Skip to main content

Strain-Induced, Self Rolled-Up Semiconductor Microtube Resonators: A New Architecture for Photonic Device Applications

  • Chapter
  • First Online:
Three-Dimensional Nanoarchitectures
  • 2117 Accesses

Abstract

A semiconductor heterojunction is a junction between two chemically different semiconductors, such as GaAs and In x Ga1-x As, or silicon (Si) and germanium (Ge). Semiconductor heterostructure-based electronics and photonics have been widely used in high-power lasers, light-emitting diodes, heterojunction bipolar transistors, and high-efficiency solar cells. The versatile heterojunctions, especially in compound semiconductors, allow the control of fundamental semiconductor parameters such as electronic band structure, strain, and mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova, Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Phys. E: Low-Dimensional Syst. Nanostruct. 6, 828–831 (2000)

    Article  CAS  Google Scholar 

  2. R. Songmuang, D. Ch, O.G. Schmidt, Rolled-up micro- and nanotubes from single-material thin films. Appl. Phys. Lett. 89, 223109 (2006)

    Article  Google Scholar 

  3. G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd edn. (Academic Press, San Diego, 1999)

    Google Scholar 

  4. K. Ploog, Molecular Beam Epitaxy of III–V Compounds (Springer, Berlin, 1984)

    Google Scholar 

  5. P.O. Vaccaro, K. Kubota, T. Aida, Strain-driven self-positioning of micromachined structures. Appl. Phys. Lett. 78, 2852 (2001)

    Article  CAS  Google Scholar 

  6. Y.C. Tsui, T.W. Clyne, Analytical model for predicting residual stresses in progressively deposited coatings. Part 3: Further development and applications. Thin Solid Films 306, 52 (1997)

    Article  CAS  Google Scholar 

  7. I.S. Chun, V.B. Verma, V.C. Elarde, S.K. Kim, J.M. Zuo, J.J. Coleman, X. Li, InGaAs/GaAs 3D architecture formation by strain-induced self-rolling with lithographically defined rectangular stripe arrays. J. Crystal Growth 310, 2353 (2008)

    Article  CAS  Google Scholar 

  8. O.G. Schmidt, C. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Muller, N.Y. Jin-Phillipp, Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes. IEEE J. Sel. Top. Quantum Electron. 8, 1025–1034 (2002)

    Article  CAS  Google Scholar 

  9. V.Y. Prinz, V.A. Seleznev, A.V. Prinz, A.V. Kopylov, 3D heterostructures and systems for novel MEMS/NEMS. Sci. Technol. Adv. Mater. 10, 034502 (2009)

    Article  Google Scholar 

  10. I.S. Chun, X. Li, Controlled assembly and dispersion of strain-induced InGaAs/GaAs nanotubes. IEEE Trans. Nanotechnol. 7, 493–495 (2008)

    Article  Google Scholar 

  11. I.S. Chun, A. Challa, B. Derickson, J.K. Hsia, X. Li, Geometry effect on the strain-induced self-rolling of semiconductor membranes. Nano Lett. 10, 3927–3932 (2010)

    Google Scholar 

  12. S. Schwaiger, M. Broll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, S. Mendach, Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime. Phys. Rev. Lett. 102, 163903 (2009)

    Google Scholar 

  13. X. Li, Strain induced semiconductor nanotubes: From formation process to device applications. J. Phys. D: Appl. Phys. 41, 193001 (2008)

    Article  Google Scholar 

  14. I.S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, X. Li, Strain-induced self-rolling III–V tubular nanostructures: Formation process and photonic applications. Proc. SPIE 7608, 760810–760818 (2009)

    Article  Google Scholar 

  15. I.S. Chun, K. Bassett, A. Challa, X.L. Li, Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes. Appl. Phys. Lett. 96, 251106 (2010)

    Article  Google Scholar 

  16. N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, M. Hosoda, Uniaxial-Strain-Induced Transition from Type-II to Type-I Band Configuration of Quantum Well Microtubes (Physica E, Netherlands, 2004), p. 732

    Google Scholar 

  17. T. Kipp, H. Welsch, C. Strelow, C. Heyn, D. Heitmann, Optical modes in semiconductor microtube ring resonators. Phys. Rev. Lett. 96, 077403-1 (2006)

    Article  CAS  Google Scholar 

  18. R. Songmuang, A. Rastelli, S. Mendach, O.G. Schmidt, SiO x /Si radial superlattices and microtube optical ring resonators. Appl. Phys. Lett. 90, 91905-1 (2007)

    Article  Google Scholar 

  19. K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, T. Kipp, Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators. Nano Lett. 10, 627–631 (2010)

    Article  CAS  Google Scholar 

  20. V.A.B. Quinones, G.S. Huang, J.D. Plumhof, S. Kiravittaya, A. Rastelli, Y.F. Mei, O.G. Schmidt, Optical resonance tuning and polarization of thin-walled tubular microcavities. Opt. Lett. 34, 2345–2347 (2009)

    Article  Google Scholar 

  21. C. Strelow, C.M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, T. Kipp, Three dimensionally confined optical modes in quantum-well microtube ring resonators. Phys. Rev. B (Condens. Matter. Mater. Phys.) 76, 1–5 (2007)

    Article  Google Scholar 

  22. C. Strelow, H. Rehberg, C.M. Schultz, H. Welsch, C. Heyn, D. Heitmann, T. Kipp, Optical microcavities formed by semiconductor microtubes using a bottlelike geometry. Phys. Rev. Lett. 101, 127403 (2008)

    Article  Google Scholar 

  23. F. Li, Z. Mi, S. Vicknesh, Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes. Opt. Lett. 34, 2915–2917 (2009)

    Article  CAS  Google Scholar 

  24. F. Li, Z.T. Mi, Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers. Opt. Expr. 17, 19933–19939 (2009)

    Article  CAS  Google Scholar 

  25. C. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schuller, A. Stemmann, C. Heyn, D. Heitmann, T. Kipp, Time-resolved studies of a rolled-up semiconductor microtube laser. Appl. Phys. Lett. 95, 22115 (2009)

    Google Scholar 

  26. C. Strelow, H. Rehberg, C.M. Schultz, H. Welsch, C. Heyn, D. Heitmann, T. Kipp, Spatial emission characteristics of a semiconductor microtube ring resonator. Phys. E 40, 1836–1839 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

Xiuling Li acknowledges the support from NSF CAREER ECCS under Grant No. 0747178, NSF award under Grant No. 0749028 and DOE award under Grant No. DE-FG02-07ER46471. Technical assistance from Kevin Bassett and Archana Challa from the Li research group and Dr Jianguo Wen and Dr Julio Soares at the Materials Research Laboratory is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuling Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC outside the People's Republic of China, Weilie Zhou and Zhong Lin Wang in the People's Republic of China

About this chapter

Cite this chapter

Miao, X., Chun, I.S., Li, X. (2011). Strain-Induced, Self Rolled-Up Semiconductor Microtube Resonators: A New Architecture for Photonic Device Applications. In: Zhou, W., Wang, Z. (eds) Three-Dimensional Nanoarchitectures. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9822-4_9

Download citation

Publish with us

Policies and ethics