Skip to main content

Theme and Variation on N-Aryl-1, 8-Napthalimides: Minimal Modification to Red-Shifted Fluorescence and Applications in Fluorescent Chemosensors

  • Chapter
  • First Online:
Reviews in Fluorescence 2009

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2009))

Abstract

Our continuing efforts into the development of N-aryl-1,8-naphthalic dicarboximides (NI) as dual fluorescent (DF) dyes for biomedical applications has led to new insights into the photophysical features that these simple dyes can be designed to display. Consequently, the development of new DF dyes with improved fluorescent properties represents a major focus of our research. The first section of this review presents results involving a “minimal modification approach” to red-shifted absorption and fluorescence in NIs and affords some key design concepts for improved DF dyes. In this section, we demonstrate the significant effect of appropriately placed charges can have on the emission properties of these unique dyes. In the next section, dual fluorescent probes for the ions of potassium and sodium are introduced with the NI framework and crown ether receptors. The ratiometric features of these dyes from absorption as well as fluorescence spectroscopy are highlighted. Finally, in the third section, we demonstrate dual fluorescence detection of saccharides with the same DF dye component as our ion probe, in this case, however, a simple phenylboronic acid is utilized as a saccharide binding component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Durrant JR, Haque SA, Palomares E (2006) Photochemical energy conversion: from molecular dyads to solar cells. Chem Commun 37(51):3279–3289

    Article  Google Scholar 

  2. Dyakonov V, Sariciftci NS (2003) Organic photovoltaics: concepts and realization, vol 60. Springer, New York

    Google Scholar 

  3. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley, New York

    Book  Google Scholar 

  4. Klymchenko AS, Demchenko AP (2002) Electrochromic modulation of excited-state intramolecular proton transfer: the new principle in design of fluorescence sensors. J Am Chem Soc 124:12372–12379

    Article  PubMed  CAS  Google Scholar 

  5. Klymchenko AS, Ozturk T, Demchenko AP (2002) Synthesis of furanochromones: a new step in improvement of fluorescence properties. Tetrahedron Lett 43:7079–7082

    Article  CAS  Google Scholar 

  6. Abad S, Kluciar M, Miranda MA, Pischel U (2005) Proton-induced fluorescence switching in novel naphthalimide-dansylamide dyads. J Org Chem 70:10565–10568

    Article  PubMed  CAS  Google Scholar 

  7. Badugu R (2005) Fluorescence sensor design for transition metal ions: the role of the PIET interaction efficiency. J Fluoresc 15:71–83

    Article  PubMed  CAS  Google Scholar 

  8. Cho DW, Fujitsuka M, Choi KH, Park MJ, Yoon UC, Majima TJ (2006) Photoinduced electron transfer processes in 1,8-naphthalimide-linker-phenothiazine dyads. J Phys Chem B 110:4576–4582

    Article  PubMed  CAS  Google Scholar 

  9. Koner AL, Schatz J, Nau WM, Pischel U (2007) Selective sensing of citrate by a supramolecular 1,8-naphthalimide/calix[4]arene assembly via complexation-modulated pK(a) shifts in a ternary complex. J Org Chem 72:3889–3895

    Article  PubMed  CAS  Google Scholar 

  10. Miskolczy Z, Nyitrai J, Biczók L, Sebok-Nagy K, Körtvélyesi T (2006) Photophysical properties of novel cationic naphthalimides. J Photochem Photobiol A Chem 182:99–106

    Article  CAS  Google Scholar 

  11. Takahashi S, Nozaki K, Kozaki M, Suzuki S, Keyaki K, Ichimura A, Matsushita T, Okada K (2008) Photoinduced electron transfer of N-[(3-and 4-diarylamino)phenyl]-1,8-naphthalimide dyads: orbital-orthogonal approach in a short-linked D-A system. J Phys Chem A 112:2533–2542

    Article  PubMed  CAS  Google Scholar 

  12. Frisch MJ et al (2004) Gaussian 03. Gaussian, Wallingford, CT

    Google Scholar 

  13. Saha S, Samanta A (2002) Influence of the structure of the amino group and polarity of the medium on the photophysical behavior of 4-amino-1,8-naphthalimide derivatives. J Phys Chem A 106:4763–4771

    Article  CAS  Google Scholar 

  14. Fromherz P (1995) Monopole dipole model for symmetrical solvatochromism of hemicyanine dyes. J Phys Chem 99:7188–7192

    Article  CAS  Google Scholar 

  15. Demeter A, Berces T, Biczok L, Wintgens V, Valat P, Kossanyi J (1996) Comprehensive model of the photophysics of N-phenylnaphthalimides: the role of solvent and rotational relaxation. J Phys Chem 100:2001–2011

    Article  CAS  Google Scholar 

  16. Minta A, Tsien RY (1989) Fluorescent indicators for cystolic sodium. J Biol Chem 264:19449–19457

    PubMed  CAS  Google Scholar 

  17. Tsien RY (1989) Fluorescent indicators of ion concentrations. Meth Cell Biol 30:127–156

    Article  CAS  Google Scholar 

  18. Lakowicz RJ (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, pp 634–644

    Book  Google Scholar 

  19. Szmacinski H, Lakowicz RJ (1999) Potassium and sodium measurements at clinical concentrations using phase-modulation fluorometry. Sens Actuators B Chem 60:8–18

    Article  Google Scholar 

  20. Liu HL, Zhang H, Li FA, Xie WJ, Jiang BY (2006) Intramolecular charge transfer dual fluorescent sensors from 4-(dialkylamino)benzanilides with metal binding site within electron acceptor. Tetrahedron 62:10441–10449

    Article  CAS  Google Scholar 

  21. Malval PJ, Lapouyade R (2001) Derivatization of 4-(dimethylamino)benzamide to dual fluorescent ionophores: divergent spectroscopic effects dependent on N or O amide chelation. Helv Chem Acta 84:2439

    Article  CAS  Google Scholar 

  22. Crossley R, Goolamali Z, Sammes PG (1994) Synthesis and properties of a potential extracellular fluorescent-probe for potassium. J Chem Soc Perkin Trans 2:1615–1623

    Google Scholar 

  23. Kaneda T, Sugihara K, Kamiya H, Misumi S (1981) Synthetic macrocyclic ligands. 4. Lithium ion-characteristic coloration of a crowned dinitrophenylazophenol. Tetrahedron Lett 22:4407

    Article  CAS  Google Scholar 

  24. de Silva AP, Eilers J, Zlokarnik G (1999) Emerging fluorescence sensing technologies: from photophysical principles to cellular applications. Proc Natl Acad Sci USA 96:8336

    Article  PubMed  Google Scholar 

  25. Shinkai S, Takeuchi M, Ikeda A (2000) Molecular machines useful for the design of chemosensors. In: Osada Y, De Rossi DE (eds) Polymer sensors and actuators. Springer, Berlin, pp 183–206

    Google Scholar 

  26. He H, Mortellaro AM, Leiner PJM, Young TS, Fraatz JR, Tusa K (2003) A fluorescent chemosensor for sodium based on photoinduced electron transfer. J Anal Chem 75:549–555

    Article  CAS  Google Scholar 

  27. Cosnard F, Wintgens V (1998) A new fluoroionophore derived from 4-amino-N-methyl-1,8-naphthalimide. Tetrahedron Lett 39:2751–2754

    Article  CAS  Google Scholar 

  28. Cao H, Chang V, Hernandez R, Heagy MD (2005) Matrix screening of substituted N-aryl-1,8-naphthalimides reveals new dual fluorescent dyes and unusually bright pyridine derivatives. J Org Chem 70:4929–4934

    Article  PubMed  CAS  Google Scholar 

  29. Demchenko PA (2005) The problem of self-calibration of fluorescence signal in microscale sensor systems. Lab Chip 5:1210–1223

    Article  PubMed  CAS  Google Scholar 

  30. Cao H, McGill T, Heagy DM (2004) Substituent effects on monoboronic acid sensors for saccharides based on N-phenyl-1,8-naphthalenedicarboximides. J Org Chem 69:2959–2966

    Article  PubMed  CAS  Google Scholar 

  31. James TD, Shinkai S (2002) Artificial receptors as chemosensors for carbohydrates. Top Curr Chem 218:159–200

    Article  CAS  Google Scholar 

  32. Fang H, Kaur G, Wang B (2004) Progress in boronic acid-based fluorescent glucose sensors. J Fluoresc 14:481–489

    Article  PubMed  CAS  Google Scholar 

  33. Finney SJ, Zekveld C, Elia A, Evans TW (2003) Glucose control and mortality in critically ill patients. J Am Med Assoc 290:2041–2047

    Article  CAS  Google Scholar 

  34. Wentholt IM, Vollebregt MA, Hart AA, Hoekstra JB, DcVrics JH (2005) Comparison of a needle-type and a microdialysis continuous glucose monitor in type 1 diabetic patients. Diabetes Care 28:2871–2876

    Article  PubMed  CAS  Google Scholar 

  35. Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565

    Article  PubMed  CAS  Google Scholar 

  36. James TD, Sandanayake KRAS, Shinkai S (1995) Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 374:345–357

    Article  CAS  Google Scholar 

  37. Wang W, Gao X, Wang B (2002) Boronic acid-based sensors. Curr Org Chem 6:1285–1317

    Article  CAS  Google Scholar 

  38. Striegler S (2003) Selective carbohydrate recognition by synthetic receptors in aqueous solution. Curr Org Chem 7:81–102

    Article  CAS  Google Scholar 

  39. Yan J, Fang H, Wang B (2005) Boronolectins and fluorescent boronolectins: an examination of the detailed chemistry issues important for the design. Med Res Rev 25:490–520

    Article  PubMed  CAS  Google Scholar 

  40. Heller A (1999) Implanted electrochemical glucose sensors for the management of diabetes. Annu Rev Biomed Eng 1:153–175

    Article  PubMed  CAS  Google Scholar 

  41. Yoon JY, Czarnik AW (1992) Fluorescent chemosensors of carbohydrates – a means of chemically communicating the binding of polyols in water based on chelation enhanced quenching. J Am Chem Soc 114:5874–5875

    Article  CAS  Google Scholar 

  42. Mader HS, Wolfbeis OS (2008) Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim Acta 162:1–34

    Article  CAS  Google Scholar 

  43. Yamamoto H, Ori A, Ueda K, Dusemund C, Shinkai S (1996) Visual sensing of fluoride ion and saccharides utilizing a coupled redox reaction of ferrocenylboronic acids and dye molecules. Chem Commun 407–408.

    Google Scholar 

  44. Shinmori H, Takeuchi M, Shinkai S (1995) Spectroscopic sugar sensing by a stilbene derivative ith push-pull ((OH)(2)B) – type substituents. Tetrahedron 51:1893–1902

    Article  CAS  Google Scholar 

  45. Gabai R, Sallacan N, Chegel V, Bourenko T, Katz E, Willner I (2001) Characterization of the swelling of acrylamidophenylboronic acid-acrylamide hydrogels upon interaction with glucose by faradaic impedance spectroscopy, chronopotentiometry, quartz-crystal microbalance (QCM), and surface plasmon resonance (SPR) experiments. J Phys Chem B 105:8196–8202

    Article  CAS  Google Scholar 

  46. Shoji E, Freund MS (2002) Potentiometric saccharide detection based on the pKa changes of poly(aniline boronic acid). J Am Chem Soc 124:12486–12493

    Article  PubMed  CAS  Google Scholar 

  47. James TD, Linnane P, Shinkai S (1996) Fluorescent saccharide receptors: a sweet solution to the design, assembly and evaluation of boronic acid derived PET sensors. Chem Commun 281–288.

    Google Scholar 

  48. DiCesare N, Pinto MR, Schanze KS, Lakowicz JR (2002) Saccharide detection based on the amplified fluorescence quenching of a water-soluble poly(phenylene ethynylene) by a boronic acid functionalized benzyl viologen derivative. Langmuir 18:7785–7787

    Article  CAS  Google Scholar 

  49. Murakami H, Nagasaki T, Hamachi I, Shinkai S (1993) Sugar sensing utilizing aggregation properties of a boronic acid appended porphyrin. Tetrahedron Lett 34:6273–6276

    Article  CAS  Google Scholar 

  50. Coskun A, Akkaya EU (2004) Three-point recognition and selective fluorescence sensing of L-DOPA. Org Lett 6:3107–3109

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Heagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nandhikonda, P., Cao, Z., Heagy, M.D. (2011). Theme and Variation on N-Aryl-1, 8-Napthalimides: Minimal Modification to Red-Shifted Fluorescence and Applications in Fluorescent Chemosensors. In: Geddes, C. (eds) Reviews in Fluorescence 2009. Reviews in Fluorescence, vol 2009. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9672-5_11

Download citation

Publish with us

Policies and ethics