LINEAR-FRACTIONAL PROGRAMMING THEORY, METHODS, APPLICATIONS AND SOFTWARE

Applied Optimization Volume 84

Series Editors:

Panos M. Pardalos University of Florida, U.S.A.

Donald W. Hearn University of Florida, U.S.A.

LINEAR-FRACTIONAL PROGRAMMING THEORY, METHODS, APPLICATIONS AND SOFTWARE

ERIK B.BAJALINOV Senior Research Fellow Department of Computer Science Institute of Informatics Debrecen University HUNGARY

Springer-Science+Business Media, B.V.

Electronic Services http://www.wkap.nl

Library of Congress Cataloging-in-Publication

Bajalinov, Erik B. Linear-Fractional Programming: Theory, Methods, Applications and Software

ISBN 978-1-4613-4822-1 ISBN 978-1-4419-9174-4 (eBook) DOI 10.1007/978-1-4419-9174-4

Copyright © 2003 by Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2003 Softcover reprint of the hardcover 1st edition 2003

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photo-copying, microfilming, recording, or otherwise, without the prior written permission of the publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Permissions for books published in the USA: <u>permissions@wkap.com</u> Permissions for books published in Europe: permissions@wkap.nl Printed on acid-free paper.

This book is dedicated to the memory of my parents Mihri Makhmutova and Bakish Bajalinov

Contents

Lis	st of l	Figures	xv
Lis	st of T	Tables	xix
Pre	eface		xxiii
Ac	know	vledgments	xxvii
1.	INT	RODUCTION	1
	1	Subject of the book	1
	2	Description of the content	3
	3	What is new in this book?	5
	4	Required knowledge and skills	5
	5	How to use the book for courses	6
2.	BAS	SIC LINEAR ALGEBRA	7
	1	Matrices and their Properties	7
	2	Vectors and their Properties	14
	3	Linear Independence and Dependence	17
	4	Determinants	17
	5	The Inverse of Matrix	19
	6	Matrices and Systems of Linear Equations	22

	7	The G	aussian Elimination	24
		7.1	Elementary Row Operations	24
		7.2	Main Steps	25
		7.3	Forward Substitution	29
		7.4	Pivoting	31
	8	The G	auss-Jordan Elimination	32
	9	Multip	ple RHS's and Inverses	37
	10	Discu	ssion Questions and Exercises	38
3.	INT	RODU	CTION TO LFP	41
	1	What	is a Linear-Fractional Problem ?	41
		1.1	Main Definitions	43
		1.2	Relationship with Linear Programming	43
		1.3	Main Forms of the LFP Problem	45
	2	The G	raphical Method	48
		2.1	The Single Optimal Vertex	48
		2.2	Multiple Optimal Solutions	50
		2.3	Mixed cases	51
		2.4	Asymptotic cases	51
	3	Charn	es & Cooper's Transformation	54
	4	Dinke	lbach's Algorithm	59
	5	LFP n	nodels	62
		5.1	Main Economic Interpretation	62
		5.2	A Maritime Transportation Problem	63
		5.3	Product Planning	64
		5.4	A Financial Problem	65
		5.5	A Transportation Problem	66
		5.6	A Blending Problem	68

viii

Со	ntents			ix
		5.7	A Location Problem	70
	6	Discus	sion Questions and Exercises	72
4.	THE	SIMPL	EX METHOD	75
	1	Main I	Definitions and Theorems	76
	2	Criteria	a of Optimality	79
	3	Genera	l Scheme of the Simplex Method	83
	4	Simple	x Tableau	86
	5	Connec	ction Between Iterations	87
		5.1	Theoretical Background	87
		5.2	Pivot Transformation	89
	6	Initializ	zation of the Simplex Method	90
		6.1	The Big M Method	93
		6.2	The Two-Phase Simplex Method	100
	7	Compa	ct Form of the Simplex Tableau	104
	8	Rules c	of Entering and Dropping Variables	108
		8.1	Entering Rules	109
		8.2	Dropping Rules	111
	9	Degene	eracy and Cycling	112
	10	Unrest	ricted-In-Sign Variables	116
	11	Bounde	ed Variables	117
	12	Discus	sion Questions and Exercises	126
5.	DUA	LITY I	HEORY	129
	1	Short o	verview	129
	2	Gol'ste	in-type Lagrangian	133
	3	Main T	heorems	142
	4	Compu	tational Relations Between Primal and Dual Problems	154

	5	Connection with Linear Programming	158
	6	Dual Variables in Stability Analysis	160
	7	Comparative Analysis of Dual Variables in LP and LFP	168
	8	Discussion Questions and Exercises	174
6.	SEN	ISITIVITY ANALYSIS	1 77
	1	Graphical Introduction to Sensitivity Analysis	178
	2	Change in RHS Vector b	180
	3	Change in Numerator Vector p	187
	4	Change in Numerator Constant p_0	192
	5	Change in Denominator Vector d	194
	6	Change in Denominator Constant d_0	199
	7	Discussion Questions and Exercises	201
7.	INT	ERCONNECTION BETWEEN LFP AND LP	205
	1	Preliminaries	205
	2	Primal Problems	206
	3	Stability	209
	4	Dual Problems	211
	5	Economic Interpretation	213
	6	Numeric Example	215
	7	Discussion Questions and Exercises	218
8.	INT	EGER LINEAR-FRACTIONAL PROGRAMMING	219
	1	LFP Models with Integer Variables	221
		1.1 The Knapsack Problem	221
		1.2 Capital Budgeting Problems	222
		1.3 Set Covering Problems	223

х

Contents			xi		
	1.4 The Traveling Salesperson Problem				
2	The	Branch-and-Bound Method	226		
3	The	Cutting Plane Method	233		
4	For	mulating discrete LFP Problems	240		
	4.1	Converting Problems	240		
	4.2	Practical Situations	241		
5	Dis	cussion Questions and Exercises	243		
9. S	SPECIAI	L LFP PROBLEMS	245		
1	The	Transportation Problem	245		
	1.1	Formulation and Preliminaries	245		
	1.2	The Transportation Simplex Method	248		
	1.3	Determining Initial BFS	257		
	1.4	Numerical Example	267		
	1.5	Duality Theory for the Transportation Problem	274		
2	The	Transshipment Problem	278		
3	The	Assignment Problem	282		
4	Dise	cussion Questions and Exercises	284		
10. A	DVAN	CED METHODS AND ALGORITHMS IN LFP	287		
1	The	Dual Simplex Method in LFP	287		
2	The	Criss-Cross Method	293		
3	The	Interior-Point Methods	298		
4	Dise	cussion Questions and Exercises	301		
11. A	DVAN	CED TOPICS IN LFP	303		
1	Gen	eralized LFP	303		
2	Mu	ti-objective LFP	307		

12. COMPUTATIONAL ASPECTS3			311	
1	1 Scaling LFP Problems			
	1.1	RHS Vector $b \rightarrow \rho b$	314	
	1.2	$\text{Column } A_j \rightarrow \rho A_j$	317	
	1.3 Row $a_i \rightarrow \rho a_i$ 1.4 Numerator Vector $p \rightarrow \rho p$			
	1.5	Denominator Vector $d \rightarrow \rho d$	322	
	1.6	Scaling Factors	323	
	1.7	Numeric examples	326	
2	Factor	ization of Basis Matrix	330	
	2.1	LU-factorization	331	
	2.2	LU-factorization and Gaussian Elimination	338	
	2.3	Updating LU -factorization	343	
	2.4	Other Types of Factorization	358	
3	3 Re-using Basis		365	
4	4 Iterative Refinement of a Solution		369	
5	Sparse	ematrices	370	
	5.1	Sparse Vectors	371	
	5.2	Coordinate Scheme	372	
	5.3	Collection of Sparse Vectors	374	
	5.4	The Linked List	377	
6	Discus	ssion Questions and Exercises	379	
13. THE	E WING	JULF PACKAGE	381	
1	Progra	am Overview and Background	382	
2	The E	ditor	385	
3	Proble	ems with Continuous Variables	387	

Contents			xiii
	3.2	Output	389
	3.3	Interpreting an Optimal Solution	390
	3.4	An LP Example	394
	3.5	An LFP Example	397
4	Proble	ms with Integer Variables	401
	4.1	Input and Main Options	401
	4.2	Output	402
	4.3	An Integer Example	404
5	Future	Developments	405
References			409
Index			421

List of Figures

2.1	Algorithm – Matrix-matrix multiplication.	14
2.2	Vectors – As directed line segments.	15
2.3	Algorithm – Gauss elimination with backward substitution	29
2.4	Algorithm – Gauss elimination with forward substitution.	30
2.5	Algorithm – Gauss-Jordan elimination.	36
3.1	Two-variable LFP problem – Single optimal vertex.	48
3.2	Two-variable LFP problem – Multiple optimal solutions.	50
3.3	Two-variable LFP problem – Mixed case.	51
3.4	Two-variable LFP problem – Asymptotic case.	52
3.5	Graphical example – Bounded feasible set.	53
3.6	Graphical example – Unbounded feasible set.	54
3.7	Algorithm – Dinkelbach's Algorithm.	61
6.1	Stability – Original graphical example.	178
6.2	Stability – Graphical example with changed feasible set.	179
6.3	Stability – Graphical example with changed objective function.	180
8.1	The Branch and Bound Method – A search tree.	230
8.2	The Branch and Bound Method – Example's search tree.	232

8.3	The Cutting Plane Method – Example of a cutting plane.	234
9.1	Transshipment LFP problem with disabled direct connectio	ns.279
11.1	Algorithm – Generalized Dinkelbach's Algorithm.	305
12.1	Algorithm – Scaling an LFP Problem.	325
12.2	Algorithm – Crout's method.	337
12.3	Algorithm – CRS Sparse Matrix-Vector Product.	377
13.1	WinGULF – A continuous LFP problem.	383
13.2	WinGULF – Main functional buttons.	383
13.3	WinGULF – Status window.	383
13.4	WinGULF – Step-by-Step mode.	384
13.5	WinGULF – Defaults, Methods page.	384
13.6	WinGULF – Built-in calculator.	385
13.7	WinGULF – A new problem.	386
13.8	WinGULF – Defaults, the Spreadsheet page.	387
1 3.9	WinGULF – Defaults, the Options page.	388
13.10	WinGULF – Defaults, the Variables page.	388
13.11	WinGULF – Continuous problem, report.	389
13.12	WinGULF – Opening the solution file for viewing.	389
13.13	WinGULF – Nutritional requirements of the sows.	395
13.14	WinGULF – Available feeds.	395
13.15	WinGULF – The matrix form of the problem.	395
13.16	WinGULF – Optimal solution output for an LP example.	396
13.17	WinGULF – Matrix form for the LFP problem.	398
13.18	WinGULF – Optimal solution output for an LFP example, activities.	399
13.19	WinGULF – Optimal solution output for an LFP example, constraints.	399
13.20	WinGULF - Defaults, the Variables page for integer probler	ns.402

13.21	WinGULF – Branch-and-Bound Method, the Options dialog box.	402
13.22	WinGULF – Branch-and-Bound Method, starting.	403
13.23	WinGULF – Branch-and-Bound Method, visualization.	403
13.24	WinGULF - Branch-and-Bound Method, report.	404
13.25	WinGULF – Search Tree for Integer LFP Example.	405
13.26	WinGULF – Report for Integer LFP Example.	406

List of Tables

3.1	Transportation problem – Shipping costs.	67
3.2	Transportation problem – Profit of company.	67
4.1	Simplex tableau for an LFP problem.	87
4.2	Pivot transformation in a simplex tableau.	90
4.3	Initial simplex tableau for an LFP problem.	92
4.4	The Big M -method – Initial simplex tableau.	96
4.5	The Big M -method example – Initial simplex tableau.	98
4.6	The Big M -method example – After first iteration.	99
4.7	The Big M -method example – After second iteration.	99
4.8	The Big M -method example – Final tableau.	100
4.9	The Two-Phase Simplex Method example – Initial sim- plex tableau.	102
4.10	The Two-Phase Simplex Method example – After first iteration.	103
4.11	The Two-Phase Simplex Method example – Final tableau.	103
4.12	Compact simplex tableau.	105
4.13	Pivot transformation in the compact simplex tableau.	105
4.14	Compact simplex tableau – Before interchange.	106

4.15	Compact simplex tableau – After interchange.	107
4.16	Compact tableau example – Initial simplex tableau.	108
4.17	Compact tableau example – After first iteration.	109
4.18	Compact tableau example – Final tableau.	109
4.19	Simplex tableau for LFP problem with bounded variables.	122
4.20	Bounded variables example – Initial tableau.	123
4.21	Bounded variables example – After first iteration.	124
4.22	Bounded variables example – Final tableau.	125
5.1	Primal-dual connection example – Initial tableau.	156
5.2	Primal-dual connection example – After first iteration.	156
5.3	Primal-dual connection example – Final tableau.	157
8.1	Set covering problem – Investments.	224
8.2	Set covering problem – Driving time in minutes.	224
8.3	The Cutting Plane Method – Tableau 1.	237
8.4	The Cutting Plane Method – Tableau 2.	238
9.1	Transportation simplex tableau for an LFPT problem.	254
9.2	Transportation LFP problem – Circle examples.	254
9.3	Transportation LFP problem – Non-circle examples.	255
9.4	Northwest Corner Method Example – Original tableau.	258
9.5	Northwest Corner Method Example – Tableaus 1 and 2.	258
9.6	Northwest Corner Method Example – Tableaus 3 and 4.	258
9.7	Northwest Corner Method Example – Tableaus 5 and 6.	259
9.8	Northwest Corner Method Example – Final tableau 7.	259
9.9	Maximum Profit Method Example – Original tableau.	261
9.10	Maximum Profit Method Example – Tableau 1.	261
9.11	Maximum Profit Method Example – Tableau 2.	262
9.12	Maximum Profit Method Example – Tableau 3.	262

List of Tables		xxi
9.13	Maximum Profit Method Example – Tableau 4.	263
9.14	Maximum Profit Method Example – Final tableau 5.	263
9.15	Vogel's Method Example – Tableau 1.	265
9.16	Vogel's Method Example – Tableau 2.	265
9.17	Vogel's Method Example – Tableau 3.	266
9.18	Vogel's Method Example – Tableau 4.	266
9.19	Vogel's Method Example – Tableau 5.	267
9.20	Vogel's Method Example – Final tableau.	268
9.21	Transportation Simplex Method Example – Initial BFS.	269
9.22	Transportation Simplex Method Example – Tableau 1.	271
9.23	Transportation Simplex Method Example – Tableau 2.	272
9.24	Representation of Transshipment LFP problem as Bal- anced Transportation LFP problem.	280
9.25	Transshipment LFP example – Profits and costs.	282
9.26	Transshipment LFP example – Initial tableau.	283
10.1	The Dual Simplex Method – Initial tableau.	290
10.2	The Dual Simplex Method – After first iteration.	290
10.3	The Dual Simplex Method – Optimal tableau.	290
10.4	The Dual Simplex Method – With a new constraint.	292
10.5	The Dual Simplex Method – After re-optimization.	293
10.6	External transformation – Original tableau.	296
10.7	External transformation – Resulting tableau.	297
10.8	The Criss-Cross Method Example – Initial tableau.	299
12.1	Sparse vector storage.	371
12.2	Coordinate scheme for storing sparse matrices.	372
12.3	Memory requirement for coordinate scheme.	373
12.4	Additional "next non-zero" pointers NR and NC.	373

12.5	Additional "entry" pointers JR and JC.	374
12.6	Full memory requirement for coordinate scheme.	374
12.7	Collection of sparse vectors - CCS.	375
12.8	Memory requirement for collection of sparse vectors.	376
12.9	Collection of sparse vectors – CRS.	376
12.10	Linked list.	378
12.11	Memory requirement for linked list.	378

xxii

Preface

This is a book on *Linear-Fractional Programming* (here and in what follows we will refer to it as "LFP"). The field of LFP, largely developed by Hungarian mathematician B. Martos and his associates in the 1960's, is concerned with problems of optimization.

LFP problems deal with determining the best possible allocation of available resources to meet certain specifications. In particular, they may deal with situations where a number of resources, such as people, materials, machines, and land, are available and are to be combined to yield several products. In linear-fractional programming, the goal is to determine a permissible allocation of resources that will maximize or minimize some specific showing, such as profit gained per unit of cost, or cost of unit of product produced, etc.

Strictly speaking, linear-fractional programming is a special case of the broader field of *Mathematical Programming*. LFP deals with that class of mathematical programming problems in which the relations among the variables are linear: the constraint relations (i.e. the *restrictions*) must be in linear form and the function to be optimized (i.e. the *objective function*) must be a ratio of two linear functions.

At the same time LFP includes as a special case the well known and widespread *Linear Programming* (LP). In the problems of LP both the restrictions and the objective function must be linear in form. If in an LFP problem the denominator of the objective function is constant, which equals to 1, then we have an LP problem. Conversely, any problem of LP may be considered as an LFP one with the constant denominator of the objective function.

In a typical maximum problem, a manufacturer may wish to use available resources to produce several products. The manufacturer, knowing how much profit and cost are made for each unit of product produced, would wish to produce that particular combination of products that would maximize the profit gained per unit of cost.

The example of a minimum problem is as follows: A company owning several mines with varying grades of ore is given an order to supply certain quantities of each grade; how can the company satisfy the requirements in such a way that the cost of unit of the ore is minimized?

Transportation problems comprise a special class of linear-fractional programming. In a typical problem of this type the trucking company may be interested in finding the least expensive (minimum total cost in LP or minimum cost per unit of transported product in LFP) way of transporting each unit of large quantities of a product from a number of warehouses to a number of stores.

Assignment problems are related to transportation problems. A typical example of this type of problem is finding the best way to assign n applications to n jobs, given ratings of the applicants with respect to the different jobs.

This book will deal with the study of the types of problems described above. The emphasis will be on formulating the problem, mathematically analyzing and finally solving it, and then interpreting the solution. Some special advanced topics of LFP will be considered too. PREFACE

The main computational technique in linear-fractional programming is the simplex method developed by George B. Dantzig in the 1940's for solving linear programming problems and later, in 1960 upgraded by Béla Martos for solving LFP problems.

This book is completely self-contained, with all the necessary mathematical background given in Chapter 2. Readers who are familiar with linear algebra may omit this chapter. Knowledge of LP is desirable but not necessary.

ERIK B.BAJALINOV

Acknowledgments

Preliminary versions of some parts of the book were included about two years ago in my previous book written in cooperation with Balázs Imreh (Szeged University, Hungary) and published in Hungary in 2001. The author is grateful to many students and colleagues from the Hungarian Operations Research community for their encouragement and useful comments and criticism.

My special thanks are to:

Pál Dömösi (Department of Computer Science, Institute of Mathematics and Informatics, Debrecen University, Hungary) for friendly support and wisdom advices;

my colleagues Katalin Bognár, Zoltán Papp, Attila Pethõ, Magda Várterész for their warmest support and administrative assistance;

Jacek Gondzio and Julian Hall (Department of Mathematics and Statistics, Edinburgh University, Scotland) for assistance and support during my visit to Edinburgh Parallel Computing Centre (EPCC, Edinburgh University, Scotland);

my students Tamás Barta, Ádám Benedek, Csaba Kertész, József Kiss, and others for their assistance in developing and debugging software tools necessary to check numerous numeric examples included in the book;

my teachers and mentors Juriy P. Chernov (former State Planning Committee of USSR, Russia) and Jozef V. Romanovsky (Department of Operations Research, State University of Sent-Petersburg, Russia).

Finally, my thanks are also due to the staff of Kluwer Academic Publishers for their interest in my book, encouragement, and cooperation.