Skip to main content

Optical Measurements and Operational Modal Analysis on a Large Wind Turbine: Lessons Learned

  • Conference paper
  • First Online:
Rotating Machinery, Structural Health Monitoring, Shock and Vibration, Volume 5

Abstract

Wind turbines have very specific characteristics and challenging operation conditions. Since they are designed and optimized to provide maximum power production for changing wind speeds and directions, they are expected to adapt to the rapidly varying physical conditions and other extreme environmental factors. Depending on their types and sizes, wind turbines are usually intended to be operational for wind speeds between 5 and 25 m/sec. In order reach this goal, most of the turbines utilize active pitch control mechanisms where the angle of the blade (pitch angle) is changed as a function of wind speed. Similarly, the whole rotor is rotated towards the effective wind direction by using the yaw mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. [Online] ECN Energy Research Center of the Netherlands. http://www.ecn.nl/units/wind/wind-turbine-testing/.

  2. [Online] Nordex Wind Enerfy. http://www.nordex-online.com/en/products-services/wind-turbines/n80-25-mw/.

  3. Remote monitoring of wind turbine dynamics by laser interferometry:Phase1. Ozbek, M, Rixen, D.J. and Verbruggen, T.W. Orlando,Florida : IMAC International Modal Analysis Conference, 2009.

    Google Scholar 

  4. Experimental modal analysis: Efficient geometry model creation using optical techniques. Pauwels, S., Debille, J., Komrower, J., Lau, J. 2 104-113, s.l. : Journal of the IEST, 2006, Vol. 49.

    Google Scholar 

  5. FEM modeling of structures based on close range digital photogrammetry. Armesto, J., Lubowiecka, I., Ordóñez, C., Rial, F.I. 5 559-569, s.l. : Automation in Construction, 2009, Vol. 18.

    Google Scholar 

  6. In-vacuum photogrammetry of a 10-meter solar sail. Meyer, C.G., Jones, T.W., Lunsford, C.B., Pappa, R.S. s.l. : Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2005. AIAA-2005-1889.

    Google Scholar 

  7. Full-field dynamic displacement and strain measurement - Specific examples using advanced 3D image correlation photogrammetry: Part II. Schmidt, T., Tyson, J., Galanulis, K. 4 22-26, s.l. : Experimental Techniques, 2003, Vol. 27.

    Google Scholar 

  8. Full-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry: Part I. Schmidt, T., Tyson, J., Galanulis, K. 3 47-50, s.l. : Experimental Techniques, 2003, Vol. 27.

    Google Scholar 

  9. Full-field dynamic deformation and strain measurements using high-speed digital cameras. Schmidt, T., Tyson, J., Galanulis, K., Revilock, D., Melis, M. s.l. : Proceedings of SPIE - The International Society for Optical Engineering, 2005.

    Google Scholar 

  10. Repair and strengthening of reinforced concrete structures using CFRPs. Haritos, N., Hira, A., Mendis, P., Perera, U. 1 1-9, s.l. : Advances in Structural Engineering, 2006, Vol. 9.

    Google Scholar 

  11. Structural dynamics experimental activities in ultralightweight and inflatable space structures. Pappa, R.S., Lassiter, J.O., Ross, B.P. 1 15-23, s.l. : Journal of Spacecraft and Rockets, 2003, Vol. 40.

    Google Scholar 

  12. Out-of-plane deformation measurements of an aluminium plate during quasi-static perforation using structured light and close-range photogrammetry. Grytten, F., Fagerholt, E., Auestad, T., Førre, B., Børvik, T. 17 5752-5773, s.l. : International Journal of Solids and Structures 44 (17), pp. 5752-5773, 2007, Vol. 44.

    Google Scholar 

  13. Flexible videogrammetric technique for three-dimensional structural vibration measurement. Chang, C.C., Ji, Y.F.. 6, s.l. : ASCE Journal of Engineering Mechanics, 2007, Vol. 133. ISSN 0733-9399.

    Google Scholar 

  14. From photogrammetry, computer vision to structural response measurement. Chang, C.C. s.l. : Proceedings of SPIE - The International Society for Optical Engineering, 2007. 652903GV.

    Google Scholar 

  15. Aeroelastic behavior of inflatable wings: Wind tunnel and flight testing. Simpson, A., Smith, S.W., Jacob, J. s.l. : ollection of Technical Papers - 45th AIAA Aerospace Sciences Meeting 18, 2007.

    Google Scholar 

  16. Identification of structural dynamic behavior for continuous system based on videogrammetric technique. Ji, Y., Chang, C.C. s.l. : Proceedings of SPIE - The International Society for Optical Engineering, 2006. 61731I.

    Google Scholar 

  17. Photogrammetry and videogrammetry methods for solar sails and other gossamer structures. Black, J.T., Pappa, R.S. s.l. : Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2004.

    Google Scholar 

  18. Dot-Projection Photogrammetry and Videogrammetry of Gossamer Space Structures. Pappa, R.S., Black, J.T., Blandino, J.R., Jones, T.W., Danehy, P.M., Dorrington, A.A. 6 858-867, s.l. : Journal of Spacecraft and Rockets 40 (6), pp. 858-867, 2003, Vol. 40.

    Google Scholar 

  19. 3D digital image correlation methods for full field vibration measurement. Helfrick, M., et al. Orlando, Florida : the 26th IMAC, International Modal Analysis Conference Proceedings, 2008.

    Google Scholar 

  20. Optical non-contacting vibration measurement of rotating turbine blades. Helfrick, M., Niezrecki, C and Avitabile, P. Orlando, Florida : the 27th IMAC, International Modal Analysis Conference Proceedings, 2009.

    Google Scholar 

  21. Applications of digital image correlation and dynamic photogrammetry for rotating and non-rotating structures. Warren, C., Niezrecki, C. and Avitabile, P. Stanford, CA : the 7th international workshop on structural health monitoring, 2009.

    Google Scholar 

  22. Identification of the Dynamics of Large Wind Turbines by Using Photogrammetry. Ozbek, M., Meng, F., Rixen, D. J. and van Tooren, M. J. L. Jacksonville, Florida, U.S.A : 28thIMAC, International Modal Analysis Conference Proceedings, 2010.

    Google Scholar 

  23. Feasibility of monitoring large wind turbines using photogrammetry. Ozbek, Muammer, et al. s.l. : Energy, 2010. 10.1016/j.energy.2010.09.008.

  24. Modal testing of a very flexible 110 m wind turbine structure. Carne, T.G., Lauffer, J.P. and Gomez, A.J. Kissimmee, Florida, USA : Proceedings of the Sixth International Modal Analysis Conference, 1988.

    Google Scholar 

  25. Experimental modal analysis of a 750 kW wind turbine for structural model validation. Molenaar D. P. Reno, Nevada : 41st Aerospace Sciences Meeting and Exhibit, 2003. AIAA-2003-1047.

    Google Scholar 

  26. A method for determination of damping for edgewise blade vibrations. Thomsen K, Petersen JT, Nim E, Øye S, Petersen B. 3: 233–246, s.l. : Wind Energy, 2000.

    Google Scholar 

  27. Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments. Hansen M. H., Thomsen K., Fuglsang P. 9: 179-191., s.l. : Wind Energy, 2006.

    Google Scholar 

  28. Modal testing using natural excitation. James, G.H., Carne, T.G. and Lauffer, J.P. San Diego, California, USA : Proceedings of the 10th International Modal Analysis Conference, 1992.

    Google Scholar 

  29. James G.H., Carne T.G., Lauffer J.P. The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines. s.l. : Sandia National Laboratories, 1993. SAND92-1666.

    Google Scholar 

  30. Damping measurements using operational data. James GH, Carne TG, Veers P.S. 118 190–193, s.l. : ASME Journal of Solar Energy Engineering, 1996.

    Google Scholar 

  31. The inceptionofOMAinthedevelopmentofmodaltesting technology forwindturbines. Carne, T.G. and G.H., James. s.l. : Mechanica lSystems and Signal Processing, 2010, Vol. 24.

    Google Scholar 

  32. Comparison of System Identification Techniques for Predicting Dynamic Properties of Large Scale Wind Turbines by Using the Simulated Time Response. Meng, F., Ozbek, M., Rixen, D., Tooren M.J.L. Jacksonville : IMAC International Modal Analysis Conference, 2010.

    Google Scholar 

  33. Operational modal analysis in the presence of harmonic excitation. Mohanty, P., Rixen, D.J. 270 93–109, s.l. : Journal of Sound and Vibration, 2004.

    Google Scholar 

  34. Modified SSTD method to account for harmonic excitations during operational modal analysis. Mohanty, P., Rixen. D.J. 12 1247-1255, s.l. : Mechanism and Machine Theory, 2004, Vol. 39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Ozbek, M., Rixen, D.J. (2011). Optical Measurements and Operational Modal Analysis on a Large Wind Turbine: Lessons Learned. In: Proulx, T. (eds) Rotating Machinery, Structural Health Monitoring, Shock and Vibration, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9428-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9428-8_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9427-1

  • Online ISBN: 978-1-4419-9428-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics