Skip to main content

Abstract

Identifying all relevant human and animal fecal sources is a basic requirement for target-oriented water resource management in agricultural and rural watersheds (ARW). As outlined, microbial source tracking (MST) is most suitably applied in concert with other methods within a broader conceptual framework of fecal pollution analysis. Two case studies – covering surface and karstic ground­water resources within ARW – are presented with the following features in common: public importance, problem formulation based on catchment-based pollution source profiling or modeling, and integrated use of several methods and parameters for fecal source characterization and identification at the water resource level. Possibilities and limitations of currently available MST tools, as well as fundamental requirements for their successful application and combination with other ­methods, are discussed. The use of multiple tools helps overcome specific limitations of individual methods, increases the robustness of the study, improves confidence in the results, or can help identify issues for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernhard, A. E. and K. G. Field (2000a). Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66(4): 1587–1594.

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, A. E. and K. G. Field (2000b). A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66(10): 4571–4574.

    Article  PubMed  CAS  Google Scholar 

  • Besner, M. C., R. Broseus, et al. (2010). Pressure monitoring and characterization of external sources of contamination at the site of the Payment drinking water epidemiological studies. Environ Sci Technol 44(1): 269–277.

    Article  PubMed  CAS  Google Scholar 

  • BrazosRiverAuthority (2006). Lake Granbury Watershed Protection Plan In: http://www.brazos.org/gbWPP.asp Retrieved January 21 2010.

  • BrazosRiverAuthority (2008). Lake Granbury Water Quality Modeling In: http://www.brazos.org/gbWPP/12-3-2008_LG_Modeling.pdf Retrieved January 21 2010.

  • Casarez, E. A., S. D. Pillai, et al. (2007). Direct comparison of four bacterial source tracking methods and a novel use of composite data sets. J Appl Microbiol 103(2): 350–364.

    Article  PubMed  CAS  Google Scholar 

  • Cotruvo, J. A., A. Dufour, et al., (eds) (2004). Waterborn Zoonoses. IWA Publishing, London.

    Google Scholar 

  • Dick, L. K., A. E. Bernhard, et al. (2005). Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol 71(6): 3184–3191.

    Article  PubMed  CAS  Google Scholar 

  • Farnleitner, A. H., H. Stadler, et al. (2008). Methods and strategies for alpine karstic water resource management: opening pollution microbiology’s “black box”. World Water Conference and Exhibition, Vienna, IWA.

    Google Scholar 

  • Farnleitner, A. H., G. Ryzinska-Paier, et al. (2010). Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock, and wild life faecal pollution in alpine mountainous water resources. J Appl Microbiol. 109(5): 1599–1608.

    PubMed  CAS  Google Scholar 

  • Farnleitner, A. H., I. Wilhartitz, et al. (2005). Bacterial dynamics in spring water of two contrasting alpine karst aquifers indicate autochthounous microbial endokarst communities. Environmental Microbiology 7: 1248–1259.

    Article  PubMed  CAS  Google Scholar 

  • Fewtrell, L. and J. Bartram, (eds) (2002). Water Quality: Guidlines, Standards and Health. IWA Publishing, Padstone.

    Google Scholar 

  • Field, K. G., E. C. Chern, et al. (2003). A comparative study of culture-independent, library-independent genotypic methods of fecal source tracking. J Water Health 1(4): 181–94.

    PubMed  Google Scholar 

  • Ford, D. C. and P. Williams (2007). Karst hydrogeology and geomorphology. Wiley, New York.

    Google Scholar 

  • Fujioka, R. S. (2001). Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution. Water Sci Technol 44: 181–188.

    PubMed  CAS  Google Scholar 

  • Geldreich, E. E. (1978). Bacterial populations and indicator concepts in feces, sewage, stormwater and solid wastes. In: G. Berg, (ed) Indicators of viruses in water and food Ann Arbor, MI: Ann Arbor Science Publishers, Inc. pp. 51–97.

    Google Scholar 

  • Grayson, R., P. Kay, et al. (2008). The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments. Water Sci Technol 59(9): 1797–802.

    Google Scholar 

  • Griffiths, R. I., A. S. Whiteley, et al. (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66(12): 5488–91.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, S. and M. J. Sadowsky (2008). Escherichia coli in the environment: implications for water quality and human health. Microbes and Environments 23: 101–108.

    Google Scholar 

  • ISO (2000). Water Quality – Detection and Enumeration of Escherichia coli and Coliform Bacteria – Part 1: Membrane Filtration Method (ISO 9308-1: 2000). In: International Organization of Standardization Geneva, Switzerland.

    Google Scholar 

  • ISO (2000). Water Quality – Detection and Enumeration of Intestinal Enterococci – Part 2: Membrane Filtration Method (ISO 7899-2: 2000). International Organization of Standardization, Geneva.

    Google Scholar 

  • ISO (2002). Water Quality – Detection and Enumeration of Clostridium perfringens – Part 2: Method by Membrane filtration (ISO/CD 6461-2). International Organization of Standardization, Geneva.

    Google Scholar 

  • Kollanur, D., Reischer, G.H., Sommer, R., Wehrspaun, C., Stadler, H, Mach, R.L., Zerobin. W. and A. H. Farnleitner (submitted) Quantitative Assessment of Faecal Pollution Sources in Alpine Spring Catchments as a Basis for Microbial Hazard – and Risk Assessment. Water Science and Technology.

    Google Scholar 

  • Lamendella, R., J. W. Domingo, et al. (2007). Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene. FEMS Microbiol Ecol 59(3): 651–60.

    Article  PubMed  CAS  Google Scholar 

  • Lamendella, R., J. W. Santo Domingo, et al. (2009). Evaluation of swine-specific PCR assays used for fecal source tracking and analysis of molecular diversity of Bacteriodales-swine specific populations. Appl Environ Microbiol 75(18): 5507–5513.

    Article  Google Scholar 

  • McQuaig, S. M., T. M. Scott, et al. (2009). Quantification of human polyomaviruses JC Virus and BK Virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples. Appl Environ Microbiol 75(11): 3379–88.

    Article  PubMed  CAS  Google Scholar 

  • Medema, G. J., S. Shaw, et al. (2003). Catchment characterisation and source water quality In: A. Dufour, M. Snozzi, W. Koster, et al., (ed) Assessing microbial safety of drinking water, IWA Publishing, London.

    Google Scholar 

  • Reischer, G. H., J. M. Haider, et al. (2008). Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics. Environ Microbiol 10: 2598–2608.

    Article  PubMed  CAS  Google Scholar 

  • Reischer, G. H., D. C. Kasper, et al. (2007). A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment. Lett Appl Microbiol 44: 351–356.

    Article  PubMed  CAS  Google Scholar 

  • Reischer, G. H., D. C. Kasper, et al. (2006). Quantitative PCR method for sensitive detection of ruminant faecal pollution in freshwater and evaluation of this method in alpine karstic regions. Appl Environ Microbiol 72: 5610–5614.

    Article  PubMed  CAS  Google Scholar 

  • Reischer, G. H., D. Kollanur, et al. (2011). A hypothesis-driven approach for the identification of fecal pollution sources in water resources. Environ Sci Technol 45(9): 4038–4045.

    Google Scholar 

  • Soller, J. A., M. E. Schoen, et al. (2010). Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Research 44(16): 4674–4691.

    Google Scholar 

  • Stadler, H., P. Skritek, et al. (2008). Microbiological monitoring and automated event sampling at karst springs using LEO-satellites. Water Sci Technol 58(4): 899–909.

    Article  PubMed  CAS  Google Scholar 

  • Stadler, H., Klock, E., Skritek, P., Mach, R.L., Zerobin, W. and Farnleitner, A.H. (2010). The spectral absorbance coefficient at 254nm as a near real time early warning proxy for detecting faecal pollution events at alpine karst water resources. Water Sci Technol 62(8): 1898–1906.

    Article  PubMed  CAS  Google Scholar 

  • Teague, A., R. Karthikeyan, et al. (2009). Spatially explicit load enrichment calculation tool to identify potential E. coli sources in watersheds. Transactions of the ASABE 52(4): 1109–1120.

    Google Scholar 

  • TexasA&MAgriLifeResearch (2006). Watershed Protection Plan Development for Buck Creek, TSSWCB Project # 06-11, Quality Assurance Project Plan. In: http://www.tsswcb.state.tx.us/files/docs/nps-319/projects/06-11_QA-BUCKCRKWPP-09-24-08.pdf. Retrieved January 21 2010.

  • Ufnar, J. A., S. Y. Wang, et al. (2006). Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J Appl Microbiol 101(1): 44–52.

    Article  PubMed  CAS  Google Scholar 

  • USEPA (2005). Microbial Source Tracking Guide Document. Office of Research and Development, Cincinnati.

    Google Scholar 

  • USEPA (2006). Method 1603: Escherichia coli (E. coli) in water by membrane filtration using modified membrane-thermotolerant Escherichia coli agar (Modified mTEC). Office of Research and Development, Government Printing Office, Washington.

    Google Scholar 

  • Versalovic, J., M. Schneider, et al. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5: 25–40.

    CAS  Google Scholar 

  • Vogel, J. R., D. M. Stoeckel, et al. (2007). Identifying fecal sources in a selected catchment reach using multiple source-tracking tools. J Environ Qual 36(3): 718–729.

    Article  PubMed  CAS  Google Scholar 

  • WHO (2004). Guidlines for drinking-water quality. World Health Organisation, Geneva.

    Google Scholar 

  • Wilhartitz, I., A. K. T. Kirschner, et al. (2009). Prokaryotic production in karstic alpine spring aquifers and their ecological implications. FEMS Microbiol Ecol 68(3): 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Winter, C., T. Hein, et al. (2007). Longitudinal Changes In The Bacterial Community Composition Of The Danube River: A Whole River Approach. Appl Environ Microbiol 73: 421–431.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The Austrian part of the work was supported by the Vienna Water Works and the Austrian Science Fund (FWF) translational research project No. L414-B03 and DK plus W 1219-N22 (Vienna Doctoral Programme on Water Resource Systems) granted to A.H.F. The US Environmental Protection Agency Clean Water Act 319(h) program provided funding to G.D.D. for the Lake Granbury study through the Brazos River Authority and Texas Commission on Environmental Quality (Project 582-6-77030), and through the Texas Soil and Water Conservation Board for the Buck Creek study (Project 06–11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Farnleitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farnleitner, A.H. et al. (2011). Agricultural and Rural Watersheds. In: Hagedorn, C., Blanch, A., Harwood, V. (eds) Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9386-1_18

Download citation

Publish with us

Policies and ethics