Skip to main content

Advances in Biodegradable Ocular Drug Delivery Systems

  • Chapter
  • First Online:
Drug Product Development for the Back of the Eye

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 2))

Abstract

The limitations of existing medical therapies for ocular disorders include low drug bioavailability, nonspecificity, side effects, and poor treatment adherence to therapy. These limitations may be overcome through the use of sustained-release intraocular drug delivery systems. Critical to the development of such systems has been the introduction of biocompatible polymers (biodegradable and nonbiodegradable) that allow for drug release kinetics to be tailored for specific drugs and ocular diseases. Drug delivery systems composed of biodegradable polymers, such as polylactic-co-glycolic acid, appear to be particularly well suited for such applications. This review examines the characteristics of these polymers for medical applications, as well as the pharmacological properties, safety, and clinical effectiveness of biodegradable drug implants for the treatment of sight-threatening ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EVA:

Ethylene vinyl acetate

HEMA:

Hydroxyethylmethacrylate

HPC:

Hydroxypropyl cellulose

HPMC:

Hydroxypropyl methylcellulose

PAH:

Polyanhydride

PBMA:

Polybutyl methacrylate

PCL:

Poly(-ε-caprolactone)

PCL-PEG:

Poly(ε-caprolactone)-poly(ethylene glycol)

PDLLA:

d,l-poly(lactic acid)

PDO:

Polydioxane

PDS:

Poly-p-dioxane

PETP:

Polyethylene terephthalate

PGA:

Poly(glycolic acid)

PGLC:

Poly(glycolide-co-lactide-co-caprolactone)

PHEMA:

Poly(2-hydroxyethylmethacrylate)

PLA:

Poly(lactic acid)

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly(l-lactic acid)

PLTMC:

Poly(l-lactide-co-1,3-trimethylene carbonate)

PMM:

Polymethylidene malonate

POE:

Poly(ortho ester)

PPF:

Polypropylene fumarate

PVA:

Polyvinyl alcohol

PVP:

Poly(N-vinyl pyrrolidone)

TMC:

Trimethylene carbonate

References

  • Alvarez-Lorenzo C, Hiratani H, Concheiro A (2006) Contact lenses for drug delivery: achieving sustained release with novel systems. Am J Drug Deliv 4(3):131–151

    CAS  Google Scholar 

  • Anon (1971) The dexon polyglycolic acid suture. Med Lett Drugs Ther 13(19):79

    Google Scholar 

  • Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93–102

    PubMed  CAS  Google Scholar 

  • Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14(7):726–737

    PubMed  CAS  Google Scholar 

  • Aukunuru JV, Sunkara G, Ayalasomayajula SP, DeRuiter J, Clark RC, Kompella UB (2002) A biodegradable injectable implant sustains systemic and ocular delivery of an aldose reductase inhibitor and ameliorates biochemical changes in a galactose-fed rat model for diabetic complications. Pharm Res 19(3):278–285

    PubMed  CAS  Google Scholar 

  • Avgoustakis K (2008) Polylactic-co-glycolic acid (PLGA). In: Wnek GE, Bowlin GL (eds) Encyclopedia of biomaterials and biomedical engineering. Informa Healthcare USA, New York, pp 2259–2269

    Google Scholar 

  • Bates ER (2008) Primary percutaneous coronary intervention with drug-eluting stents: another chapter in the stent controversy. Circ Cardiovasc Interv 1(2):87–89

    PubMed  Google Scholar 

  • Beck LR, Cowsar DR, Lewis DH, Cosgrove RJ Jr, Riddle CT, Lowry SR, Epperly T (1979) A new long-acting injectable microcapsule system for the administration of progesterone. Fertil Steril 31:545–551

    PubMed  CAS  Google Scholar 

  • Beeley NR, Rossi JV, Mello-Filho PA, Mahmoud MI, Fujii GY, de Juan E, Jr VSE (2005) Fabrication, implantation, elution, and retrieval of a steroid-loaded polycaprolactone subretinal implant. J Biomed Mater Res A 73(4):437–444

    PubMed  Google Scholar 

  • Berinstein DM (2003) New Approaches in the management of diabetic macular edema. Tech Ophthalmol 1:106–113

    Google Scholar 

  • Bernatchez SB, Merkli A, Le Minh T, Tabatabay C, Anderson JM, Gurny R (1994) Biocompatibility of a new semi-solid bioerodible poly(ortho ester) intended for the ocular delivery of 5-fluorouracil. J Biomed Mater Res 28:1037–1046

    PubMed  CAS  Google Scholar 

  • Bourges J-L, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, BenEzra D, Behar-Cohen FF (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthal Vis Sci 44:3562–3569

    PubMed  Google Scholar 

  • Bowland ED, Wnek GE, Bowlin GL (2008) Poly(glycolic acid). In: Wnek GE, Bowlin GL (eds) Encyclopedia of biomaterials and biomedical engineering. Informa Healthcare USA, New York, pp 2241–2248

    Google Scholar 

  • Carrasquillo KG, Ricker JA, Rigas IK, Miller JW, Gragoudas ES, Adamis AP (2003) Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci 44:290–299

    PubMed  Google Scholar 

  • Chang D, Garcia I, Hunkeler J, Minas T (1999) Phase II results of an intraocular steroid delivery system for cataract surgery. Ophthalmology 106:1172–1177

    PubMed  CAS  Google Scholar 

  • Chien YW (1992) Novel drug delivery systems, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Chu CC (2008) Biodegradable polymers: an overview. In: Wnek GE, Bowlin GL (eds) Encyclopedia of biomaterials and biomedical engineering. Informa Healthcare USA, New York, pp 195–206

    Google Scholar 

  • Conway BR (2008) Recent patents on ocular drug delivery systems. Recent Pat Drug Deliv Formul 2(1):1–8

    PubMed  CAS  Google Scholar 

  • da Silva GR, da Silva CA, Jr AE, Oréfice RL (2009) Effect of the macromolecular architecture of biodegradable polyurethanes on the controlled delivery of ocular drugs. J Mater Sci Mater Med 20(2):481–487

    PubMed  CAS  Google Scholar 

  • Dafer RM, Schneck M, Friberg TR, Jay WM (2007) Intravitreal ranibizumab and bevacizumab: a review of risk. Semin Ophthalmol 22(3):201–204

    PubMed  Google Scholar 

  • Davis JL, Gilger BC, Robinson MR (2004) Novel approaches to ocular drug delivery. Curr Opin Mol Ther 6(2):195–205

    PubMed  CAS  Google Scholar 

  • de Kozak Y, Andrieux K, Villarroya H, Klein C, Thillaye-Goldenberg B, Naud MC, Garcia E, Couvreur P (2004) Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 34:3702–3712

    PubMed  Google Scholar 

  • Di Colo G, Zambito Y, Burgalassi S, Serafini A, Saettone MF (2002) Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly(ethylene oxide). Int J Pharm 248(1–2):115–122

    PubMed  Google Scholar 

  • Doddi N, Versfelt CC, Wasserman D (1977) Synthetic absorbable surgical devices of poly-dioxanone. US Pat. 4,052,988

    Google Scholar 

  • Dong X, Shi W, Yuan G, Xie L, Wang S, Lin P (2006a) Intravitreal implantation of the biodegradable cyclosporin A drug delivery system for experimental chronic uveitis. Graefes Arch Clin Exp Ophthalmol 244(4):492–497

    PubMed  CAS  Google Scholar 

  • Dong X, Chen N, Xie L, Wang S (2006b) Prevention of experimental proliferative vitreoretinopathy with a biodegradable intravitreal drug delivery system of all-trans retinoic acid. Retina 26(2):210–213

    PubMed  Google Scholar 

  • Einmahl S, Zignani M, Varesio E, Heller J, Veuthey JL, Tabatabay C, Gurny R (1999) Concomitant and controlled release of dexamethasone and 5-fluorouracil from poly(ortho ester). Int J Pharm 185(2):189–198

    PubMed  CAS  Google Scholar 

  • Einmahl S, Behar-Cohen F, D’Hermies F, Rudaz S, Tabatabay C, Renard G, Gurny R (2001) A new poly(ortho ester)-based drug delivery system as an adjunct treatment in filtering surgery. Invest Ophthalmol Vis Sci 42(3):695–700

    PubMed  CAS  Google Scholar 

  • Emerich DF, Thanos CG (2008) NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr Opin Mol Ther 10(5):506–515

    PubMed  CAS  Google Scholar 

  • Eperon S, Bossy-Nobs L, Petropoulos IK, Gurny R, Guex-Crosier Y (2008) A biodegradable drug delivery system for the treatment of postoperative inflammation. Int J Pharm 352(1–2):240–247

    PubMed  CAS  Google Scholar 

  • Felt-Baeyens O, Eperon S, Mora P, Limal D, Sagodira S, Breton P, Simonazzi B, Bossy-Nobs L, Guex-Crosier Y, Gurny R (2006) Biodegradable scleral implants as new triamcinolone acetonide delivery systems. Int J Pharm 322(1–2):6–12

    PubMed  CAS  Google Scholar 

  • Fialho SL, Rêgo MB, Siqueira RC, Jorge R, Haddad A, Rodrigues AL, Maia-Filho A, Silva-Cunha A (2006) Safety and pharmacokinetics of an intravitreal biodegradable implant of dexamethasone acetate in rabbit eyes. Curr Eye Res 31(6):525–534

    PubMed  CAS  Google Scholar 

  • Fialho SL, Behar-Cohen F, Silva-Cunha A (2008) Dexamethasone-loaded poly(epsilon-caprolactone) intravitreal implants: a pilot study. Eur J Pharm Biopharm 68(3):637–646

    PubMed  CAS  Google Scholar 

  • Frick KD, Foster A (2003) The magnitude and cost of global blindness: an increasing problem that can be alleviated. Am J Ophthalmol 135(4):471–476

    PubMed  Google Scholar 

  • Gaudana R, Jwala J, Boddu SH, Mitra AK (2009) Recent perspectives in ocular drug delivery. Pharm Res 26(5):1197–1216

    PubMed  CAS  Google Scholar 

  • Genta I, Conti B, Perugini P, Pavanetto F, Spadaro A, Puglisi G (1997) Bioadhesive microspheres for ophthalmic administration of acyclovir. J Pharm Pharmacol 49(8):737–742

    PubMed  CAS  Google Scholar 

  • Ghate D, Edelhauser HF (2006) Ocular drug delivery. Expert Opin Drug Deliv 3(2):275–287

    PubMed  CAS  Google Scholar 

  • Ghate D, Edelhauser HF (2008) Barriers to glaucoma drug delivery. J Glaucoma 17(2):147–156

    PubMed  Google Scholar 

  • Gilger BC, Salmon JH, Wilkie DA, Cruysberg LP, Kim J, Hayat M, Kim H, Kim S, Yuan P, Lee SS, Harrington SM, Murray PR, Edelhauser HF, Csaky KG, Robinson MR (2006) A novel bioerodible deep scleral lamellar cyclosporine implant for uveitis. Invest Ophthalmol Vis Sci 47(6):2596–2605

    PubMed  Google Scholar 

  • Giordano GG, Chevez-Barrios P, Refojo MF, Garcia CA (1995) Biodegradation and tissue reaction to intravitreous biodegradable poly(D, L-lactic-co-glycolic)acid microspheres. Curr Eye Res 9:761–768

    Google Scholar 

  • Gorle AP, Gattani SG (2009) Design and evaluation of polymeric ocular drug delivery system. Chem Pharm Bull (Tokyo) 57(9):914–919

    CAS  Google Scholar 

  • Guelcher SA (2008) Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng B Rev 14(1):3–17

    CAS  Google Scholar 

  • Hacker MC, Haesslein A, Ueda H, Foster WJ, Garcia CA, Ammon DM, Borazjani RN, Kunzler JF, Salamone JC, Mikos AG (2009) Biodegradable fumarate-based drug-delivery systems for ophthalmic applications. J Biomed Mater Res A 88(4):976–989

    PubMed  CAS  Google Scholar 

  • Haller JA, Dugel P, Weinberg DV, Chou C, Whitcup SM (2009) Evaluation of the safety and performance of an applicator for a novel intravitreal dexamethasone drug delivery system for the treatment of macular edema. Retina 29(1):46–51

    PubMed  Google Scholar 

  • Haller JA, Bandello F, Belfort R Jr, Blumenkranz MS, Gillies M, Heier J, Loewenstein A, Yoon YH, Jacques ML, Jiao J, Li XY, Whitcup SM; OZURDEX GENEVA Study Group (2010) Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology. 117(6):1134–1146

    Google Scholar 

  • Heller J, Barr J, Ng SY, Abdellauoi KS, Gurny R (2002) Poly(ortho esters): synthesis, characterization, properties and uses. Adv Drug Deliv Rev 54(7):1015–1039

    PubMed  CAS  Google Scholar 

  • Hu M, Huang G, Karasina F, Wong VG (2008) Verisomeâ„¢, a novel injectable, sustained release, biodegradable, intraocular drug delivery system and triamcinolone acetonide. Invest Ophthalmol Vis Sci 49:E-Abstract 5627

    Google Scholar 

  • Huhtala A, Pohjonen T, Salminen L, Salminen A, Kaarniranta K, Uusitalo H (2008) In vitro biocompatibility of degradable biopolymers in cell line cultures from various ocular tissues: extraction studies. J Mater Sci Mater Med 19(2):645–649

    PubMed  CAS  Google Scholar 

  • Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4):245–260

    PubMed  CAS  Google Scholar 

  • Jager RD, Aiello LP, Patel SC, Cunningham ET Jr (2004) Risks of intravitreous injection: a comprehensive review. Retina 24(5):676–698

    PubMed  Google Scholar 

  • Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23):2475–2490

    PubMed  CAS  Google Scholar 

  • Jain R, Shah NH, Malick AW, Rhodes CT (1998) Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm 24(8):703–727

    PubMed  CAS  Google Scholar 

  • Jampel HD, Leong KW, Dunkelburger GR, Quigley HA (1990) Glaucoma filtration surgery in monkeys using 5-fluorouridine in polyanhydride disks. Arch Ophthalmol 108(3):430–435

    PubMed  CAS  Google Scholar 

  • Jampel HD, Koya P, Leong K, Quigley HA (1991) In vitro release of hydrophobic drugs from polyanhydride disks. Ophthalmic Surg 22(11):676–680

    PubMed  CAS  Google Scholar 

  • Jampel HD, Thibault D, Leong KW, Uppal P, Quigley HA (1993) Glaucoma filtration surgery in nonhuman primates using taxol and etoposide in polyanhydride carriers. Invest Ophthalmol Vis Sci 34(11):3076–3083

    PubMed  CAS  Google Scholar 

  • Jiang C, Moore MJ, Zhang X, Klassen H, Langer R, Young M (2007) Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis 13:1783–1792

    PubMed  CAS  Google Scholar 

  • Kagaya F, Usui T, Kamiya K, Ishii Y, Tanaka S, Amano S, Oshika T (2002) Intraocular dexamethasone delivery system for corneal transplantation in an animal model. Cornea 21(2):200–202

    PubMed  Google Scholar 

  • Kane FE, Burdan J, Cutino A, Green KE (2008) Iluvien: a new sustained delivery technology for posterior eye disease. Expert Opin Drug Deliv 5(9):1039–1046

    PubMed  CAS  Google Scholar 

  • Kearns VR, Williams RL (2009) Drug delivery systems for the eye. Expert Rev Med Devices 6(3):277–290

    PubMed  CAS  Google Scholar 

  • Kedhar SR, Jabs DA (2007) Cytomegalovirus retinitis in the era of highly active antiretroviral therapy. Herpes 14:66–71

    PubMed  Google Scholar 

  • Kiernan DF, Mieler WF (2009) The use of intraocular corticosteroids. Expert Opin Pharmacother 10(15):2511–2525

    PubMed  CAS  Google Scholar 

  • Kimura H, Ogura Y (2001) Biodegradable polymers for ocular drug delivery. Ophthalmologica 215(3):143–155

    PubMed  CAS  Google Scholar 

  • Kulkarni RK, Pani KC, Neuman C, Leonard F (1966) Polylactic acid for surgical implants. Arch Surg 93:839–843

    PubMed  CAS  Google Scholar 

  • Kuno N, Fujii S (2010 ) Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs Aging 27(2):117–134

    PubMed  CAS  Google Scholar 

  • Kuppermann BD, Blumenkranz MS, Haller JA, Williams GA, Weinberg DV, Chou C, Whitcup SM, Dexamethasone DDS Phase II Study Group (2007) Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol 125:309–317

    PubMed  CAS  Google Scholar 

  • Kwak HW, D’Amico DJ (1992) Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection. Arch Ophthalmol 110:259–266

    PubMed  CAS  Google Scholar 

  • Lacrisert [prescribing information] (2007) Aton Pharma, Lawrenceville

    Google Scholar 

  • Lee SY, Chee SP (2005) Surodex after phacoemulsification. J Cataract Refract Surg 31(8):1479–1480

    PubMed  Google Scholar 

  • Lee SS, Yuan P, Robinson MR (2008) Ocular implants for drug delivery. In: Wnek GE, Bowlin GL (eds) Encyclopedia of biomaterials and biomedical engineering. Informa Healthcare USA, New York, pp 2259–2269

    Google Scholar 

  • Lim JI, Wieland MR, Fung A, Hung DY, Wong V (2009) A phase 1 study evaluating the safety and evidence of efficacy of IBI-20089, a triamcinolone intravitreal injection formulated with the VerisomeTM drug delivery technology, in patients with cystoid macular edema. Invest Ophthalmol Vis Sci 50:E-Abstract 5395

    Google Scholar 

  • Macoul KL, Pavan-Langston D (1975) Pilocarpine Ocusert system for sustained control of ocular hypertension. Arch Ophthalmol 93:587–590

    PubMed  CAS  Google Scholar 

  • Mansoor S, Kuppermann BD, Kenney MC (2009) Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res 26(4):770–784

    PubMed  CAS  Google Scholar 

  • Miyamoto H, Ogura Y, Hashizoe M, Kunou N, Honda Y, Ikada Y (1997) Biodegradable scleral implant for intravitreal controlled release of fluconazole. Curr Eye Res 16(9):930–935

    PubMed  CAS  Google Scholar 

  • Mohammad DA, Sweet BV, Elner SG (2007) Retisert: is the new advance in treatment of uveitis a good one? Ann Pharmacother 41(3):449–454

    PubMed  CAS  Google Scholar 

  • Moritera T, Ogura Y, Honda Y, Wada R, Hyon SH, Ikada Y (1991) Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Invest Ophthalmol Vis Sci 32:1785–1790

    PubMed  CAS  Google Scholar 

  • Moritera T, Ogura Y, Yoshimura N, Honda Y, Wada R, Hyon SH, Ikada Y (1992) Biodegradable microspheres containing adriamycin in the treatment of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 33:3125–3130

    PubMed  CAS  Google Scholar 

  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi tm (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release 125(3):193–209

    PubMed  CAS  Google Scholar 

  • Myles ME, Neumann DM, Hill JM (2005) Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev 57(14):2063–2079

    PubMed  CAS  Google Scholar 

  • Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158

    PubMed  CAS  Google Scholar 

  • Ng TF, Lavik E, Keino H, Taylor AW, Langer RS, Young MJ (2007) Creating an immune-privileged site using retinal progenitor cells and biodegradable polymers. Stem Cells 25(6):1552–1559

    PubMed  CAS  Google Scholar 

  • Ni Z, Hui P (2009) Emerging pharmacologic therapies for wet age-related macular degeneration. Ophthalmologica 223(6):401–410

    PubMed  CAS  Google Scholar 

  • Nutropin Depot [prescribing information] (2005) Genetech, South San Francsico

    Google Scholar 

  • Okabe J, Kimura H, Kunou N, Okabe K, Kato A, Ogura Y (2003) Biodegradable intrascleral implant for sustained intraocular delivery of betamethasone phosphate. Invest Ophthalmol Vis Sci 44(2):740–744

    PubMed  Google Scholar 

  • Park J, Lakes RS (2007) Biomaterials: an introduction, 3rd edn. Springer, New York

    Google Scholar 

  • Park JH, Ye M, Park K (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10(1):146–161

    PubMed  CAS  Google Scholar 

  • Pieramici DJ, Rabena M, Castellarin AA, Nasir M, See R, Norton T, Sanchez A, Risard S, Avery RL (2008) Ranibizumab for the treatment of macular edema associated with perfused central retinal vein occlusions. Ophthalmology 115:e47–e54

    PubMed  Google Scholar 

  • Polak MB, Valamanesh F, Felt O, Torriglia A, Jeanny JC, Bourges JL, Rat P, Thomas-Doyle A, BenEzra D, Gurny R, Behar-Cohen F (2008) Controlled delivery of 5-chlorouracil using poly(ortho esters) in filtering surgery for glaucoma. Invest Ophthalmol Vis Sci 49(7):2993–3003

    PubMed  Google Scholar 

  • Quigley HA, Pollack IP, Harbin TS Jr (1975) Pilocarpine Ocuserts: long-term clinical trials and selected pharmacodynamics. Arch Ophthalmol 93:771–775

    PubMed  CAS  Google Scholar 

  • Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851

    PubMed  Google Scholar 

  • Rogacka R, Chieffo A, Latib A, Colombo A (2008) Bioabsorbable and biocompatible stents. Is a new revolution coming? Minerva Cardioangiol 56(5):483–491

    PubMed  CAS  Google Scholar 

  • Rokkanen P, Bostman O, Vianionpaaa S, Vihtonen K, Tormala P, Laiho J, Kilpikari J, Tamminmaki M (1985) Biodegradable implants in fracture fixation: early results of treatment of fractures of the ankle. Lancet 1:1422–1424

    PubMed  CAS  Google Scholar 

  • Rönkkö S, Rekonen P, Sihvola R, Kaarniranta K, Puustjärvi T, Teräsvirta M, Uusitalo H (2009) Histopathology of the three implanted degradable biopolymers in rabbit eye. J Biomed Mater Res A 88(3):717–724

    PubMed  Google Scholar 

  • Rosenfeld PJ, Rich RM, Lalwani GA (2006) Ranibizumab: phase III clinical trial results. Ophthalmol Clin North Am 19(3):361–372

    PubMed  Google Scholar 

  • Rosensaft PL, Webb RI (1981) Synthetic polyester surgical articles. US Patent 4,243,775

    Google Scholar 

  • Rubsamen PE, Davis PA, Hernandez E, O’Grady GE, Cousins SW (1994) Prevention of experimental proliferative vitreoretinopathy with a biodegradable intravitreal implant for the sustained release of fluorouracil. Arch Ophthalmol 112(3):407–413

    PubMed  CAS  Google Scholar 

  • Sakhuja R, Mauri L (2010) Controversies in the use of drug-eluting stents for acute myocardial infarction: a critical appraisal of the data. Annu Rev Med 61:215–231

    PubMed  CAS  Google Scholar 

  • Sakurai E, Matsuda Y, Ozeki H, Kunou N, Nakajima K, Ogura Y (2001) Scleral plug of biodegradable polymers containing ganciclovir for experimental cytomegalovirus retinitis. Invest Ophthalmol Vis Sci 42(9):2043–2048

    PubMed  CAS  Google Scholar 

  • Sakurai E, Nozaki M, Okabe K, Kunou N, Kimura H, Ogura Y (2003) Scleral plug of biodegradable polymers containing tacrolimus (FK506) for experimental uveitis. Invest Ophthalmol Vis Sci 44(11):4845–4852

    PubMed  Google Scholar 

  • Schultz CL, Poling TR, Mint JO (2009) A medical device/drug delivery system for treatment of glaucoma. Clin Exp Optom 92(4):343–348

    PubMed  Google Scholar 

  • Seah SK, Husain R, Gazzard G, Lim MC, Hoh ST, Oen FT, Aung T (2005) Use of surodex in phacotrabeculectomy surgery. Am J Ophthalmol 139(5):927–928

    PubMed  CAS  Google Scholar 

  • Shi W, Liu T, Xie L, Wang S (2005) FK506 in a biodegradable glycolide-co-clatide-co-caprolactone polymer for prolongation of corneal allograft survival. Curr Eye Res 30(11):969–976

    PubMed  CAS  Google Scholar 

  • Shin JP, Park YC, Oh JH, Lee JW, Kim YM, Lim JO, Kim SY (2009) Biodegradable intrascleral implant of triamcinolone acetonide in experimental uveitis. J Ocul Pharmacol Ther 25(3):201–208

    PubMed  CAS  Google Scholar 

  • Shive MS, Anderson JM (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28(1):5–24

    PubMed  Google Scholar 

  • Silva-Cunha A, Fialho SL, Naud MC, Behar-Cohen F (2009) Poly-epsilon-caprolactone intravitreous devices: an in vivo study. Invest Ophthalmol Vis Sci 50(5):2312–2318

    PubMed  Google Scholar 

  • Silverman BL, Blethen SL, Reiter EO, Attie KM, Neuwirth RB, Ford KM (2002) A long-acting human growth hormone (Nutropin Depot): efficacy and safety following two years of treatment in children with growth hormone deficiency. J Pediatr Endocrinol Metab 15(suppl 2):715–722

    PubMed  CAS  Google Scholar 

  • Spaide RF, Chang LK, Klancnik JM, Yannuzzi LA, Sorenson J, Slakter JS, Freund KB, Klein R (2009) Prospective study of intravitreal ranibizumab as a treatment for decreased visual acuity secondary to central retinal vein occlusion. Am J Ophthalmol 147:298–306

    PubMed  CAS  Google Scholar 

  • Tan DT, Chee SP, Lim L, Lim AS (1999) Randomized clinical trial of a new dexamethasone delivery system (Surodex) for treatment of post-cataract surgery inflammation. Ophthalmology 106(2):223–231

    PubMed  CAS  Google Scholar 

  • Tan DT, Chee SP, Lim L, Theng J, Van Ede M (2001) Randomized clinical trial of Surodex steroid drug delivery system for cataract surgery: anterior versus posterior placement of two Surodex in the eye. Ophthalmology 108:2172–2181

    PubMed  CAS  Google Scholar 

  • Tanito M, Li F, Elliott MH, Dittmar M, Anderson RE (2007) Protective effect of TEMPOL derivatives against light-induced retinal damage in rats. Invest Ophthalmol Vis Sci 48(4):1900–1905

    PubMed  Google Scholar 

  • Tao W, Wen R, Laties A, Aguirre GD (2006) Cell-based delivery systems: development of encapsulated cell technology for ophthalmic applications. In: Ashton P, Jaffe GJ (eds) Intraocular drug delivery. Taylor & Francis, New York, pp 111–128

    Google Scholar 

  • Thanos CG, Bell WJ, O’Rourke P, Kauper K, Sherman S, Stabila P, Tao W (2004) Sustained secretion of ciliary neurotrophic factor to the vitreous, using the encapsulated cell therapy-based NT-501 intraocular device. Tissue Eng 10(11–12):1617–1622

    PubMed  CAS  Google Scholar 

  • Theng JT, Ti SE, Zhou L, Lam KW, Chee SP, Tan D (2003) Pharmacokinetic and toxicity study of an intraocular cyclosporine DDS in the anterior segment of rabbit eyes. Invest Ophthalmol Vis Sci 44(11):4895–4899

    PubMed  Google Scholar 

  • Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ (2005) Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 23(10):1579–1588

    PubMed  Google Scholar 

  • Törmälä P, Pohjonen T, Rokkanen P (1998) Bioabsorbable polymers: materials technology and surgical applications. Proc Inst Mech Eng H 212(2):101–111

    PubMed  Google Scholar 

  • Uppal P, Jampel HD, Quigley HA, Leong KW (1994) Pharmacokinetics of etoposide delivery by a bioerodible drug carrier implanted at glaucoma surgery. J Ocul Pharmacol 10(2):471–479

    PubMed  CAS  Google Scholar 

  • Wada R, Hyon SH, Ikada Y (1992) Injectable microspheres with controlled drug release for glaucoma filtering surgery. Invest Ophthalmol Vis Sci 33:3436–3441

    PubMed  Google Scholar 

  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 15(23):2724–2750

    PubMed  CAS  Google Scholar 

  • Wassermann D, Versfelt CC (1974) Use of stannous octoate catalyst in the manufacture of L(−)lactide-glycolide copolymer sutures. US Patent 3,839,297

    Google Scholar 

  • Wei X, Gong C, Gou M, Fu S, Guo Q, Shi S, Luo F, Guo G, Qiu L, Qian Z (2009) Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int J Pharm 381(1):1–18

    PubMed  CAS  Google Scholar 

  • Williams GA, Haller JA, Kuppermann BD, Dexamethasone DDS Phase II Study Group (2009) Dexamethasone posterior-segment drug delivery system in the treatment of macular edema resulting from uveitis or Irvine-Gass syndrome. Am J Ophthalmol 147(6):1048–1054

    PubMed  CAS  Google Scholar 

  • Xinming L, Yingde C, Lloyd AW, Mikhalovsky SV, Sandeman SR, Howel CA, Liewen L (2007) Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review. Cant Lens Anterior Eye 31(2):57–64

    Google Scholar 

  • Xu X, Liu T, Liu S, Zhang K, Shen Z, Li Y, Jing X (2009) Feasibility of biodegradable PLGA common bile duct stents: an in vitro and in vivo study. J Mater Sci Mater Med 20(5):1167–1173

    PubMed  CAS  Google Scholar 

  • Yasukawa T, Kimura H, Kunou N, Miyamoto H, Honda Y, Ogura Y, Ikada Y (2000) Biodegradable ganciclovir-PLA scleral implant for intravitreal drug delivery in cytomegalovirus retinitis. Graefes Arch Clin Exp Ophthalmol 238(2):186–190

    PubMed  CAS  Google Scholar 

  • Yasukawa T, Kimura H, Tabata Y, Miyamoto H, Honda Y, Ogura Y (2002) Sustained release of cis-hydroxyproline in the treatment of experimental proliferative vitreoretinopathy in rabbits. Graefes Arch Clin Exp Ophthalmol 240(8):672–678

    PubMed  CAS  Google Scholar 

  • Yasukawa T, Ogura Y, Kimura H, Sakurai E, Tabata Y (2006) Drug delivery from ocular implants. Expert Opin Drug Deliv 3(2):261–273

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan S. Lee MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Lee, S.S., Hughes, P., Ross, A.D., Robinson, M.R. (2011). Advances in Biodegradable Ocular Drug Delivery Systems. In: Kompella, U., Edelhauser, H. (eds) Drug Product Development for the Back of the Eye. AAPS Advances in the Pharmaceutical Sciences Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9920-7_9

Download citation

Publish with us

Policies and ethics