Skip to main content

Drug Suspension Development for the Back of the Eye

  • Chapter
  • First Online:
Drug Product Development for the Back of the Eye

Abstract

With the FDA approval of triamcinolone acetonide suspensions for intravitreal injections, there is renewed interest in developing drug suspensions for sustained intravitreal delivery. For back of the eye drug delivery, suspensions can potentially be administered by various other routes including periocular, retrobulbar, and suprachoroidal routes. Suspension development, although new for back of the eye drug delivery, is not new, especially for topical, oral, and parenteral dosage forms. This chapter summarizes principles of suspension-based drug delivery and suspension formulation. Further, it highlights some unique issues related to the back of the eye suspension drug product development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen LV, Popovich NV, Ansel HC (2005) Ansel’s pharmaceutical dosage forms and drug delivery systems. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  • Barcia E, Herrero-Vanrell R, Diez A, Alvarez-Santiago C, Lopez I, Calonge M (2009) Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res 89:238–245

    Article  PubMed  CAS  Google Scholar 

  • Baum J, Peyman GA, Barza M (1982) Intravitreal administration of antibiotic in the treatment of bacterial endophthalmitis. III. Consensus. Surv Ophthalmol 26:204–206

    Article  PubMed  CAS  Google Scholar 

  • Bitter C, Suter K, Figueiredo V, Pruente C, Hatz K, Surber C (2008) Preservative-free triamcinolone acetonide suspension developed for intravitreal injection. J Ocul Pharmacol Ther 24:62–69

    Article  PubMed  CAS  Google Scholar 

  • Cardillo JA, Souza-Filho AA, Oliveira AG (2006) Intravitreal Bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulnes for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol 81(675–677):679–681

    Google Scholar 

  • Chang YS, Tseng SY, Tseng SH, Wu CL, Chen MF (2006) Triamcinolone acetonide suspension toxicity to corneal endothelial cells. J Cataract Refract Surg 32:1549–1555

    Article  PubMed  Google Scholar 

  • Chang YS, Wu CL, Tseng SH, Kuo PY, Tseng SY (2007) Cytotoxicity of triamcinolone acetonide on human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 48:2792–2798

    Article  PubMed  Google Scholar 

  • Chang YS, Wu CL, Tseng SH, Kuo PY, Tseng SY (2008) In vitro benzyl alcohol cytotoxicity: implications for intravitreal use of triamcinolone acetonide. Exp Eye Res 86:942–950

    Article  PubMed  CAS  Google Scholar 

  • Choi YJ, Oh IK, Oh JR, Huh K (2006) Intravitreal versus posterior subtenon injection of triamcinolone acetonide for diabetic macular edema. Korean J Ophthalmol 20:205–209

    Article  PubMed  Google Scholar 

  • Crowley MM (2006) Solutions, emulsions, suspensions, and extracts. In: Troy DB (ed) Remington: the science and practice of pharmacy. Lippincott Williams & Wilkins, Baltimore, MD, pp 745–775

    Google Scholar 

  • Durairaj C, Kim SJ, Edelhauser HF, Shah JC, Kompella UB (2009) Influence of dosage form on the intravitreal pharmacokinetics of diclofenac. Invest Ophthalmol Vis Sci 50:4887–4897

    Article  PubMed  Google Scholar 

  • Dziubinski M, Fidos H, Sosno M (2004) The flow pattern map of a two-phase non-Newtonian liquid–gas flow in the vertical pipe. Int J Multiphase Flow 30:551–563

    Article  CAS  Google Scholar 

  • Geroski DH, Edelhauser HF (2000) Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 41:961–964

    PubMed  CAS  Google Scholar 

  • Gupta S, Samanta MK, Raichur AM (2010) Dual-drug delivery system based on in situ gel-forming nanosuspension of forskolin to enhance antiglaucoma efficacy. AAPS PharmSciTech 11:322–335

    Article  PubMed  CAS  Google Scholar 

  • Kabra BP, Sarkar R (2009) Low viscosity, highly flocculated triamcinolone acetonide suspension for intravitreal injection, in United States Patent Application # 20090233890, Alcon Research Ltd., USA

    Google Scholar 

  • Kaczmarek R, Szurman P, Misiuk-Hojlo M, Grzybowski A (2009) Antiproliferative effects of preservative-free triamcinolone acetonide on cultured human retinal pigment epithelial cells. Med Sci Monit 15:BR227–BR231

    PubMed  CAS  Google Scholar 

  • Khamphavong P, Gukasyan H, Wisniecki P, Sueda K, Marra M (2010) Ophthalmic solution formulation development for intravitreal injection of a VEGF inhibitor. AAPS J: AAPS Annual Meeing Abstracts p R6282

    Google Scholar 

  • Kompella UB, Kadam RS, Lee VHL (2010) Recent advances in ophthalmic drug delivery. Ther Deliv 1:457–479

    Article  Google Scholar 

  • Lang JC, Roehrs RE, Jani R (2005) Ophthalmic preparations Remington: the science and practice of pharmacy. Lippincott Williams & Wilkins, Baltimore, Remington

    Google Scholar 

  • Lavinsky D, Cardillo JA, Lima Filho AAS, Costa R, Silva Junior AA, Belfort Junior R, Oliveira AG (2008) Phase I/II study of intravitreal triamcinolone acetonide microspheres for treatment of diffuse diabetic macular edema unresponsive to conventional laser photocoagulation treatment. Invest Ophthalmol Vis Sci:E-Abstract 2698

    Google Scholar 

  • Lee SS, Robinson MR (2009) Novel drug delivery systems for retinal disease–a review. Ophthalmic Res 41:124–135

    Article  PubMed  CAS  Google Scholar 

  • Ottiger M, Thiel MA, Feige U, Lichtlen P, Urech DM (2009) Efficient intraocular penetration of topical anti-TNFa single-chain antibody (ESBA105) to anterior and posterior segment without penetration enhancer. Invest Ophthalmol Vis Sci 50:779–786

    Article  PubMed  Google Scholar 

  • Pedersen BT, Larsen SW, Ostergaard J, Larsen C (2008) In vitro assessment of lidocaine release from aqueous and oil solutions and from preformed and in situ formed aqueous and oil suspensions. Parenteral depots for intra-articular administration. Drug Deliv 15:23–30

    Article  PubMed  CAS  Google Scholar 

  • Quiram PA, Gonzales CR, Schwartz SD (2006) Severe steroid-induced glaucoma following intravitreal injection of triamcinolone acetonide. Am J Ophthalmol 141:580–582

    Article  PubMed  CAS  Google Scholar 

  • Shelke NB, Kadam R, Tyagi P, Rao VR, Kompella UB (2011) Intravitreal poly(L-lactide) microparticles sustain retinal and choroidal delivery of TG-0054, a hydrophilic drug intended for neovascular diseases. Drug Del Transl Res 1. doi: 10.1007/s13346-13010-10009-13348

  • Shivaji P (2000) Sterilization process for pharmaceutical suspensions in United States Patent # 6066292, Bayer corporation, USA

    Google Scholar 

  • Sigurdsson HH, Konraethsdottir F, Loftsson T, Stefansson E (2007) Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye. Acta Ophthalmol Scand 85:598–602

    Article  PubMed  CAS  Google Scholar 

  • Swarbrick J, Rubino JT, Rubino OP (2005) Coarse dispersions. In: Troy DB (ed) Remington: the science and practice of pharmacy. Lippincott, Williams & Wilkins, Baltimore, MD, pp 319–337

    Google Scholar 

  • Szurman P, Kaczmarek R, Spitzer MS, Jaissle GB, Decker P, Grisanti S, Henke-Fahle S, Aisenbrey S, Bartz-Schmidt KU (2006) Differential toxic effect of dissolved triamcinolone and its crystalline deposits on cultured human retinal pigment epithelium (ARPE19) cells. Exp Eye Res 83:584–592

    Article  PubMed  CAS  Google Scholar 

  • Thompson JT (2006) Cataract formation and other complications of intravitreal triamcinolone for macular edema. Am J Ophthalmol 141:629–637

    Article  PubMed  CAS  Google Scholar 

  • Welin-Berger K, Bergenstahl B (2000) Inhibition of Ostwald ripening in local anesthetic emulsions by using hydrophobic excipients in the disperse phase. Int J Pharm 200:249–260

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Brugger A, Khare A, Chaubal M, Papadopoulos P, Rabinow B, Kipp J, Ning J (2008) Suspensions for intravenous (IV) injection: a review of development, preclinical and clinical aspects. Adv Drug Deliv Rev 60:939–954

    Article  PubMed  CAS  Google Scholar 

  • Yasukawa T, Ogura Y (2010) Medical devices for the treatment of eye diseases, drug delivery. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grants R01EY018940 and R01EY017533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday B. Kompella PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Aukunuru, J., Tyagi, P., Durairaj, C., Kompella, U.B. (2011). Drug Suspension Development for the Back of the Eye. In: Kompella, U., Edelhauser, H. (eds) Drug Product Development for the Back of the Eye. AAPS Advances in the Pharmaceutical Sciences Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9920-7_18

Download citation

Publish with us

Policies and ethics