Skip to main content

Particle Engineering Technologies for Pulmonary Drug Delivery

  • Chapter
  • First Online:
Controlled Pulmonary Drug Delivery

Abstract

Particle engineering has seen many applications in the field of ­pulmonary drug delivery due to the intimate relationship between particle physicochemistry and aerosol product performance. In this chapter, the science behind established and emerging particle engineering technologies is reviewed. Fundamental principles of particle engineering will be introduced. Following a discussion of how aerosol delivery technologies integrate with particle engineering, a detailed review of particle synthesis methods is included. This encompasses micronization and other top–down methods, spraying methods, precipitation technologies, and other emerging processes that may advance the field of pulmonary drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey MM, Berkland CJ (2009) Nanoparticle formulations in pulmonary drug delivery. Med Res Rev 29(1):196–212

    Article  PubMed  CAS  Google Scholar 

  2. Brain JD (2007) Inhalation, deposition, and fate of insulin and other therapeutic proteins. Diab Technol Ther 9:S4–S15

    CAS  Google Scholar 

  3. Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6(1):67–74

    Article  PubMed  CAS  Google Scholar 

  4. Patton JS (1996) Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 19(1):3–36

    Article  CAS  Google Scholar 

  5. Asgharian B, Hofmann W, Miller FJ (2001) Mucociliary clearance of insoluble particles from the tracheobronchial airways of the human lung. J Aerosol Sci 32(6):817–832

    Article  CAS  Google Scholar 

  6. Bailey MM, Gorman EM, Munson EJ, Berkland C (2008) Pure insulin nanoparticle agglomerates for pulmonary delivery. Langmuir 24(23):13614–13620

    Article  PubMed  CAS  Google Scholar 

  7. Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY (2007) Particle engineering for pulmonary drug delivery. Pharm Res 24(3):411–437

    Article  PubMed  CAS  Google Scholar 

  8. de Boer AH, Gjaltema D, Hagedoorn P, Frijlink HW (2002) Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique. Int J Pharm 249(1–2):219–231

    Article  PubMed  Google Scholar 

  9. El-Gendy N, Gorman EM, Munson EJ, Berkland C (2009) Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci 98(8):2731–2746

    Article  PubMed  CAS  Google Scholar 

  10. Plumley C, Gorman EM, El-Gendy N, Bybee CR, Munson EJ, Berkland C (2009) Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm 369(1–2):136–143

    Article  PubMed  CAS  Google Scholar 

  11. Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25(12):563–570

    Article  PubMed  CAS  Google Scholar 

  12. Rogueda PG, Traini D (2007) The nanoscale in pulmonary delivery. Part 1: deposition, fate, toxicology and effects. Expert Opin Drug Deliv 4(6):595–606

    Article  PubMed  CAS  Google Scholar 

  13. Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL (2007) Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 24(2):203–227

    Article  PubMed  CAS  Google Scholar 

  14. Cunningham E (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc Lond 83(563):357–365

    Article  Google Scholar 

  15. Hickey AJ, Martonen TB, Yang Y (1996) Theoretical relationship of lung deposition to the fine particle fraction of inhalation aerosols. Pharm Acta Helv 71(3):185–190

    PubMed  CAS  Google Scholar 

  16. Telko MJ, Hickey AJ (2005) Dry powder inhaler formulation. Respir Care 50(9):1209–1227

    PubMed  Google Scholar 

  17. Harvey CJ, O’Doherty MJ, Page CJ, Thomas SH, Nunan TO, Treacher DF (1997) Comparison of jet and ultrasonic nebulizer pulmonary aerosol deposition during mechanical ventilation. Eur Respir J 10(4):905–909

    PubMed  CAS  Google Scholar 

  18. Tarara TE, Hartman MS, Gill H, Kennedy AA, Weers JG (2004) Characterization of suspension-based metered dose inhaler formulations composed of spray-dried budesonide microcrystals dispersed in HFA-134a. Pharm Res 21(9):1607–1614

    Article  PubMed  CAS  Google Scholar 

  19. Sommerville ML, Cain JB, Johnson CS, Hickey AJ (2000) Lecithin in-verse microemulsions for the pulmonary delivery of polar compounds utilizing dimethylether and propane as propellants. Pharm Dev Technol 7(3):273–288

    Article  Google Scholar 

  20. Sommerville ML, Cain JB, Johnson CS, Rypacek F, Hickey AJ (2002) Lecithin microemulsions in dimethylether and propane for the generation of pharmaceutical aerosols containing polar solutes. Pharm Dev Technol 7(3):273–288

    Article  PubMed  CAS  Google Scholar 

  21. Chougule MB, Padhi BK, Jinturkar KA, Misra A (2007) Development of dry powder inhalers. Recent Pat Drug Deliv Formul 1(1):11–21

    Article  PubMed  CAS  Google Scholar 

  22. Ashurst II, Malton A, Prime D, Sumby B (2000) Latest advances in the development of dry powder inhalers. Pharm Sci Technol 3(7):246–256

    Article  CAS  Google Scholar 

  23. Lalor CB, Hickey AJ (1997) Generation and characterization of aerosols for drug delivery to the lung. In: Akwete Lex Adjei, Pramod KG (ed) Inhalation delivery of peptides and proteins, vol. 107. p 235–276

    Google Scholar 

  24. Taylor A, Gustafsson P (2005) Do all dry powder inhalers show the same pharmaceutical performance? Int J Clin Pract 59(149):7–12

    Article  PubMed  CAS  Google Scholar 

  25. Srichana T, Martin GP, Marriott C (1998) Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro. Eur J Pharm Sci 7(1):73–80

    Article  PubMed  CAS  Google Scholar 

  26. Chrystyn H (2007) The Diskus: a review of its position among dry powder inhaler devices. Int J Clin Pract 61(6):1022–1036

    Article  PubMed  CAS  Google Scholar 

  27. Lobo JM, Schiavone H, Palakodaty S, York P, Clark A, Tzannis ST (2005) SCF-engineered powders for delivery of budesonide from passive DPI devices. J Pharm Sci 94(10):2276–2288

    Article  PubMed  CAS  Google Scholar 

  28. Chan HK, Chew NY (2003) Novel alternative methods for the delivery of drugs for the treatment of asthma. Adv Drug Deliv Rev 55(7):793–805

    Article  PubMed  CAS  Google Scholar 

  29. Austin LG, Trass O (1997) Size reduction of solids crushing and grinding equipment. In: Fayed ME, Otten L (eds) Handbook of powder science & technology. Chapman & Hall, New York, pp 586–634

    Google Scholar 

  30. Merisko-Liversidge E, McGurk SL, Liversidge GG (2004) Insulin nanoparticles: a novel formulation approach for poorly water soluble Zn-insulin. Pharm Res 21(9):1545–1553

    Article  PubMed  CAS  Google Scholar 

  31. Müller RH, Bohm BHL, Grau MJ (2000) A formulation approach for poorly soluble and poorly bioavailable drugs. In: Wise DL (ed) Hand book of pharmaceutical controlled release technology., pp 345–358

    Google Scholar 

  32. Louey MD, Van Oort M, Hickey AJ (2004) Aerosol dispersion of respirable particles in narrow size distributions produced by jet-milling and spray-drying techniques. Pharm Res 21(7):1200–1206

    Article  PubMed  CAS  Google Scholar 

  33. Liversidge GG, Cundy KC, Bishop JF, Czekai DA (1992) Surface Modified Drug Nanoparticles, US Patent 5,145,684

    Google Scholar 

  34. Müller RH, Möschwitzer J, Bushrab FN (2006) Manufacturing of Nanoparticles by milling and homogenization technique. In: Gupta RB, Kompella UB (eds) Nanoparticle technology for drug delivery., pp 21-–51

    Google Scholar 

  35. Bruno RP, McIlwrick R (1999) Microfluidizer processor technology for high performance particle size reduction, mixing and dispersion. Eur J Pharm Biopharm 56:29–36

    Google Scholar 

  36. Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3(9):785–796

    Article  PubMed  CAS  Google Scholar 

  37. Zhang D, Tan T, Gao L, Zhao W, Wang P (2007) Preparation of azithromycin nanosuspensions by high pressure homogenization and its physicochemical characteristics studies. Drug Dev Ind Pharm 33(5):569–575

    Article  PubMed  CAS  Google Scholar 

  38. Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47(1):3–19

    Article  PubMed  CAS  Google Scholar 

  39. Muller RH, Becker R, Kruss B, Peters K (1999) Pharmaceutical Nanosuspensions for Medicament Administration as Systems with Increased Saturation Solubility and Rate of Solution. US Patent 5,858,410

    Google Scholar 

  40. Müller RH, Jacobs C, Kayser O (2003) DissoCubes – a novel formulation for poorly soluble and poorly bioavailable drugs. In: Rathbone MJ, Hadgraft J, Roberts MS (eds) Modified-release drug delivery systems. Marcel Dekker, New York, pp 135–49

    Google Scholar 

  41. Scholer N, Krause K, Kayser O, Muller RH, Borner K, Hahn H, Liesenfeld O (2001) Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 45(6):1771–1779

    Article  PubMed  CAS  Google Scholar 

  42. Bushrab NF, Müller RH (2003) Nanocrystals of poorly soluble drugs for oral administration. J New Drugs 5:20–2

    Google Scholar 

  43. Kipp JE, Wong JCT, Doty MJ, Rebbeck CL (2003) Microprecipitation method for preparing submicron suspensions. US Patent 6607784. B2 USA

    Google Scholar 

  44. Müller RH, Möschwitzer J (2005) Method and apparatus for the production of ultrafine particles and coating of such particles. DE 10 2005 053862.2 Application, Germany

    Google Scholar 

  45. Atkins PJ (2005) Dry powder inhalers: an overview. Respir Care 50:1304–1312

    PubMed  Google Scholar 

  46. Vidgren MT, Vidgren PA, Paronen TP (1987) Comparison of physical and inhalation properties of spray-dried and mechanically micronized disodium cromoglycate. Int J Pharm 35:139–144

    Article  CAS  Google Scholar 

  47. Forrester RB, Boardman TD (1986) Inhalation pharmaceuticals, US Patent 4590206

    Google Scholar 

  48. Chawla A, Taylor KMG, Newton JM, Johnson MCR (1994) Production of spray dried salbutamol sulfate for use in dry powder aerosol formulation. Int J Pharm 108:233–240

    Article  CAS  Google Scholar 

  49. Platz RM, Patton JS, Foster L, Eljamal M (2003) Spray drying of macromolecules to produce inhalable dry powders. U.S. Patent 6,582,728

    Google Scholar 

  50. Platz RM, Patton JS, Foster L, Eljamal M (2004) Compositions and methods for the pulmonary delivery of aerosolized macromolecules. US Patent 6,797,258

    Google Scholar 

  51. Platz RM, Patton JS, Foster L, Eljamal M (2005) Composition for pulmonary administration comprising a drug and a hydrophobic amino acid. United States Patent. 6,921,527

    Google Scholar 

  52. Smith DJ, Bot S, Dellamary L, Bot A (2003) Evaluation of novel aerosol formulations designed for mucosal vaccination against influenza virus. Vaccine 21:2805–2812

    Article  PubMed  CAS  Google Scholar 

  53. Eljamal M, Patton JS, Foster L, Platz RM (1999) Compositions and methods for nucleic acid delivery to the lung. United States Patent. 5,994,314

    Google Scholar 

  54. Pan PJ, Chou CL, Chiou HJ, Ma HL, Lee HC, Chan RC (2003) Extracorporeal shock wave therapy for chronic calcific tendinitis of the shoulders: a functional and sonographic study. Arch Phys Med Rehabil 84(7):988–993

    Article  PubMed  Google Scholar 

  55. Maa YF, Nguyen PA, Sit K, Hsu CC (1998) Spray-drying performance of a bench-top spray dryer for protein aerosol powder preparation. Biotechnol Bioeng 60:301–309

    Article  PubMed  CAS  Google Scholar 

  56. Tarara T, Weers J, Dellamary L (2000) Engineered powders for inhalation. Respir Drug Deliv Proc 7:413–416

    Google Scholar 

  57. Trevino LA, Schutt EG, Klein DH, Tarara TE, Weers JG, Kabalnov A (1998) Stabilized Gas Emulsion Containing Phospholipid for Ultrasound Contrast Enhancement, Alliance Pharmaceutical Corp. USA Patent 5,798,091

    Google Scholar 

  58. Smith DJ, Gambone LM, Tarara T, Meays DR, Dellamary LA, Woods CM, Weers J (2001) Liquid dose pulmonary instillation of gentamicin PulmoSpheres formulations: tissue distribution and pharmacokinetics in rabbits. Pharm Res 18(11):1556–1561

    Article  PubMed  CAS  Google Scholar 

  59. Duddu SP, Sisk SA, Walter YH, Tarara TE, Trimble KR, Clark AR, Eldon MA, Elton RC, Pickford M, Hirst PH, Newman SP, Weers JG (2002) Improved lung delivery from a passive dry powder inhaler using an Engineered PulmoSphere powder. Pharm Res 19(5):689–95

    Article  PubMed  CAS  Google Scholar 

  60. Hirst PH, Pitcairn GR, Weers JG, Tarara TE, Clark AR, Dellamary LA, Hall G, Shorr J, Newman SP (2002) In vivo lung deposition of hollow porous particles from a pressurized metered dose inhaler. Pharm Res 19(3):258–264

    Article  PubMed  CAS  Google Scholar 

  61. Bot AI, Smith DJ, Bot S, Dellamary L, Tarara TE, Harders S, Phillips W, Weers JG, Woods CM (2001) Receptor-mediated targeting of spray-dried lipid particles coformulated with immunoglobulin and loaded with a prototype vaccine. Pharm Res 18(7):971–979

    Article  PubMed  CAS  Google Scholar 

  62. Bot AI, Tarara TE, Smith DJ, Bot SR, Woods CM, Weers JG (2000) Novel lipid-based hollow-porous microparticles as a platform for immunoglobulin delivery to the respiratory tract. Pharm Res 17(3):275–283

    Article  PubMed  CAS  Google Scholar 

  63. Dellamary L, Smith DJ, Bloom A, Bot S, Guo GR, Deshmuk H, Costello M, Bot A (2004) Rational design of solid aerosols for immunoglobulin delivery by modulation of aerodynamic and release characteristics. J Control Release 95(3):489–500

    Article  PubMed  CAS  Google Scholar 

  64. Newhouse MT, Hirst PH, Duddu SP, Walter YH, Tarara TE, Clark AR, Weers JG (2003) Inhalation of a dry powder tobramycin PulmoSphere formulation in healthy volunteers. Chest 124(1):360–366

    Article  PubMed  CAS  Google Scholar 

  65. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA (2002) Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA 99(19):12001–12005

    Article  PubMed  CAS  Google Scholar 

  66. Vehring R (2008) Pharmaceutical particle engineering via spray drying. Pharm Res 25(5):999–1022

    Article  PubMed  CAS  Google Scholar 

  67. Vanbever R, Pliquett UF, Preat V, Weaver JC (1999) Comparison of the effects of short, high-voltage and long, medium-voltage pulses on skin electrical and transport properties. J Control Release 60(1):35–47

    Article  PubMed  CAS  Google Scholar 

  68. Rogers TL, Johnston KP, Williams RO 3rd (2001) Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Dev Ind Pharm 27(10):1003–1015

    Article  PubMed  CAS  Google Scholar 

  69. Yu Z, Rogers TL, Hu J, Johnston KP, Williams RO 3rd (2002) Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. Eur J Pharm Biopharm 54(2):221–228

    Article  PubMed  CAS  Google Scholar 

  70. Williams RO, Hu J, Rogers TL, Barron MK, Young TJ, Yu Z, Johnston KP (2003) Process for Production of Nanoparticles and Microparticles by Spray Freezing into Liquid. U.S. Patent 20030041602

    Google Scholar 

  71. Hu J, Johnston KP, Williams RO 3rd (2004) Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm 30(3):233–245

    Article  PubMed  Google Scholar 

  72. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    Article  PubMed  CAS  Google Scholar 

  73. Watanabe W, Ahonen P, Kauppinen E, Jarvinen R, Brown D, Jokiniemi J, Muttonen W (2002) Novel method for the synthesis of inhalable multicomponent drug powders with controlled morphology and size. In: Dalby RN, Byron PR, Peart J, Farr SJ (eds) Proceedings of respiratory drug delivery VIII, vol 2. Davis Horwood International, North Carolina, pp 795–797

    Google Scholar 

  74. List M, Sucker H (1992) Pharmaceutical colloid hydrosols for injection. GB patent 2200048

    Google Scholar 

  75. Steckel H, Rasenack N, Villax P, Muller BW (2003) In vitro characterization of jet-milled and in-situ-micronized fluticasone-17-propionate. Int J Pharm 258(1–2):65–75

    Article  PubMed  CAS  Google Scholar 

  76. Steckel H, Rasenack N, Muller BW (2003) In-situ-micronization of disodium cromoglycate for pulmonary delivery. Eur J Pharm Biopharm 55(2):173–180

    Article  PubMed  CAS  Google Scholar 

  77. Rasenack N, Steckel H, Muller BW (2003) Micronization of anti-inflammatory drugs for pulmonary delivery by a controlled crystallization process. J Pharm Sci 92(1):35–44

    Article  PubMed  CAS  Google Scholar 

  78. Hu T, Zhao H, Jiang L, Le Y, Chen JF, Yun J (2008) Engineering pharmaceutical fine particles of budesonide for dry powder inhalation (DPI). Ind Eng Chem Res 47:9623–9627

    Article  CAS  Google Scholar 

  79. Baldyga J, Henczka M, Shekunov BY (2004) Fluid dynamics, mass-transfer and particle formation in supercritical fluids. In: York P, Kompella UB, Shekunov BY (eds) Supercritical fluid technology for drug product development. Marcel Dekker, New York, pp 91–157

    Google Scholar 

  80. Rasenack N, Muller BW (2004) Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol 9(1):1–13

    Article  PubMed  CAS  Google Scholar 

  81. Hu T, Chiou H, Chan H, Chen J, Yun J (2008) Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation. J Pharm Sci 97(2):944–949

    Article  PubMed  CAS  Google Scholar 

  82. Chen X, Young TJ, Sarkari M, Williams RO III, Johnston KP (2002) Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm 242(1–2):3–14

    Article  PubMed  CAS  Google Scholar 

  83. Rehman M, Shekunov BY, York P, Lechuga-Ballesteros D, Miller DP, Tan T, Colthorpe P (2004) Optimisation of powders for pulmonary delivery using supercritical fluid technology. Eur J Pharm Sci 22(1):1–17

    Article  PubMed  CAS  Google Scholar 

  84. Vemavarapu C, Mollan MJ, Lodaya M, Needham TE (2005) Design and process aspects of laboratory scale SCF particle formation systems. Int J Pharm 292(1–2):1–16

    Article  PubMed  CAS  Google Scholar 

  85. Lindsay AD, Omilinsky BA (1992) Method of preparing mixtures of active ingredients and excipients using liquid carbon dioxide. United States Patent 5169433

    Google Scholar 

  86. Matson DW, Fulton JL, Petersen RC, Smith RD (1987) Rapid expansion of supercritical fluid solutions: Solute formation of powders, thin films and fibres. Ind Eng Chem Res 26:2298–2306

    Article  CAS  Google Scholar 

  87. Weidner E, Knez Z, Novak Z (1995) Process for preparing particles or powders. International Patent Publication WO 95/21688

    Google Scholar 

  88. Gallagher PM, Coffey MP, Krukonis VJ, Klasutis N (1989) Gas anti-solvent recrystallization: new process to recrystallize compounds insoluble in supercritical fluids. In: Johnston KP, Penninger J (eds) Supercritical fluid science and technology. ACS Symposium Series 406. American Chemical Society, Washington DC. pp 334–354

    Google Scholar 

  89. Bleich J, Muller BW, Wabmus W (1993) Aerosol solventextraction system: a newmicroparticle production technique. Int J Pharm 97:111–117

    Article  CAS  Google Scholar 

  90. Bodmeier R, Wang H, Dixon DJ, Mawson S, Johnston KP (1995) Polymeric microspheres prepared by spraying into compressed carbon dioxide. Pharm Res 12(8):1211–1217

    Article  PubMed  CAS  Google Scholar 

  91. Bertucco A, Pallado P, Benedetti L (1996) Formation of biocompatible polymer microspheres for controlled drug delivery by a supercritical antisolvent technique. Process Technol Proc High Press Chem Eng 12:217–222

    CAS  Google Scholar 

  92. York P, Hanna M (1995) Salmeterol Xinafoate with controlled particle size. International Patent Publication WO 95/01324

    Google Scholar 

  93. Gupta RB, Chattopadhyay P (2002) Method of forming nanoparticles and microparticles of controllable size using supercritical fluids and ultrasound. US Patent Application US20020000681 A1

    Google Scholar 

  94. Perrut M, Clavier J (2003) Supercritical fluid formulation: process choice and scale-up. Ind Eng Chem Res 42:6375–6383

    Article  CAS  Google Scholar 

  95. Young TJ, Johnston KP, Mishima K, Tanaka H (1999) Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent. J Pharm Sci 88(6):640–650

    Article  PubMed  CAS  Google Scholar 

  96. Young TJ, Mawson S, Johnston KP, Henriksen IB, Pace GW, Mishra AK (2000) Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol Prog 16(3):402–407

    Article  PubMed  CAS  Google Scholar 

  97. Pace SN, Pace GW, Parikh IM (1999) A.K., Novel injectable formulations of insoluble drugs. Pharm Technol 3:116–134

    Google Scholar 

  98. Pace GW, Vachon MG, Mishra AK, Henrikson IB, Krukonis V (2001) Processes to GenerateSubmicron Particles of Water-Insoluble Compounds. U.S. Patent 6,177,103

    Google Scholar 

  99. Palakodaty S, York P, Pritchard J (1998) Supercritical fluid processing of materials from aqueous solutions: the application of SEDS to lactose as a model substance. Pharm Res 15(12):1835–1843

    Article  PubMed  CAS  Google Scholar 

  100. Steckel H, Thies J, Müller BW (1997) Micronizing of steroids for pulmonary delivery by supercritical carbon dioxide. Int J Pharm 152:99–110

    Article  CAS  Google Scholar 

  101. Steckel H, Muller BW (1998) Metered-dose inhaler formulations with beclomethasone-17,21-dipropionate using the ozone friendly propellant R 134a. Eur J Pharm Biopharm 46(1):77–83

    Article  PubMed  CAS  Google Scholar 

  102. Shekunov BY, Chattopadhyay P, Seitzinger J, Huff R (2006) Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm Res 23(1):196–204

    Article  PubMed  CAS  Google Scholar 

  103. Chattopadhyay P, Huff R, Shekunov BY (2006) Drug encapsulation using supercritical fluid extraction of emulsions. J Pharm Sci 95(3):667–679

    Article  PubMed  CAS  Google Scholar 

  104. Koushik K, Kompella UB (2004) Particle and device engineering for inhalation drug delivery. Drug Del Technol 4:40–50

    CAS  Google Scholar 

  105. Kwona MJ, Baea JH, Kima JJ, Nab K, Lee ES (2007) Long acting porous microparticle for pulmonary protein delivery. Int J Pharm 333(1–2):5–9

    Article  Google Scholar 

  106. Mohamed F, van der Walle CF (2006) PLGA microcapsules with novel dimpled surfaces for pulmonary delivery of DNA. Int J Pharm 311(1–2):97–107

    Article  PubMed  CAS  Google Scholar 

  107. Arnold MM, Gonnan EM, Schieber LJ, Munson EJ, Berkland C (2007) NanoCipro encapsulation in monodisperse large porous PLGA microparticles. J Control Release 121(1–2):100–109

    Article  PubMed  CAS  Google Scholar 

  108. Berkland C, Kim KK, Pack DW (2001) Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J Control Release 73(1):59–74

    Article  PubMed  CAS  Google Scholar 

  109. Berkland C, King M, Cox A, Kim K, Pack DW (2002) Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release 82(1):137–147

    Article  PubMed  CAS  Google Scholar 

  110. Lindfors L, Skantze P, Skantze U, Rasmusson M, Zackrisson A, Olsson U (2006) Amorphous drug nanosuspensions. 1. Inhibition of Ostwald ripening. Langmuir 22(3):906–910

    Article  PubMed  CAS  Google Scholar 

  111. Azarmi S, Tao X, Chen H, Wang ZL, Finlay WH, Lobenberg R, Roa WH (2006) Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm 319(1–2):155–161

    Article  PubMed  CAS  Google Scholar 

  112. Sham JOH, Zhang Y, Finlay WH, Roa WH, Lobenberg R (2004) Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int J Pharm 269(2):457–467

    Article  PubMed  CAS  Google Scholar 

  113. Grenha A, Seijo B, Remunan-Lopez C (2005) Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci 25(4–5):427–437

    Article  PubMed  CAS  Google Scholar 

  114. Junghanns JU, Muller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 3(3):295–309

    PubMed  CAS  Google Scholar 

  115. Ostrander KD, Hovey DC, Knapp DA, Parry-Billings M (2000) Potential delivery advantages of spray-dried Nanocrystals colloidal budesonide with the Clickhaler®. In: Dalby RN, Byron PR, Peart J, Farr SJ (eds) Proceedings of respiratory drug delivery VII. Serentec Press, North Carolina, pp 447–449

    Google Scholar 

  116. Shi LJ, Plumley CJ, Berkland C (2007) Biodegradable nanoparticle flocculates for dry powder aerosol formulation. Langmuir 23(22):10897–10901

    Article  PubMed  CAS  Google Scholar 

  117. El-Gendy N, Berkland C (2009) Combination chemotherapeutic dry powder aerosols via controlled nanoparticle agglomeration. Pharm Res 26(7):1752–1763

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory Berkland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

El-Gendy, N., Bailey, M.M., Berkland, C. (2011). Particle Engineering Technologies for Pulmonary Drug Delivery. In: Smyth, H., Hickey, A. (eds) Controlled Pulmonary Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9745-6_13

Download citation

Publish with us

Policies and ethics