Skip to main content

Nanostructured Biosensing for Detection of Insecticides

  • Chapter
  • First Online:
NanoBiosensing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Organophosphorous pesticides (OPs) are widely used in agriculture due to their high effectiveness and low toxicity for pest control and protecting crops and seeds [1, 2]. Their residuals in crops, livestock, and poultry products are clearly dangerous to human health. The related clinical signs include negative effects on the visual ­system, sensory function, cognitive function, and nervous system [3, 4]. Specifically, exposure to OPs has been shown to cause headache, dizziness, profuse sweating, blurred vision, nausea, vomiting, reduced heartbeat, diarrhea, loss of coordination, slow and weak breathing, fever, coma, and even death [5]. The toxicity of OPs mainly arises from their irreversible inhibition on acetylcholinesterase (AChE), which is essential for the central nervous system to function, often causing respiratory paralysis and death [6]. Because of the high toxicities, rapid detection of these agents in the environment, public places, or workplaces and the monitoring of ­individual exposures to OPs have become increasingly important for homeland security and health protection [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valdez Salas, B., Garcia Duran, E.I., Wiener, M.S.: Impact of pesticides use on human health in Mexico: a review. Rev. Environ. Health 15, 399–412 (2000)

    Article  CAS  Google Scholar 

  2. Van der Hoff, G.R., Van Zoonen, P.: Trace analysis of pesticides by gas chromatography. J. Chromatogr. A 843, 301–322 (1999)

    Article  Google Scholar 

  3. Nuñez, O., Moyano, E., Galceran, M.T.: LC-MS/MS analysis of organic toxics in food. Trac Trends Anal. Chem. 24, 683–703 (2005)

    Article  CAS  Google Scholar 

  4. Rial-Otero, R., Gaspar, E.M., Capelo, J.L., et al.: Chromatographic-based methods for pesticide determination in honey: an overview. Talanta 71, 503–514 (2007)

    Article  CAS  Google Scholar 

  5. Bhand, S., Surugiu, I., Danielsson, B., et al.: Immuno-arrays for multianalyte analysis of chlorotriazines. Talanta 65, 331–336 (2005)

    Article  CAS  Google Scholar 

  6. Kumar, M.A., Chouhan, R.S., Thakur, M.S., et al.: Automated flow enzyme-linked immunosorbent assay (ELISA) system for analysis of methyl parathion. Anal. Chim. Acta 560, 30–34 (2006)

    Article  CAS  Google Scholar 

  7. Marty, J.L., Garcia, D., Rouillon, R.: Biosensor: potential in pesticide detection. Trac Trends Anal. Chem. 14, 329–333 (1995)

    CAS  Google Scholar 

  8. Guilbault, G.G., Pravda, M., Kreuzer, M.: Biosensors – 42 years and counting. Anal. Lett. 37, 14481–14496 (2004)

    Google Scholar 

  9. Mulchandani, P., Mulchandani, A., Chen, W., et al.: Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosens. Bioelectron. 14, 77–85 (1999)

    Article  CAS  Google Scholar 

  10. Gogol, E.V., Evtugyn, G.A., Marty, J.L., et al.: Amperometric biosensors based on Nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors. Talanta 53, 379–389 (2000)

    Article  CAS  Google Scholar 

  11. Anh, T.M., Dzyadevych, S.V., Van, M.C., et al.: Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta 63, 365–370 (2004)

    Article  CAS  Google Scholar 

  12. Barr, D.B., Thomas, K., Curwin, B., et al.: Biomonitoring of exposure in farmworker studies. Environ. Health Perspect. 114, 936–942 (2006)

    Article  CAS  Google Scholar 

  13. Laschi, S., Ogónczyk, D., Palchetti, I., et al.: Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors. Enzyme Microb. Technol. 40, 485–489 (2007)

    Article  CAS  Google Scholar 

  14. Bakker, E., Qin, Y.: Electrochemical sensors. Anal. Chem. 78, 3965–3984 (2006)

    Article  CAS  Google Scholar 

  15. Khayyami, M., Pita, M.T.P., Larsson, P.O., et al.: Development of an amperometric biosensor based on acetylcholine esterase covalently bound to a new support material. Talanta 45, 557–563 (1998)

    Article  CAS  Google Scholar 

  16. Mitchell, K.M.: Acetylcholine and choline amperometric enzyme sensors characterized in vitro and in vivo. Anal. Chem. 76, 1098–1106 (2004)

    Article  CAS  Google Scholar 

  17. Joshi, K.A., Tang, J., Mulchandani, A., et al.: A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 17, 54–58 (2005)

    Article  CAS  Google Scholar 

  18. Liu, G.D., Riechers, S.L., Lin, Y.H., et al.: Sensitive electrochemical detection of enzymatically generated thiocholine at carbon nanotube modified glassy carbon electrode. Electrochem. Commun. 7, 1163–1169 (2005)

    Article  CAS  Google Scholar 

  19. Liu, G.D., Lin, Y.H.: Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal. Chem. 78, 835–843 (2006)

    Article  CAS  Google Scholar 

  20. Du, D., Ju, H.X., Cai, J., et al.: An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube–cross-linked chitosan composite. Anal. Bioanal. Chem. 387, 1059–1065 (2007)

    Article  CAS  Google Scholar 

  21. Du, D., Ju, H.X., Zhang, A.D., et al.: Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix. Sens. Actuators B Chem. 127, 531–535 (2007)

    Article  CAS  Google Scholar 

  22. Du, D., Cai, J., Zhang, A.D., et al.: Rapid determination of triazophos using acetylcholinesterase biosensor based on sol-gel interface assembling multiwall carbon nanotubes. J. Appl. Electrochem. 37, 893–898 (2007)

    Article  CAS  Google Scholar 

  23. Lin, T.L., Huang, K.T., Liu, C.Y.: Determination of organophosphorus pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens. Bioelectron. 22, 513–518 (2006)

    Article  CAS  Google Scholar 

  24. Du, D., Ding, J.W., Zhang, A.D., et al.: Electrochemical thiocholine inhibition sensor based on biocatalytic growth of Au nanoparticles using chitosan as template. Sens. Actuators B Chem. 127, 317–322 (2007)

    Article  CAS  Google Scholar 

  25. Du, D., Chen, S.Z., Zhang, A.D., et al.: Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol-gel film for amperometric detection of organophosphorus insecticide. Biosens. Bioelectron. 23, 130–134 (2007)

    Article  CAS  Google Scholar 

  26. Du, D., Chen, S.Z., Chen, X., et al.: Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens. Bioelectron. 24, 475–479 (2008)

    Article  CAS  Google Scholar 

  27. Doretti, L., Ferrara, D., Lora, S., et al.: Acetylcholine biosensor involving entrapment of ­acetylcholinesterase and poly(ethylene glycol)-modified choline oxidase in a poly(vinyl alcohol) cryogel membrane. Enzyme Microb. Technol. 27, 279–285 (2000)

    Article  CAS  Google Scholar 

  28. Kok, F.N., Bozoglu, F., Hasirci, V.: Construction of an AChE-ChO biosensor for aldicarb determination. Biosens. Bioelectron. 17, 531–539 (2002)

    Article  CAS  Google Scholar 

  29. Abou-Donia, M.B.: Organophosphorus ester-induced chronic neurotoxicity. Arch. Environ. Health 5, 484–497 (2003)

    Article  Google Scholar 

  30. Suprun, E., Evtugyn, G., Budnikov, H., et al.: Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Anal. Bioanal. Chem. 383, 597–604 (2005)

    Article  CAS  Google Scholar 

  31. Chen, Q., Kobayashi, Y., Anzai, J., et al.: Avidin-biotin system-based enzyme multilayer membranes for biosensor applications: optimization of loading of choline esterase and choline oxidase in the bienzyme membrane for acetylcholine biosensors. Electroanalysis l0, 94–97 (1998)

    Article  Google Scholar 

  32. Neufeld, T., Eshkenazi, I., Rishpon, J., et al.: A micro flow injection electrochemical biosensor for organophosphorus pesticides. Biosens. Bioelectron. 15, 323–329 (2000)

    Article  CAS  Google Scholar 

  33. Wang, J., Liu, G.D., Lin, Y.H.: Amperometric choline biosensor fabricated through electrostatic assembly of bienzyme/polyelectrolyte hybrid layers on carbon nanotubes. Analyst 131, 477–483 (2006)

    Article  CAS  Google Scholar 

  34. Kok, F.N., Hasirci, V.: Determination of binary pesticide mixtures by an acetylcholinesterase–choline oxidase biosensor. Biosens. Bioelectron. 19, 661–665 (2004)

    Article  CAS  Google Scholar 

  35. Huang, X., Du, D., Zhang, A.D., et al.: A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate–acetylcholinesterase interaction by surface plasmon resonance. Talanta 78, 1036–1042 (2009)

    Article  CAS  Google Scholar 

  36. Valdés-Ramírez, G., Cortina, M., Marty, J., et al.: Acetylcholinesterase-based biosensors for quantification of carbofuran, carbaryl, methylparaoxon, and dichlorvos in 5% acetonitrile. Anal. Bioanal. Chem. 392, 699–707 (2008)

    Article  CAS  Google Scholar 

  37. Shulga, O., Kirchhoff, J.R.: An acetylcholinesterase enzyme electrode stabilized by an ­electrodeposited gold nanoparticle layer. Electrochem. Commun. 9, 935–940 (2007)

    Article  CAS  Google Scholar 

  38. Matsuura, H., Sato, Y., Niwa, O., et al.: Surface electrochemical enzyme immunoassay for the highly sensitive measurement of B-type natriureric peptide. Sens. Actuators B Chem. 108, 603–607 (2005)

    Article  CAS  Google Scholar 

  39. Du, D., Chen, W.J., Li, H.B., et al.: Development of acetylcholinesterase biosensor based on CdTe quantum dots modified cysteamine self-assembled monolayers. J. Electroanal. Chem. 623, 81–85 (2008)

    Article  CAS  Google Scholar 

  40. Zejli, H., Naranjo-Rodriguez, I., Marty, J.L., et al.: Alumina sol–gel/sonogel-carbon electrode based on acetylcholinesterase for detection of organophosphorus pesticides. Talanta 77, 217–221 (2008)

    Article  CAS  Google Scholar 

  41. Arduini, F., Ricci, F., Tuta, C.S., et al.: Detection of carbamic and organophosphorous pesticides in water samples using cholinesterase biosensor based on Prussian blue modified screen printed electrode. Anal. Chim. Acta 580, 155–162 (2006)

    Article  CAS  Google Scholar 

  42. Snejdarkova, M., Svobodova, L., Hianik, T., et al.: Acetylcholinesterase sensors based on gold electrodes modified with dendrimer and polyaniline: a comparative research. Anal. Chim. Acta 514, 79–88 (2004)

    Article  CAS  Google Scholar 

  43. Du, D., Chen, S.Z., Song, D.D., et al.: Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles–chitosan sol–gel composite. J. Electroanal. Chem. 611, 60–66 (2007)

    Article  CAS  Google Scholar 

  44. Du, D., Ding, J.W., Cai, J., et al.: Determination of carbaryl pesticide using amperometric acetylcholinesterase sensor formed by electrochemically deposited chitosan. Colloid Surf. B 58, 145–150 (2007)

    Article  CAS  Google Scholar 

  45. Schulze, H., Vorlová, S., Schmid, R.D., et al.: Design of acetylcholinesterases for biosensor applications. Biosens. Bioelectron. 18, 201–209 (2003)

    Article  CAS  Google Scholar 

  46. Luque de Castro, M.D., Herrera, M.C.: Enzyme inhibition-based biosensors and biosensing systems: questionable analytical devices. Biosens. Bioelectron. 18, 279–294 (2003)

    Article  CAS  Google Scholar 

  47. Andreescu, D., Andreescu, S., Sadik, O.A.: New materials for biosensors, biochips and molecular bioelectronics. In: Gorton, L. (ed.) Biosensors and Modern Biospecific Analytical Techniques, pp. 285–329. Elsevier, Amsterdam (2005)

    Google Scholar 

  48. Andreescu, S., Magearu, V., Marty, J.L., et al.: Immobilization of enzymes on screen-printed sensors via a histidine tail. Application to the detection of pesticides using modified cholinesterase. Anal. Lett. 34, 429–540 (2001)

    Article  Google Scholar 

  49. Andreescu, S., Avramescu, A., Marty, J.L., et al.: Detection of organophosphorus insecticides with immobilized acetylcholinesterase − comparative study of two enzyme sensors. Anal. Bioanal. Chem. 374, 39–45 (2002)

    Article  CAS  Google Scholar 

  50. Mulchandani, A., Mulchandani, P., Chen, W.: Enzyme biosensor for determination of organophosphates. Field Anal. Chem. Technol. 6, 363–369 (1998)

    Article  Google Scholar 

  51. Mulchandani, A., Mulchandani, P., Chen, W., et al.: Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode. Anal. Chem. 70, 4140–4145 (1998)

    Article  CAS  Google Scholar 

  52. Constantine, C.A., Mello, S.V., Leblanc, R.M., et al.: Layer-by-layer self-assembled chitosan/poly(thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. J. Am. Chem. Soc. 125, 1805–1809 (2003)

    Article  CAS  Google Scholar 

  53. Lee, Y., Stanish, I., Singh, S.A., et al.: Sustained enzyme activity of organophosphorus ­hydrolase in polymer encased multilayer assemblies. Langmuir 19, 1330–1336 (2003)

    Article  CAS  Google Scholar 

  54. La Rosa, C., Pariente, F., Lorenzo, E., et al.: Determination of organophosphorus and carbamic pesticides with an acetylcholinesterase amperometric biosensor using 4-aminophenyl acetate as substrate. Anal. Chim. Acta 295, 273–282 (1994)

    Article  Google Scholar 

  55. Kumaran, S., Tranh-Minh, C.: Determination of organophosphorus and carbamate insecticides by flow injection analysis. Anal. Biochem. 200, 187–194 (1992)

    Article  CAS  Google Scholar 

  56. Hobel, W., Polster, J., Fresenius, J.: Fiber optic biosensor for pesticides based on acetylcholine esterase. Anal. Chem. 343, 101–102 (1992)

    Article  Google Scholar 

  57. Mulchandani, A., Mulchandani, P., Chen, W.: Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase. Anal. Chem. 71, 2246–2249 (1999)

    Article  CAS  Google Scholar 

  58. Dave, K.I., Miller, C.E., Wild, J.R.: Characterization of organophosphorus hydrolases and the genetic manipulation of the triesterase from Pseudomonas diminuta. Chem. Biol. Interact. 87, 55–68 (1993)

    Article  CAS  Google Scholar 

  59. Deo, R.P., Wang, J., Block, I., et al.: Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal. Chim. Acta 530, 185–189 (2005)

    Article  CAS  Google Scholar 

  60. Benhabib, K., Town, R.M., van Leeuwen, H.P.: Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME). Langmuir 25, 3381–3386 (2009)

    Article  CAS  Google Scholar 

  61. Barry, R.C., Lin, Y.H., Wang, J.: Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. J. Expo. Anal. Environ. Epidemiol. 19, 1–18 (2009)

    Article  CAS  Google Scholar 

  62. Garrido, E.M., Lima, J.L.F.C., Oliveira Brett, A.M., et al.: Electrochemical oxidation of propanil and related N-substituted amides. Anal. Chim. Acta 434, 35–41 (2001)

    Article  CAS  Google Scholar 

  63. Antiochia, R., Gorton, L.: Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages. Biosens. Bioelectron. 22, 2611–2617 (2007)

    Article  CAS  Google Scholar 

  64. Du, D., Wang, M.H., Zhang, A.D., et al.: Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochem. Commun. 10, 85–89 (2008)

    Article  CAS  Google Scholar 

  65. Kandimalla, V.B., Ju, H.X.: Binding of acetylcholinesterase to multiwall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide. Chem. Eur. J. 12, 1074–1080 (2006)

    Article  CAS  Google Scholar 

  66. Sun, W., Qin, P., Zhao, R., et al.: Direct electrochemistry and electrocatalysis of hemoglobin on gold nanoparticle decorated carbon ionic liquid electrode. Talanta 80, 2177–2181 (2010)

    Article  CAS  Google Scholar 

  67. Ding, C.F., Li, H., Hu, K.C., et al.: Electrochemical immunoassay of hepatitis B surface antigen by the amplification of gold nanoparticles based on the nanoporous gold electrode. Talanta 80, 1385–1391 (2010)

    Article  CAS  Google Scholar 

  68. Klein, D.L., Roth, R., Lim, A.K.L., et al.: A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 (1997); Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996); Niemeyer, C.M.: Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Ed. 40, 4128–4158 (2001)

    Google Scholar 

  69. Kim, T.W., Lee, D.U., Yoon, Y.S.: Microstructural, dectrical and optical properties of SnO2 nanocrystalline thin films grown on InP(100)substrates for applications as gas sensor devices. J. Appl. Phys. 88, 3759–3761 (2000)

    Article  CAS  Google Scholar 

  70. Bruchez, M., Moronne, M., Gin, P., et al.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2015 (1998); Chan, W.C.W., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998); Willner, I., Patolsky, F., Wasserman, J.: Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew. Chem. Int. Ed. 40, 1861–1864 (2001)

    Google Scholar 

  71. Tessler, N., Medvedev, V., Banin, U., et al.: Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 (2002)

    Article  Google Scholar 

  72. Pavesi, L., Negro, L.D., Priolo, F., et al.: Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000); Malko, A.V., Mikhailovsky, A.A., Klimov, V.I., et al.: From amplified ­spontaneous emission to microring lasing using nanocrystal quantum dot solids. Appl. Phys. Lett. 81, 1303–1305 (2002)

    Google Scholar 

  73. Pardo-Yissar, V., Katz, E., Willner, I., et al.: Coupling of the acetylcholine esterase ­reaction and the photochemical process of CdS nanoparticles. J. Am. Chem. Soc. 125, 622–623 (2003)

    Article  CAS  Google Scholar 

  74. Liu, G.D., Wang, J., Lin, Y., et al.: Nanovehicles based bioassay labels. Electroanalysis 19, 777–785 (2007)

    Article  CAS  Google Scholar 

  75. Liu, G.D., Lin, Y.Y., Wang, J., et al.: Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal. Chem. 79, 7644–7653 (2007)

    Article  CAS  Google Scholar 

  76. Bart, J.C., Judd, L.L., Kusterbeck, A.W., et al.: Application of a portable immunosensor to detect the explosives TNT and RDX in groundwater samples. Environ. Sci. Technol. 31, 1505–1511 (1997)

    Article  CAS  Google Scholar 

  77. Onnerfjord, P., Eremin, S.A., Marko-Varga, G., et al.: High sample throughput flow immunoassay utilising restricted access columns for the separation of bound and free label. J. Chromatogr. A 800, 219–230 (1998)

    Article  CAS  Google Scholar 

  78. Wang, H., Wang, J., Lin, Y.H., et al.: Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Anal. Chem. 80, 8477–8484 (2008)

    Article  CAS  Google Scholar 

  79. Liu, G.D., Wang, J., Lin, Y.H., et al.: Nanoparticle-based electrochemical immunosensor for the detection of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphate pesticides and nerve agents. Chem. Eur. J. 14, 9951–9959 (2008)

    Article  CAS  Google Scholar 

  80. Schopfer, L.M., Voelker, T., Lockridge, O., et al.: Reaction kinetics of biotinylated organophosphorus toxicant, FP-biotin, with human acetylcholinesterase and human butyrylcholinesterase. Chem. Res. Toxicol. 18, 747–754 (2005)

    Article  CAS  Google Scholar 

  81. Bajgar, J., Kuca, K., Fusek, J., et al.: Cholinesterase reactivators: the fate and effects in the organism poisoned with organophosphates/nerve agents. Curr. Drug Metab. 7, 803–809 (2007)

    Article  Google Scholar 

  82. Jun, D., Bajgar, J., Kuca, K., et al.: Monitoring of blood cholinesterase activity in workers exposed to nerve agents. In: Handbook of Toxicology of Chemical Warfare Agents, Chapter 56 (2009)

    Google Scholar 

  83. Holmstedt, B.: Pharmacology of organophosphoruscholinesterase inhibitors. Pharmacol. Rev. 11, 567–688 (1959)

    CAS  Google Scholar 

  84. Lotti, M.: Cholinesterase inhibition: complexities in interpretation. Clin. Chem. 41, 1814–1818 (1995)

    CAS  Google Scholar 

  85. Saboori, A.M., Newcombe, D.S.: Human monocyte carboxylesterase. Purification and kinetics. J. Biol. Chem. 265, 19792–19799 (1990)

    CAS  Google Scholar 

  86. Wilson, B.W., Padilla, S., Spies, R., et al.: Factors in standardizing automated cholinesterase assays. J. Toxicol. Environ. Health 48, 187–195 (1996)

    Article  CAS  Google Scholar 

  87. Gundel, J., Angerer, J.: High-performance liquid chromatographic method with fluorescence detection for the determination of 3-hydroxybenzo[a]pyrene and 3-hydroxybenz[a]anthracene in the urine of polycyclic aromatic hydrocarbon-exposed workers. J. Chromatogr. B 738, 47–55 (2000)

    Article  CAS  Google Scholar 

  88. Sexton, K., Adgate, J.L., Ashley, D.L., et al.: Using biologic markers in blood to assess exposure to multiple environmental chemicals for inner-city children 3–6 years of age. Environ. Health Perspect. 114, 453–459 (2006)

    Article  Google Scholar 

  89. Hernandez, F., Sancho, J.V., Pozo, O.J.: Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples. Anal. Bioanal. Chem. 382, 934–946 (2005)

    Article  CAS  Google Scholar 

  90. Lacorte, S., Barcelo, D.: Validation of an automated precolumn exchange system (prospekt) coupled to liquid chromatography with diode-array detection-application to the determination of pesticides in natural waters. Anal. Chim. Acta 296, 223–234 (1994)

    Article  CAS  Google Scholar 

  91. Lacorte, S., Barcelo, D.: Rapid degradation of fenitrothion in estuarine waters. Environ. Sci. Technol. 28, 1159–1163 (1994)

    Article  CAS  Google Scholar 

  92. Knopper, L.D., Trudeau, S., Mineau, P., et al.: Using dried blood spots stored on filter paper to measure cholinesterase activity in wild avian species. Biomarkers 12, 145–154 (2007)

    Article  CAS  Google Scholar 

  93. Kousba, A.A., Poet, T.S., Timchalk, C.: Characterization of the in vitro kinetic interaction of chlorpyrifos-oxon with rat salivary cholinesterase: a potential biomonitoring matrix. Toxicology 188, 219–232 (2003)

    Article  CAS  Google Scholar 

  94. Henn, B.C., McMaster, S., Padilla, S.: Measuring cholinesterase activity in human saliva. J. Toxicol. Environ. Health A 69, 1805–1818 (2006)

    Article  CAS  Google Scholar 

  95. Timchalk, C., Campbell, J.A., Kousba, A.A., et al.: Development of a non-invasive biomonitoring approach to determine exposure to the organophosphorus insecticide chlorpyrifos in rat saliva. Toxicol. Appl. Pharmacol. 219, 217–225 (2007)

    Article  CAS  Google Scholar 

  96. Gorun, V., Proinov, I., Barzu, O., et al.: Modified Ellman procedure for assay of cholinesterase in crude enzymatic preparations. Anal. Biochem. 86, 324–326 (1978)

    Article  CAS  Google Scholar 

  97. George, K.M., Schule, T., Thompson, C.M., et al.: Differentiation between acetylcholinesterase and the organophosphate-inhibited form using antibodies and the correlation of antibody recognition with reactivation mechanism and rate. J. Biol. Chem. 278, 45512–45518 (2003)

    Article  CAS  Google Scholar 

  98. Vamvakaki, V., Fournier, D., Chaniotakis, N.A.: Fluorescence detection of enzymatic activity within a liposome based nano-biosensor. Biosens. Bioelectron. 21, 384–388 (2005)

    Article  CAS  Google Scholar 

  99. Maeda, H., Matsuno, H., Itoh, N., et al.: 2,4-Dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman’s reagent in thiol-quantification enzyme assays. Angew. Chem. Int. Ed. 44, 2922–2925 (2005)

    Article  CAS  Google Scholar 

  100. Sabelle, S., Renard, P.Y., Mioskowski, C., et al.: Design and synthesis of chemiluminescent probes for the detection of cholinesterase activity. J. Am. Chem. Soc. 124, 4874–4880 (2002)

    Article  CAS  Google Scholar 

  101. Godoy, S., Leca-Bouvier, B., Girard-Egrot, A.P., et al.: Electrochemiluminescent detection of acetylcholine using acetylcholinesterase immobilized in a biomimetic Langmuir–Blodgett nanostructure. Sens. Actuators B Chem. 107, 82–87 (2005)

    Article  CAS  Google Scholar 

  102. Shen, Z.X., Go, E.P., Siuzdak, G., et al.: A mass spectrometry plate reader: monitoring enzyme activity and inhibition with a desorption/ionization on silicon (DIOS) platform. Chembiochem 5, 921–927 (2004)

    Article  CAS  Google Scholar 

  103. Wang, J., Lin, Y.: Online organicphase enzyme detector. Anal. Chim. Acta 271, 53–58 (1993)

    Article  Google Scholar 

  104. Mizutani, F., Tsuda, K.: Amperometric determination of cholinesterase with use of an immobilized enzyme electrode. Anal. Chim. Acta 139, 359–362 (1982)

    Article  CAS  Google Scholar 

  105. Matsuura, H., Sato, Y., Mizutani, F., et al.: Rapid and highly-sensitive determination of acetylcholinesterase activity based on the potential-dependent adsorption of thiocholine on silver electrodes. Sens. Actuators B Chem. 91, 148–151 (2003)

    Article  CAS  Google Scholar 

  106. Joshi, K.A., Prouza, M., Mulchandani, A., et al.: V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode. Anal. Chem. 78, 331–336 (2006)

    Article  CAS  Google Scholar 

  107. Chen, S.H., Yuan, R., Li, X.L., et al.: Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosens. Bioelectron. 22, 1268–1274 (2007)

    Article  CAS  Google Scholar 

  108. Ciucu, A.A., Negulescu, C., Baldwin, R.P.: Detection of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system. Biosens. Bioelectron. 18, 303–310 (2003)

    Article  CAS  Google Scholar 

  109. Wang, J.: Nanomaterial-based amplified transduction of biomolecular interactions. Small 1, 1036–1043 (2005); Wang, J., Musameh, M., Lin, Y.: Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125, 2408–2409 (2003)

    Google Scholar 

  110. Lin, Y., Yantasee, W., Wang, J.: Carbon nanotubes (CNTs) for the development of electrochemical biosensors. Frontiers Biosci. 10, 492–505 (2005); Lin, Y., Lu, F., Ren, Z., et al.: Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191–195 (2004)

    Google Scholar 

  111. Wang, J., Timchalk, C., Lin, Y.H.: Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity: an exposure biomarker of organophosphate pesticides and nerve agents. Environ. Sci. Technol. 42, 2688–2693 (2008)

    Article  CAS  Google Scholar 

  112. Jun, D., Bajgar, J., Kassa, J., et al.: Monitoring of blood cholinesterase activity in workers exposed to nerve agents. In: Handbook of Toxicology of Chemical Warfare Agents, Chapter 58, pp. 877–886 (2009)

    Google Scholar 

  113. Pohanka, M., Jun, D., Kuca, K.: Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators. Talanta 77, 451–454 (2008)

    Article  CAS  Google Scholar 

  114. Oha, K.A., Parka, N.J., Jung, Y.S., et al.: Reactivation of DFP- and paraoxon-inhibited acetylcholinesterases by pyridinium oximes. Chem. Biol. Interact. 175, 365–367 (2008)

    Article  CAS  Google Scholar 

  115. Du, D., Huang, X., Zhang, A.D., et al.: Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens. Bioelectron. 23, 285–289 (2007)

    Article  CAS  Google Scholar 

  116. Jun, D., Musilova, L., Bajgar, J., et al.: Potency of several oximes to reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon in vitro. Chem. Biol. Interact. 175, 421–424 (2008)

    Article  CAS  Google Scholar 

  117. De Jong, L.P., Van Dijk, C.: Formation of soman (1,2,2-trimethylpropyl methylphosphonofluoridate) via fluoride-induced reactivation of soman-inhibited aliesterase in rat plasma. Biochem. Pharmacol. 33, 663–669 (1984)

    Article  Google Scholar 

  118. Polhuijs, M., Langenberg, J.P., Benschop, H.P.: Organophosphorous anticholinesterases:application to alleged sarin victims of Japanese terrorists. Toxicol. Appl. Pharmacol. 146, 156–161 (1997)

    Article  CAS  Google Scholar 

  119. Noort, D., Benschop, H.P., de Jong, L.P.A.: Methods for retrospective detection of exposure to toxic scheduled chemicals: an overview. Voj. Zdrav. Listy 70, 14–17 (2001)

    Google Scholar 

  120. Noort, D., Benschop, H.P., Black, R.M.: Biomonitoring of exposure to chemical warfare agents: a review. Toxicol. Appl. Pharmacol. 184, 116–126 (2002)

    Article  CAS  Google Scholar 

  121. Du, D., Wang, J., Lin, Y., et al.: Biomonitoring of organophosphorus agent exposure by reactivation of cholinesterase enzyme based on carbon nanotube-enhanced flow-injection amperometric detection. Anal. Chem. 81, 9314–9320 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ju, H., Zhang, X., Wang, J. (2011). Nanostructured Biosensing for Detection of Insecticides. In: NanoBiosensing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9622-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9622-0_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9621-3

  • Online ISBN: 978-1-4419-9622-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics