LS, Chizzonite R, Parnet P, Kelley KW (1996) Dual expression of p80 type I and p68 type II interleukin-1 receptors on anterior pituitary cells synthesizing GH. Endocrinology 137:4027–4036

    PubMed  CAS  Google Scholar 

  143. Calvino B, Besson J-M, Mounier F, Kordon C, Bluet-Pajot M-T (1992) Chronic pain induces a paradoxical increase in growth hormone secretion without affecting other hormones related to acute stress in the rat. Pain 49:27–32

    PubMed  CAS  Google Scholar 

  144. Bluet-Pajot MT, Mournier F, Slama A, Videau C, Kordon C, Epelbaum J, Calvino B (1996) The increase in growth-hormone secretion in experimentally induced arthritic rats is an adaptive process involved in the regulation of inflammation. Neuro-endocrinology 63:85–92

    CAS  Google Scholar 

  145. Neidhart M, Fluckiger EW (1992) Hyperprolactinaemia in hypophysectomized or intact male rats and the development of adjuvant arthritis. Immunology 77:449–455

    PubMed  CAS  Google Scholar 

  146. Templ E, Koeller M, Riedl M, Wagner O, Graninger W, Luger ANA (1996) Anterior pituitary function in patients with newly-diagnosed rheumatoid arthritis. Br J Rheumatol 35:350–356

    PubMed  CAS  Google Scholar 

  147. Wei ET, Wong JC, Kiang JG (1990) Decreased inflammatory responsiveness of hypophysectomized rats to heat is reversed by a corticotropin-releasing factor (CRF) antagonist. Regul Pept 27:317–323

    PubMed  CAS  Google Scholar 

  148. Harbuz MS, Chowdrey HS, Lightman SL, Wei ET, Jessop DS (1996) An investigation into the effects of chronic infusion of corticotrophin-releasing factor on hind paw inflammation in adjuvant-induced arthritis. Stress 1:105–111

    CAS  Google Scholar 

  149. Harbuz MS, Rees RG, Eckland D, Jessop DS, Brewerton D, Lightman SL (1992) Paradoxical responses of hypothalamic CRF mRNA and CRF-41 peptide and adeno-hypophyseal POMC mRNA during chronic inflammatory stress. Endocrinology 130:1394–1400

    PubMed  CAS  Google Scholar 

  150. Harkness JAL, Richter MB, Panayi GS, Van de Pette K, Unger A, Pownall R (1982) Circadian variation in disease activity in reheumatoid arthritis. Br Med J 284:551–554

    CAS  Google Scholar 

  151. Kirkham BW, Panayi GS (1989) Diurnal periodicity of cortisol secretion, immune reactivity and disease activity in rheumatoid arthritis: implications for steroid treatment. Br J Rheumatol 28:154–157

    PubMed  CAS  Google Scholar 

  152. Masera RG, Carignola R, Staurenghi AH, Sartori ML, Lazzero A, Griot G, Angeli A (1994) Altered circadian-rhythms of natural-killer (NK) cell-activity in patients with autoimmune rheumatic diseases. Chronobiologica 21:127–132

    CAS  Google Scholar 

  153. Neeck G, Federlin K, Graef V, Rusch D, Schmidt KL (1990) Adrenal secretion of cortisol in patients with rheumatoid arthritis. J Rheumatol 17:24–29

    PubMed  CAS  Google Scholar 

  154. Persellin RH, Kittinger GW, Kendall JW (1972) Adrenal response to experimental arthritis in the rat. Am J Physiol 222:1545–1549

    PubMed  CAS  Google Scholar 

  155. Sarlis NJ, Chowdrey HS, Stephanou A, Lightman SL (1992) Chronic activation of the hypothalamo-pituitary-adrenal axis and loss of circadian rhythm during adjuvant-induced arthritis in the rat. Endocrinology 130:1775–1779

    PubMed  CAS  Google Scholar 

  156. Stephanou A, Sarlis NJ, Knight RA, Lightman SL, Chowdrey HS (1992) Glucocorticoid mediated responses of plasma ACTH and anterior pituitary proopiomelanocortin, growth hormone and prolactin mRNAs during adjuvant-induced arthritis in the rat. J Mol Endocrinol 9:273–281

    PubMed  CAS  Google Scholar 

  157. Brady LS, Page SW, Thomas FS, Rader JL, Lynn AB, Misiewicz-Poltorak B, Zelazowski E, Crofford LJ, Zelazowski P, Smith C, Raybourne RB, Love LA, Gold PW, Sternberg EM (1994) l’l-Ethylidenebis[L-tryptophan], a contaminant implicated in L-tryptophan eosinophilia myalgia syndrome, suppresses mRNA expression of hypothalamic corti-cotropin-releasing hormone in Lewis (LEW/N) rat brain. Neuroimmunomodulation 1:59–65

    PubMed  CAS  Google Scholar 

  158. Chowdrey HS, Larsen PJ, Harbuz MS, Jessop DS, Aguilera G, Eckland DJA, Lightman SL (1995) Evidence for arginine vasopressin as the primary activator of the HPA axis during adjuvant-induced arthritis. Br J Pharmacol 116:2417–2424

    PubMed  CAS  Google Scholar 

  159. Harbuz MS, Leonard JP, Lightman SL, Cuzner ML (1993) Changes in hypothalamic corticotrophin releasing factor (CRF) and pituitary proopiomelanocortin (POMC) messenger RNA during the course of experimental allergic encephalomyelitis (EAE). J Neuroimmunol 45:127–132

    PubMed  CAS  Google Scholar 

  160. Michelson D, Stone L, Galliven E, Magiakou MA, Chrousos GP, Sternberg EM, Gold PW (1994) Multiple sclerosis is associated with alterations in hypothalamic-pituitary-adrenal axis function. J Clin Endocrinol Metab 79:848–853

    PubMed  CAS  Google Scholar 

  161. Reder AT, Mackowiec RL, Lowy MT (1994) Adrenal size is increased in multiple sclerosis. Arch Neurol 51:151–154

    PubMed  CAS  Google Scholar 

  162. Crofford LJ, Rader JI, Dalakas MC, Hill RH, Page SW, Needham LL, Brady LS, Heyes MP, Wilder RL, Gold PW, Illa I, Smith C, Sternberg EM (1990) L-tryptophan implicated in human eosinophilia-myalgia syndrome causes fasciitis and perimyositis in the Lewis rat. J Clin Invest 86:1757–1763

    PubMed  CAS  Google Scholar 

  163. Harbuz MS, Jessop DS, Chowdrey HS, Blackwell JM, Larsen PJ, Lightman SL (1995) Evidence for altered control of hypothalamic CRF in immune-mediated diseases. Ann N Y Acad Sci 771:449–458

    PubMed  CAS  Google Scholar 

  164. Aguilera G, Jessop DS, Harbuz MS, Kiss A, Lightman SL (1997) Biphasic regulation of hypothalamic-pituitary corticotropin releasing hormone receptors during development of adjuvant-induced arthritis in the rat. J Endocrinol 153:185–191

    PubMed  CAS  Google Scholar 

  165. Chikanza IC, Petrou P, Chrousos GP, Kingsley G, Panayi GS (1992) Defective hypothalamic response to immune/inflammatory stimuli in patients with rheumatoid arthritis. Arthritis Rheum 35:1281–1288

    PubMed  CAS  Google Scholar 

  166. Mason D (1991) Genetic variation in the stress response; susceptibility to experimental allergic encephalomyelitis and implications for human inflammatory disease. Immunol Today 12:57–60

    PubMed  CAS  Google Scholar 

  167. Sternberg EM, Young WS, Bernardini R, Calogero AE, Chrousos GP, Gold PW, Wilder RL (1989) A central nervous system defect in biosynthesis of corticotrophin-releasing hormone is associated with the susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. PNAS USA 86:4771–4775

    PubMed  CAS  Google Scholar 

  168. Reincke M, Heppner C, Petske F, Allolio B, Arlt W, Mbulamberi D, Siekmann L, Vollmer D, Winkelmann W, Chrousos GP (1994) Impairment of adrenocortical function associated with increased plasma tumour necrosis factor-alpha and interleukin-6 concentrations in African trypanosomiasis. Neuroimmunomodulation 1:14–22

    PubMed  CAS  Google Scholar 

  169. Hu Y, Dietrich H, Herold M, Heinrich PC, Wick G (1993) Disturbed immuno-endocrine communication via the hypothalamo-pituitary-adrenal axis in autoimmue disease. Int Arch Allergy Immunol 102:232–241

    PubMed  CAS  Google Scholar 

  170. Wei TCM, Lightman SL (1997) The neuroendocrine axis in mulitple sclerosis. Brain (in press)

    Google Scholar 

  171. Gudbjornsson B, Skogseid B, Oberg K, Wide L, Hallgren R (1996) Intact adrenocorti-cotropic hormone-secretion but impaired cortisol response in patients with active rheumatoid arthritis-effect of glucocorticoids. J Rheumatol 23:596–602

    PubMed  CAS  Google Scholar 

  172. Dorian B, Garfinkel PE (1987) Stress, immunity, and illness-a review. Psychol Med 17:393–407

    PubMed  CAS  Google Scholar 

  173. Thomason BT, Brantley PJ, Jones GN, Dyer HR, Morris JL (1992) The relation between stress and disease activity in rheumatoid arthritis. J Behav Med 15:215–220

    PubMed  CAS  Google Scholar 

  174. Affleck G, Pfeiffer C, Tennen H, Fifield J (1987) Attributional processes in rheumatoid arthritis. Arthritis Rheum 30:927–931

    PubMed  CAS  Google Scholar 

  175. Rimon R, Laasko R (1985) Life stress and rheumatoid arthritis. Psychother Psychosom 43:38–43

    PubMed  CAS  Google Scholar 

  176. Levine S, Strebel R, Wenk EJ, Harman PJ (1962) Suppression of experimental allergic encephalomyelitis by stress. Proc Soc Exp Biol Med 109:294–298

    PubMed  CAS  Google Scholar 

  177. Kuroda Y, Mori T, Hori T (1994) Retsraint stress suppresses experimental allergic encephalomyelitis in Lewis rats. Brain Res Bull 34:15–17

    PubMed  Google Scholar 

  178. Levine S, Saltzman A (1987) Nonspecific stress prevents relapses of experimental allergic encephalomyelitis in rats. Brain Behav Immun 1:336–341

    PubMed  CAS  Google Scholar 

  179. Bukilica M, Djordjevic S, Maric I, Dimitrijevic M, Markovic BM, Jankovic BD (1991) Stress-induced suppression of experimental allergic encephalomyelitis in the rat. Int J Neurosci 59:167–175

    PubMed  CAS  Google Scholar 

  180. Lysle DT, Luecken LJ, Maslonek KA (1992) Suppression of the development of adju-vant-induced arthritis by a conditioned aversive stimulus. Brain Behav Immun 6:64–73

    PubMed  CAS  Google Scholar 

  181. Rogers MP, Trentham DE, McCune WJ, Ginsberg BI, Rennke HG, Reich P, David JR (1980) Effects of psychological stress on the induction of arthritis in rats. Arthritis Rheum 23:1337–1342

    PubMed  CAS  Google Scholar 

  182. Amkraut AA, Solomon GF, Kraemer HC (1971) Stress, early experience and adjuvant-induced arthritis in the rat. Psychol Med 33:203–214

    CAS  Google Scholar 

  183. Rabin BS, Cohen S, Ganguli R, Lysle DT, Cunnick JE (1989) Bidirectional interaction between the central nervous system and the immune system. Crit Rev Immunol 9:279–312

    PubMed  CAS  Google Scholar 

  184. Miller SC, Rapier SH, Holtsclaw LI, Turner BB (1995) Effects of psychological stress on joint inflammation and adrenal function during induction of arthritis in the Lewis rat. Neuroimmunomodulation 2:329–338

    PubMed  CAS  Google Scholar 

  185. Jacobs C, Young D, Tyler S, Callis G, Gillis S, Conlon PJ (1988) In vivo treatment with IL-1 reduces the severity and duration of antigen-induced arthritis. J Immunol 141:2967–2974

    PubMed  CAS  Google Scholar 

  186. Martin D, Near SL (1995) Protective effect of the interleukin-1 receptor antagonist (IL-lra) on experimental allergic encephalomyelitis in rats. J Neuroimmunol 61:241–245

    PubMed  CAS  Google Scholar 

  187. Makarov SS, Olsen JC, Johnston WN, Anderle SK, Brown RR, Baldwin AS, Haskill JS, Scwaab JH (1996) Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist cDNA. PNAS USA 93:402–406

    PubMed  CAS  Google Scholar 

  188. Jessop DS, Renshaw D, Lightman SL, Harbuz MS (1995) Changes in ACTH and β-endorphin immunoreactivity in immune tissues during a chronic inflammatory stress are not correlated with changes in corticotropin-releasing hormone and arginine vasopressin. J Neuroimmunol 60:29–35

    PubMed  CAS  Google Scholar 

  189. Crofford LJ, Sano H, Karalsi K, Webster EL, Goldmuntz EA, Chrousos GP, Wilder RL (1992) Local secretion of corticotrophin-releasing hormone in the joints of Lewis rats with inflammatory arthritis. J Clin Invest 90:2555–2564

    PubMed  CAS  Google Scholar 

  190. Crofford LJ, Sano H, Karalis K, Friedman TC, Epps HR, Remmers EF, Mathern P, Chrousos GP, Wilder RL (1993) Corticotrophin-releasing hormone in synovial fluids and tissues of patients with rheumatoid arthritis and osteoarthritis. J Immunol 151:1587–1596

    PubMed  CAS  Google Scholar 

  191. Woods RJ, David J, Baigent S, Gibbins J, Lowry PJ (1996) Elevated levels of corti-cotrophin-releasing factor binding protein in the blood of patients suffering from arthritis and septicaemia and the presence of novel ligands in synovial fluid. Br J Rheumatol 35:120–124

    PubMed  CAS  Google Scholar 

  192. Martens HE, Sheets PK, Tenover JS, Dugowson CE, Bremner WJ, Starkebaum G (1994) Decreased testosterone levels in men with rheumatoid arthritis: effect of low dose prednisone therapy. J Rheumatol 21:1427–1431

    PubMed  CAS  Google Scholar 

  193. Harbuz MS, Perveen-Gill Z, Lightman SL, Jessop DS (1995) A protective role for testosterone in adjuvant-induced arthritis. Br J Rheumatol 34:1117–1122

    PubMed  CAS  Google Scholar 

  194. Rivier C (1995) Luteinizing-hormone-releasing hormone, gonadotropins, and gonadal steroids in stress. Ann NY Acad Sci 771:187–191

    PubMed  CAS  Google Scholar 

  195. Roubinian J, Talal N, Siiteri PK, Sadakian JA (1979) Sex hormone modulation of autoimmunity in NZB/NZW mice. Arthritis Rheum 22:1162–1165

    PubMed  CAS  Google Scholar 

  196. Allen JB, Blatter D, Calandra GB, Wilder RL (1983) Sex hormonal effects on the severity of streptococcal cell wall-induced polyarthritis in the rat. Arthritis Rheum 26:560–563

    PubMed  CAS  Google Scholar 

  197. Steward A, Bayley DL (1992) Effects of androgens in models of rheumatoid arthritis. Agents Actions 35:268–272

    PubMed  CAS  Google Scholar 

  198. Cutolo M, Ballearri E, Giusti M, Intra E, Accardo S (1991) Androgen replacement therapy in male patients with rheumatoid arthritis. Arthritis Rheum 34:1–5

    PubMed  CAS  Google Scholar 

  199. Homo-Delarche F, Fitzpatrick F, Christeff N, Nunez EA (1991) Sex steroids, glucocor-ticoids, stress and autoimmunity. J Steroid Biochem Mol Biol 40:619–637

    PubMed  CAS  Google Scholar 

  200. Walker SE, Besch-Williford CL, Keisler DH (1994) Accelerated deaths from systemic lupus erythematosus in NZB x NZW F1 mice treated with the testosterone blocking drug flutamide. J Lab Clin Med 124:401–407

    PubMed  CAS  Google Scholar 

  201. Schuurs AHWM, Verheul HAM (1989) Sex hormones and autoimmune disease. Br J Rheumatol 28(Suppl I):59–61

    PubMed  Google Scholar 

  202. Wilder RL (1995) Neuroendocrine-immune system interactions and autoimmunity. Ann Rev Immunol 13:307–338

    CAS  Google Scholar 

  203. Wilder RL (1996) Adrenal and gonadal-steroid hormone deficiency in the etiopatho-genesis of rheumatoid arthritis. J Rheumatol 23:10–12

    Google Scholar 

  204. Chikanza IC, Panayi GS (1991) Hypothalamic-pituitary mediated modulation of immune function: prolactin as a neuroimmune peptide. Br J Rheumatol 30:203–207

    PubMed  CAS  Google Scholar 

  205. Neidhart M (1989) Bromocriptine microcapsules inhibit ornithine decarboxylase activity induced by Freund’s complete adjuvant in lymphoid tissues of male rats. Endocrinology 125:2846–2852

    PubMed  CAS  Google Scholar 

  206. Jorgensen C, Bressot N, Bologna C, Sany J (1995) Dysregulation of the hypothalamo-pituitary axis in rheumatoid arthritis. J Rheumatol 22:1829–1833

    PubMed  CAS  Google Scholar 

  207. Neidhart M (1996) Elevated serum prolactin or elevated proplactin/cortisol ratio are associated with autoimmune processes in systemic lupus erythematosus and other connective tissue diseases. J Rheumatol 23:476–481

    PubMed  CAS  Google Scholar 

  208. Sandi C, Cambronero JC, Borrell J, Guaza C (1992) Mutually antagonistic effects of corticosterone and prolactin on rat lymphocyte proliferation. Neuroendocrinology 56:574–581

    PubMed  CAS  Google Scholar 

  209. Levine JD, Fields HL, Basbaum AI (1993) Peptides and the primary afferent nociceptor. J Neurosci 13:2273–2286

    PubMed  CAS  Google Scholar 

  210. Levine JD, Coderre TJ, Helms C, Basbaum AI (1988) β2-adrenergic mechanisms in experimental arthritis. PNAS USA 85:4553–4556

    PubMed  CAS  Google Scholar 

  211. Coderre TJ, Basbaum AI, Dallman MF, Helms C, Levine JD (1990) Epinephrine exacerbates arthritis by an action at presynaptic β2-adrenoceptors. Neuroscience 34:521–523

    PubMed  CAS  Google Scholar 

  212. Coderre TJ, Chan AK, Helms C, Basbaum AI, Levine JD (1991) Increasing sympathetic nerve terminal-dependent plasma extravasation correlates with decreased arthritic joint injury in rats. Neuroscience 40:185–189

    PubMed  CAS  Google Scholar 

  213. Agius MA, Checinski ME, Richman DP, Chelmicka-Schorr E (1987) Sympathectomy enhances the severity of experimental autoimmune myasthenia gravis (EAMG). J Neuroimmunol 16:11–12

    Google Scholar 

  214. Chelmicka-Schoor E, Checinski ME, Arnason BGW (1988) Chemical sympathectomy augments the severity of experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 17:347–350

    Google Scholar 

  215. Chelmicka-Schoor E, Kwasniewski MN, Wollmann RL (1992) Sympathectomy augments adoptively transferred experimental allergic encephalomyelitis. J Neuroimmunol 37:99–103

    Google Scholar 

  216. Harbuz MS, Chover-Gonzalez AJ, Biswas S, Lightman SL, Chowdrey HS (1994) Role of central catecholamines in the modulation of corticotrophin-releasing factor mRNA during adjuvant-induced arthritis in the rat. Br J Rheumatol 33:205–209

    PubMed  CAS  Google Scholar 

  217. Cho H-J, Lee H-S, Bae M-A, Joo K (1995) Chronic arthritis increases tyrosine hydroxylase mRNA levels in the pontine noradrenergic cell groups. Brain Res 695:96–99

    PubMed  CAS  Google Scholar 

  218. Krenger W, Honegger CG, Feurer C, Cammiuli S (1986) Changes of neurotransmitter systems in chronic relapsing experimental allergic encephalomyelitis in rat brain and spinal cord. J Neurochem 47:1247–1254

    PubMed  CAS  Google Scholar 

  219. Weigmann K, Muthyala S, Kim DH, Arnason BGW, Chelmicka- Schorr E (1995) β-adrenergic agonists suppress chronic/relapsing experimental allergic encephalo-myelitis (CREAE) in Lewis rats. J Neuroimmunol 56:201–206

    Google Scholar 

  220. Leonard JP, MacKenzie FJ, Patel HA, Cuzner ML (1991) Hypothalamic noradrenergic pathways influence neuroendocrine and clinical status in experimental allergic encephalomyelitis. Brain Behav Immun 5:328–338

    PubMed  CAS  Google Scholar 

  221. Schlesinger L, Arevalo M, Simon V, Lopez M, Munoz C, Hernandez A, Carreno P, Belmar J, White A, Haffnercavaillon N (1995) Immune depression induced by protein-calorie malnutrition can be suppressed by lesioning central noradrenaline systems. J Neuroimmunol 57:1–7

    PubMed  CAS  Google Scholar 

  222. Bendele AM, Spaethe SM, Benslay DN, Bryant HU (1991) Anti-inflammatory activity of pergolide, a dopamine receptor agonist. J Pharmacol Ther 259:169–175

    CAS  Google Scholar 

  223. Sufka KJ, Schomburg FM, Giordano J (1992) Receptor mediation of 5-HT induced inflammation and nociception in rats. Pharmacol Biochem Behav 41:53–56

    PubMed  CAS  Google Scholar 

  224. Weil-Fugazza J, Godefroy F, Besson JM (1979) Changes in brain and spinal tryptophan and 5-hydroxyindoleacetic acid levels following acute morphine administration in normal and arthritic rats. Brain Res 175:291–301

    PubMed  CAS  Google Scholar 

  225. Garzon J, Lerida M, Sanchez-Blazquez P (1990) Effect of intrathecal injection of pertussis toxin on substance P, norepinephrine and serotonin contents in various neural structures of arthritic rats. Life Sci 47:1915–1923

    PubMed  CAS  Google Scholar 

  226. Marlier L, Poulat P, Rajaofetra N (1991) Modifications of serotonin-, substance P-and calcitonin gene-related peptide-like immunoreactivities in the dorsal horn of the spinal cord of arthritic rats: a quantitative immunocytochemical study. Exp Brain Res 85:482–490

    PubMed  CAS  Google Scholar 

  227. Pertsch M, Krause E, Hirschelmann R (1993) A comparison of serotonin (5-HT) blood levels and activity of 5-HT2 antagonists in adjuvant arthritic Lewis and Wistar rats. Agents Actions 38:C98–101

    PubMed  CAS  Google Scholar 

  228. Sofia RD, Vassar HB (1974) Changes in serotonin (5HT) concentrations in brain tissue of rats with adjuvant-induced polyarthritis. Arch Int Pharmacodyn 211:74–79

    PubMed  CAS  Google Scholar 

  229. Godefroy F, Weil-Fugazza J, Besson J-M (1987) Complex temporal changes in 5-hydroxytryptamine synthesis in the central nervous system induced by experimental polyarthritis in the rat. Pain 28:223–238

    PubMed  CAS  Google Scholar 

  230. Harbuz MS, Perveen-Gill Z, Lalies MD, Jessop DS, Lightman SL, Chowdrey HS (1996) The role of endogenous serotonin in adjuvant-induced arthritis in the rat. Br J Rheumatol 35:112–116

    PubMed  CAS  Google Scholar 

  231. Holmes MC, French KL, Seckl JR (1995) Modulation of serotonin and corticosteroid receptor gene expression in the rat hippocampus with circadian rhythm and stress. Mol Brain Res 28:186–192

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this chapter

Cite this chapter

Harbuz, M.S., Lightman, S.L. (1997). Signals from the hypothalamus to the pituitary during chronic immune responses. In: Rook, G.A.W., Lightman, S. (eds) Steroid Hormones and the T-Cell Cytokine Profile. Springer, London. https://doi.org/10.1007/978-1-4471-0931-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0931-0_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1238-9

  • Online ISBN: 978-1-4471-0931-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics