Skip to main content

Microparticles as Drug Delivery Systems for the Back of the Eye

  • Chapter
  • First Online:
Drug Product Development for the Back of the Eye

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 2))

Abstract

Treatment of vitreoretinal disorders often include repeated intraocular injections to achieve effective levels of the active substance in the target site. Intraocular drug delivery systems (IDDS) are considered an alternative to multiple injections as they release the encapsulated drug over long periods of time. Among them, biodegradable microparticles are very useful for intraocular administration because they can be injected as a conventional suspension without surgical procedures, to release the active substance over weeks or months. Microparticles can be loaded with different drugs useful to treat different pathologies affecting the back of the eye such as proliferative vitreoretinopathy, age-related macular degeneration, cytomegalovirus retinitis, diabetic retinopathy, endophthalmitis, glaucoma, herpes infection, macular edema, retinal vein occlusion, retinitis pigmentosa, and uveitis. Administration of microparticles can be performed by periocular, intravitreal, subretinal, or other intraocular routes to treat vitreoretinal disorders. Generally, microparticles are loaded with one active substance. Recently, biodegradable microparticles loaded with more than one drug (“combo microparticles”) are being developed. Moreover, biodegradable microspheres are potential tools for retinal repair in combination with retinal progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PLA:

Poly(lactic) acid

PGA:

Poly(glycolic) acid

PLGA:

Poly(lactic-co-glycolic) acid

GPC:

Gel permeation chromatography

Mw:

Weight-average molecular weight

Mn:

Number-average molecular weight

PEG:

Polyethylene glycol

kGy:

Kilo Gray

Tg:

Glass transition temperature

Tm:

Crystalline melting points

Css:

Steady state concentration

K0 :

Zero-order constant

Vd :

Volume of the vitreous

\( {K}_{e}\) :

Elimination rate constant

G:

Gauge

PBS:

Phosphate buffer solution

BSS:

Buffer solution

HA:

Hyaluronic acid

HPMC:

Hydroxypropylmethyl cellulose

AUC:

Area under the curve

5-FU:

5-fluorouracil

VEGF:

Vascular Endothelial Growth Factor

AMD:

Age macular degeneration (AMD)

TA:

Triamcinolone acetonide

PVR:

Proliferative vitreoretinopathy

RPE:

Retinal pigment epithelium

RD:

Retinal detachment

RA:

Retinoic acid

LPS:

Lipopolysaccharide

TRD:

Tractional retinal detachment

CyS:

Cyclosporine

CNV:

Choroidal neovascularization

ARN:

Acute retinal necrosis

HSV:

Herpes simplex virus

Da:

Daltons

CMV:

Cytomegalovirus

HCMV:

Human cytomegalovirus

RGC:

Retinal ganglion cells (RGC)

ECM:

Extracellular matrix

MMP2:

Matrix metalloproteinase

RPCs:

Retinal progenitor cells (RPCs)

References

  • Algvere P, Martini B (1979) Drainage of microspheres and rbcs from the vitreous of aphakic and phakic eyes. Arch Ophthalmol 97:1333–1336

    PubMed  CAS  Google Scholar 

  • Amrite AC, Kompella UB (2005) Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 57:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Amrite AC, Ayalasomayajula SP, Cheruvu NPS et al (2006) Single periocular injection of Celecoxib-PLGA microparticles inhibits Diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci 47:1149–1160

    Article  PubMed  Google Scholar 

  • Barbosa D, Molina Martinez IT, Pastor J et al (2010) Tolerance of PLGA nano- and microparticles for juxtascleral injection (in press)

    Google Scholar 

  • Barcia E, Herradon C, Herrero-Vanrell R (2005) Biodegradable additives modulate ganciclovir release rate from PLGA microspheres destined to intraocular administration. Lett Drug Des Discov 2:184–193

    Article  Google Scholar 

  • Barcia E, Herrero-Vanrell R, Diez A et al (2009) Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res 89:238–245

    Article  PubMed  CAS  Google Scholar 

  • Beck LR, Pope VZ, Flowers CE Jr, et al (1983) Poly(DL-lactide-co-glycolide)/norethisterone microcapsules: an injectable biodegradable contraceptive. Biol Reprod 28:186–195

    Google Scholar 

  • Bittner B, Mäder K, Kroll C, Borchert H et al (1999) Tetracycline-HCl-loaded poly (D, L-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-­irradiation on radical formation and polymer degradation. J Control Release 59(1):23–32

    Article  PubMed  CAS  Google Scholar 

  • Cardillo JA, Souza-Filho AA, Oliveira AG (2006) Intravitreal bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulness for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol 81:675–682

    Article  PubMed  CAS  Google Scholar 

  • Chan IM, Tolentino FI, Refojo MF et al (1984) Vitreous substitute: experimental studies and review. Retina 41:51–59

    Article  Google Scholar 

  • Checa-Casalengua P, Jiang C, Bravo-Osuna I, et al (2011) Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release. 2011 Jun 23. [Epub ahead of print] PubMed PMID:21704662

    Google Scholar 

  • Chowdhury DK, Mitra AK (2000) Kinetics of a model nucleoside (guanosine) release from biodegradable poly(DL-lactide-co-glycolide)microspheres: a delivery system for long-term intraocular delivery. Pharm Dev Technol 5:279–285

    Article  PubMed  CAS  Google Scholar 

  • Colthrust MJ, Williams RL, Hiscott PS, Grierson I (2000). Biomaterials used in the posterior segment of the eye. Biomaterials 21:649–665

    Google Scholar 

  • Conte U, Giunched PI, Puglisi G et al (1997) Biodegradable microspheres for the intravitreal administration of acyclovir: in vitro/in vivo evaluation. Eur J Pharm Sci 5:287–293

    Article  Google Scholar 

  • Delgado A, Evora C, Llabrés M (1996) Degradation of DL-PLA-methadone for intravitreal administration. J Control Release 99:41–52

    Google Scholar 

  • Freitas S, Hans P, Merkle P, Gander B (2005) Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release 102:313–332

    Article  PubMed  CAS  Google Scholar 

  • Gaudio PA (2004) A review of evidence guiding the use of corticosteroids in the treatment of intraocular inflammation. Ocul Immunol Inflamm 12:169–192

    Article  PubMed  CAS  Google Scholar 

  • Giordano GG, Refojo MF, Arroyo MH (1993) Sustained delivery of retinoic acid from microspheres of biodegradable polymer in PVR. Invest Ophthalmol Vis Sci 34:2743–2751

    PubMed  CAS  Google Scholar 

  • Giordano G, Chevez-Barrios P, Refojo MF et al (1995) Biodegradation and tissue reaction to intravitreous biodegradable poly(D, L-lactic-co-glycolic) acid microspheres. Curr Eye Res 14(9):761–768

    Article  PubMed  CAS  Google Scholar 

  • Gomes Dos Santos AL, Bochot A, Fattal E (2005) Intraocular delivery of oligonucleotides. Curr Pharm Biotechnol 6:7–15

    PubMed  CAS  Google Scholar 

  • Gould L, Trope G, Cheng YL et al (1994) Fifty:fifty poly (dl glycolic acid-lactic acid) copolymer as a drug delivery system for 5-fluorouracilo: a histopathological evaluation. Can J Ophthalmol 29:168–171

    PubMed  CAS  Google Scholar 

  • Grizzi I, Garreau H, Li S et al (1995) Biodegradation of devices based on poly(DL-lactic acid): size-dependence. Biomaterials 16:305–311

    Article  PubMed  CAS  Google Scholar 

  • He Y, Liu Y, Jiancheng W et al (2006) Cyclosporine-loaded microspheres for treatment of uveitis: in vitro characterization and in vivo pharmacokinetic study. Invest Ophthalmol Vis Sci 47:3983–3988

    Article  PubMed  Google Scholar 

  • Henry K, Cantrill H, Fletcher C et al (1987) Use of intravitreal ganciclovir (dihydroxy propoxy methylguanine) for cytomegalovirus retinitis in a patient with AIDS. Am J Ophthalmol 103:17–23

    PubMed  CAS  Google Scholar 

  • Herrero R, Refojo MF (2001) Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev 52:5–16

    Article  Google Scholar 

  • Herrero-Vanrell R, Cardillo J (2010) Ocular pharmacokinetic, drug bioavailability and intraocular drug delivery systems. In: Nguyen QD, Rodrigues EB, Farah ME, Mieler WF (eds) Retinal pharmacotherapy. Sanders Elsevier, Amsterdam

    Google Scholar 

  • Herrero-Vanrell R, Molina-Martínez IT (2007) PLA and PLGA microparticles for intravitreal drug delivery: an overview. J Drug Del Sci Tech 17:11–17

    CAS  Google Scholar 

  • Herrero-Vanrell R, Ramírez L, Fernández-Carballido A et al (2000) Biodegradable PLGA microspheres loaded with ganciclovir for intraocular administration. Encapsulation technique, in vitro release profiles and sterilization process. Pharm Res 17:1323–1328

    Article  PubMed  CAS  Google Scholar 

  • Jab DA, Enger C, Barlett JB (1989) Cytomegalovirus retinitis and acquired immunodeficiency syndrome. Arch Ophthalmol 107:75–80

    Google Scholar 

  • Jiang C, Moore MJ, Zhang X et al (2007) Intravitreal injection of GDNF-loaded microspheres are neuroprotective in a rat model of glaucoma. Mol Vis 13:1783–1792

    PubMed  CAS  Google Scholar 

  • Khoobehi B, Stradtmann MO, Peyman GA et al (1991) Clearance of sodium fluorescein incorporated into microspheres from the vitreous after intravitreal injection. Ophthalmic Surg 22:175–180

    PubMed  CAS  Google Scholar 

  • Kompella UB, Bandi N, Ayalasomayajula SP (2003) Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci 44:3562–3569

    Article  Google Scholar 

  • Kwak HW, D’Amico DJ (1992) Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection. Arch Ophthalmol 110:259–266

    PubMed  CAS  Google Scholar 

  • Lee W, Park J, Yang EH (2002) Investigation of the factors influencing the release rates of cyclosporine A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. J Control Rel 84:115–123

    Article  CAS  Google Scholar 

  • Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res B Appl Biomater 48(3):342–353

    Article  CAS  Google Scholar 

  • Mansoor S, Kuppermann BD, Kenney MC (2009) Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res 26:770–784

    Article  PubMed  CAS  Google Scholar 

  • Martínez C, Herrero-Vanrell R, Negro S (2006) Vitamin A palmitate and aciclovir biodegradable microspheres for intraocular sustained release. Int J Pharm 326:100–106

    Article  Google Scholar 

  • Martinez-Sancho C, Herrero-Vanrell R, Negro S (2003a) Poly (D, L-lactide-co-glycolide) microspheres for long-term intravitreal delivery of acyclovir. Influence of fatty and non-fatty additives. J Microencapsulation 20:799–810

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Sancho C, Herrero-Vanrell R, Negro S (2003b) Optimisation of acyclovir poly (D, L lactide-co- glycolide) microspheres for intravitreal administration using a factorial design study. Int J Pharm 273:45–56

    Article  Google Scholar 

  • Martínez-Sancho C, Herrero-Vanrell R, Negro S (2004) Study of gamma-irradiation effects on aciclovir poly(D, L-lactic-co-glycolic) acid microspheres. J Control Rel 99:41–52

    Article  Google Scholar 

  • Maulding HV, Tice TR, Cowsar DR et al (1991) Preparation of poly(l-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate. J Control Rel 15(2):133–140

    Article  Google Scholar 

  • Maurice DM, Mishima S (1984) Ocular pharmacokinetics. In: Sears ML (ed) Handbook of experimental pharmacology. Springer, Berlin

    Google Scholar 

  • Miller RA, Brady JM, Cutright DE (1977) Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res 11(5):711–719

    Article  PubMed  CAS  Google Scholar 

  • Moritera T, Ogura Y, Honda Y et al (1991) Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Invest Ophthalmol Vis Sci 32:1785–1790

    PubMed  CAS  Google Scholar 

  • Moritera T, Ogura Y, Yoshimura N et al (1992) Biodegradable microspheres containing adriamycin in the treatment of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 33:3125–3130

    PubMed  CAS  Google Scholar 

  • Moritera T, Ogura Y, Yoshimura N et al (1994) Feasibility of drug targeting to the retinal pigment epithelium with biodegradable microspheres. Curr Eye Res 13:171–176

    Article  PubMed  CAS  Google Scholar 

  • Nijsen JF, van Het Schip AD, van Steenbergen MJ et al (2002) Influence of neutron irradiation on holmium acetylacetonate loaded poly (L-lactic acid) microspheres. Biomaterials 23(8):1831–1839

    Article  PubMed  CAS  Google Scholar 

  • Paganelli F, Cardillo JA, Melo LAS Jr et al (2009) Brazilian Ocular Pharmacology and Pharmaceutical Technology Research Group (BOPP). A single intraoperative Sub-Tenon’s capsule injection of triamcinolone and ciprofloxacin in a controlled-release system for cataract surgery. Invest Ophthalmol Vis Sci 50:3041–3047

    Article  PubMed  Google Scholar 

  • Park H, Park K (1996) Biocompatibility issues of implantable drug delivery systems. Pharm Res 13(12):1770–1776

    Article  PubMed  CAS  Google Scholar 

  • Pastor JC (1998) Proliferative vitreoretinopathy: an overview. Surv Ophthalmol 43:3–18

    Article  PubMed  CAS  Google Scholar 

  • Peyman GA, Conway M, Khoobehi B et al (1992) Clearance of microsphere-entrapped 5-fluorouracil and cytosine arabinoside from the vitreous of primates. Int Ophthalmol 16:109–113

    Article  PubMed  CAS  Google Scholar 

  • Ranta UP, Urtti A (2006) Transcleral drug delivery to the posterior eye. Prospect of pharmacokinetic modeling. Adv Drug Deliv Rev 58:1164–1178

    Article  PubMed  CAS  Google Scholar 

  • Rincon AC, Molina-Martinez I T, de las Heras B et al (2005) Biocompatibility of elastin-like polymers poly (VPAVG) microparticles: in vitro and in vivo studies. J Biomed Mat Res A 78:343–351

    Google Scholar 

  • Robinson J C (1993) Ophthalmic drug delivery systems. In: Mitra AK (eds). Marcel Dekker, New York, p. 29

    Google Scholar 

  • Rodríguez A, Calonge M, Pedroza-Seres M et al (1996) Referral patterns of uveitis in a tertiary eye care center. Arch Ophthalmol 114:593–599

    PubMed  Google Scholar 

  • Saishin Y, Siva RL, Callahan K et al (2003) Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci 44(11):4989–4993

    Article  PubMed  Google Scholar 

  • Sintzel MB, Schwach-Abdellaoui K, Mäder K et al (1998) Influence of irradiation sterilization on a semi-solid poly (ortho ester). Int J Pharm 175:165–176

    Article  CAS  Google Scholar 

  • Smith JR (2004) Management of uveitis. Clin Ex Med 4:21–29

    Article  CAS  Google Scholar 

  • Staniforth J (2002) Particle size analysis. In: Aulton ME (ed) Pharmaceutics. The science of dosage form design, 2nd edn. Churchill Livingstone, London

    Google Scholar 

  • Thomas X, Bardet L, de Béchillon I et al (1993) Nouveaux polymères à usage pharmaceutique et biomédical, évaluation et qualification. Rapport d´une commission SFSTP. STP Pharma Pratiques 3(4):237–252

    Google Scholar 

  • Tolentino I F, Cajita V N, Refojo M F (1989) Ophthalmology annual. In: Reinecke DR (ed). Raven Press, New York, p 337

    Google Scholar 

  • Urata T, Arimori K, Nakano M (1999) Modification of release rates of cyclosporine form poly (L-lactic acid) microspheres by fatty acid esters and in-vivo evaluation of the microspheres. J Control Rel 58:133–141

    Article  CAS  Google Scholar 

  • Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Veloso AAA, Zhu Q, Herrero-Vanrell R et al (1997) Ganciclovir-loaded polymer microspheres in rabbit eyes inoculated with human cytomegalovirus. Invest Ophthalmol Vis Sci 38:665–675

    PubMed  Google Scholar 

  • Visscher GE, Robinson RL, Maulding HV et al (1985) Biodegradation of and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules. J Biomed Mater Res 19(3):349–365

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Tucker B, Zhang X, Checa-Caslengua P, Herrero-Vanrell R, Young MJ (2011) Robust cell integration from co-transplantation of biodegradable MMP2- PLGA microspheres with retinal progenitor cells. Biomaterials 32:1041–1050

    Google Scholar 

  • Yasukawa T, Ogura Y, Tabata Y et al (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23:253–281

    Article  PubMed  CAS  Google Scholar 

  • Zimmer A, Kreuter J (1995) Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliver Rev 16:61–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Vanessa Andres and Patricia Checa for their technical assistance. MAT 2010–6528, RETICS RD07/0062, and Research Group 920415 (CG/10) are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío Herrero-Vanrell PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Herrero-Vanrell, R. (2011). Microparticles as Drug Delivery Systems for the Back of the Eye. In: Kompella, U., Edelhauser, H. (eds) Drug Product Development for the Back of the Eye. AAPS Advances in the Pharmaceutical Sciences Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9920-7_10

Download citation

Publish with us

Policies and ethics