Skip to main content

Generation, Engineering and Production of Human Antibodies Using Hucal®

  • Chapter

Abstract

It is almost three decades since Köhler and Milstein published their work on the use of cell fusion for the production of monoclonal antibodies from immunized mice (Köhler & Milstein, 1975). The technique was rapidly and widely adopted and has provided an enormous repertoire of useful research reagents (Little et al., 2000). On the other hand, these antibodies have had limited success in human therapy (Glennie & Johnson, 2000). One reason is that murine antibodies often cause immune response in humans and lead to the generation of human anti-mouse antibodies (HAMA reaction), limiting the efficacy in long term and repeated administration (Jaffers et al., 1986; Schellekens, 2002). Only in certain indications, e.g. for the treatment of immuno-suppressed cancer patients, murine antibodies can be used. Two examples are the radioisotope conjugated murine anti-CD20 antibodies Bexxar® (tositumomab) and Zevalin™ (ibritumomab), which are both applied for treatment of lymphoma. The development of genetic engineering has allowed the conversion of existing mouse monoclonal antibodies into chimeric mouse-human antibodies, and humanised molecules where only the complementarity-determining regions (CDR) are of murine origin (Queen et al., 1989). To date, 13 therapeutic antibodies have obtained regulatory approval. Nowadays it is also possible to generate fully human antibodies, using either transgenic mice (Kellermann & Green, 2002), or in vitro technologies like phage display (Kretzschmar & von Rüden, 2002), ribosomal display (Hanes et al, 2001), bacterial display (Chen & Georgiou, 2002) or yeast display (Boder & Wittrup, 2000).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. D., Kerlavage, A. R., Fleischmann, R. D., Fuldner, R. A., Bult, C. J., Lee, N. H., Kirkness, E. F., Weinstock, K. G., Gocayne, J. D. and White, O., 1995, Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377(6547 Suppl): 3–174.

    PubMed  CAS  Google Scholar 

  • Bachelez, H., Flageul, B., Dubertret, L., Fraitag, S., Grossman, R., Brousse, N., Poisson, D., Knowles, R.W., Wacholtz, M.C., Haverty, T.P., Chatenoud, L., and Bach, J.F., 1998, Treatment of recalcitrant plaque psoriasis with a humanized non-depleting antibody to CD4. J. Autoimmun. 11: 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Baker, K.N., Rendall, M.H., Hills, A.E., Hoare, M, Freedman, R.B., and James, D.C., 2001, Metabolic control of recombinant protein N-glycan processing in NSO and CHO cells. Biotechnol. Bioeng. 73: 188–202.

    Article  PubMed  CAS  Google Scholar 

  • Bakker, H., Bardor, M, Molthoff, J.W., Gomord, V., Elbers, I., Stevens, L.H., Jordi, W., Lommen, A., Faye, L., Lerouge, P., and Bosch, D., 2001, Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl. Acad. Sci. USA 98: 2899–2904.

    Article  PubMed  CAS  Google Scholar 

  • Barbas, C.F. III. and Burton, D.R., 1996, Selection and evolution of high-affinity human antiviral antibodies. Trends Biotechnol. 14: 230–234

    Article  PubMed  CAS  Google Scholar 

  • Basilico, C. and Moscatelli, D., 1992, The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59: 115–165

    Article  PubMed  CAS  Google Scholar 

  • Better, M., Chang, C.P., Robinson, R.R., and Horwitz, A.H., 1988, Escherichia coli secretion of an active chimeric antibody fragment. Science, 240: 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  • Boder, E. T. and Wittrup, K. D., 2000, Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol. 328:430–444.

    Article  PubMed  CAS  Google Scholar 

  • Bothmann, H. and Plückthun, A., 1998, Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16: 376–380.

    Article  PubMed  CAS  Google Scholar 

  • Brandts, J.F., Hu, C.Q., Lin, L.N., and Mos, M.T., 1989, A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry, 28: 8588–8596.

    Article  PubMed  CAS  Google Scholar 

  • Breedveld, F.C., 2000, Therapeutic monoclonal antibodies. Lancet, 355: 735–740.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, S.H., Kruisbeek, A.M., and Longo, D.L., 1987, Selective in vivo antitumour effects of monoclonal anti-I-A antibody on B cell lymphoma. J. Immunol. 139: 4242–4249

    PubMed  CAS  Google Scholar 

  • Buchner, J. and Rudolph, R., 1991, Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (N. Y.), 9: 157–162.

    Article  CAS  Google Scholar 

  • Burke, D., Wilkes, D., Blundell, T.L., and Malcolm, S., 1998, Fibroblast growth factor receptors: lessons from the genes. Trends Biochem. Sci. 23: 59–62

    Article  PubMed  CAS  Google Scholar 

  • Cahill, D.J., 2001, Protein and antibody arrays and their medical applications. J. Immunol. Methods, 250: 81–91.

    Article  PubMed  CAS  Google Scholar 

  • Carayannopoulos, L., Max, E.E., and Capra, J.D., 1994, Recombinant human IgA expressed in insect cells. Proc. Natl. Acad. Sci. U. S. A, 91: 8348–8352.

    Article  PubMed  CAS  Google Scholar 

  • Carter, P., 2001, Bispecific human IgG by design. J. Immunol. Methods, 248: 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, A.P., Antoniw, P., Spitali, M., West, S., Stephens, S., and King, D.J., 1999, Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol, 17: 780–783.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, A.P., 2002, PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev., 54: 531–545.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., and Georgiou, G., 2002, Cell-surface display of heterologous proteins: From high-throughput screening to environmental applications. Biotechnol. Bioeng. 79:496–503.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Wiesmann, C., Fuh, G., Li, B., Christinger, H.W., McKay, P., de Vos, A.M., and Lowman, H.B., 1999, Selection and analysis of an optimised anti-VEGF antibody: Crystal structure of an affinity-matured Fab in complex with antigen. J. Mol. Biol. 293: 865–881

    Article  PubMed  CAS  Google Scholar 

  • Chesi, M., Brents, L.A., Ely, S.A., Bais, C., Robbiani, D.F., Mesri, E.A., Kuehl, W.M., and Bergsagel, P.L., 2001, Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumour progression in multiple myeloma. Blood 97: 729–736

    Article  PubMed  CAS  Google Scholar 

  • Cho, M.S., Yee, H., Brown, C., Mei, B., Mirenda, C., and Chan, S., 2003, Versatile expression system for rapid and stable production of recombinant proteins. Biotechnol. Prog, 19: 229–232.

    Article  PubMed  CAS  Google Scholar 

  • Choy, E.H., Hazleman, B., Smith, M., Moss, K., Lisi, L., Scott, D.G., Patel, J., Sopwith, M., and Isenberg, D.A., 2002, Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomized, dose-escalating trial. Rheumatology (Oxford), 41: 1133–1137.

    Article  CAS  Google Scholar 

  • Davis, T.A., Grillo-Lopez, A.J., White, C.A., McLaughlin, P., Czuczman, M.S., Link, B.K., Maloney, D.G., Weaver, R.L., Rosenberg, J., and Levy, R., 2000, Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J. Clin. Oncol., 18: 3135–3143.

    PubMed  CAS  Google Scholar 

  • de Haard, H. J., van Neer, N., Reurs, A., Hufton, S. E., Roovers, R. C, Henderikx, P., de Bruine, A. P., Arends, J.-W. and Hoogenboom, H., 1999, A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274: 18218–18230.

    Article  PubMed  Google Scholar 

  • de Wildt, R.M., Mundy, C.R., Gorick, B.D., and Tomlinson, I.M., 2000, Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat. Biotechnol. 18: 989–994.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, M.S., Staunton, D.E., Marlin, S.D., and Springer, T.A., 1991, Binding of the integrin Mac-1 (CD1 lb/CD 18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65: 961–971

    Article  PubMed  CAS  Google Scholar 

  • Dougherty, G.J., Murdoch, S., and Hogg, N., 1988, The fonction of human intercellular adhesion molecule-1 (ICAM-1) in the generation of an immune response. Eur. J. Immunol. 18: 35–39

    Article  PubMed  CAS  Google Scholar 

  • Dreier, T., Lorenczewski, G., Brandi, C., Hoffmann, P., Syring, U., Hanakam, F., Kufer, P., Riethmüller, G., Bargou, R., Baeuerle, P. A., 2002, Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalysed by a single chain bispecific antibody. Int. J. Cancer 100: 690–697.

    Article  PubMed  CAS  Google Scholar 

  • Dustin, M.L., Rothlein, R., Bhan, A.K., Dinarello, C.A., and Springer, T.A., 1986, Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 137: 245–254

    PubMed  CAS  Google Scholar 

  • Eickhoff, H., Konthur, Z., Lueking, A., Lehrach, H., Walter, G., Nordhoff, E., Nyarsik, L. and Bussow, K., 2002, Protein array technology: the tool to bridge genomics and proteomics. Adv. Biochem. Eng. Biotechnol. 77: 103–112.

    PubMed  CAS  Google Scholar 

  • Ewert, S., Honegger, A. and Plückthun, A., 2003b, Structure-based improvement of the biophysical properties of immunoglobulin v(h) domains with a generalizable approach. Biochemistry, 42: 1517–1528.

    Article  CAS  Google Scholar 

  • Ewert, S., Huber, T., Honegger, A. and Pliickthun, A., 2003a, Biophysical properties of human antibody variable domains. J. Mol. Biol. 325: 531–553.

    Article  CAS  Google Scholar 

  • Forsberg, G., Forsgren, M., Jaki, M., Norm, M., Sterky, C., Enhorning, A., Larsson, K., Ericsson, M. and Bjork, P., 1997, Identification of framework residues in a secreted recombinant antibody fragment that control production level and localization in Escherichia coli. J. Biol. Chem. 272: 12430–12436.

    CAS  Google Scholar 

  • Frisch, C., Brocks, B., Ostendorp, R., Hoess, A., von Rüden, T. and Kretzschmar, T., 2003, From EST to IHC: human antibody pipeline for target research. J. Immunol. Methods 275: 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Gessner, J.E., Heiken, H., Tamm, A., and Schmidt, R.E., 1998, The IgG Fc receptor family. Ann. Hematol. 76: 231–248.

    Article  PubMed  CAS  Google Scholar 

  • Glennie, M. J. and Johnson, P. W. M., 2000, Clinical trials of antibody therapy. Immunol. Today 21: 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, A. D., Williams, S. C, Hartley, O., Tomlinson, I. M., Waterhouse, P., Crosby, W. L., Kontermann, R. E., Jones, P. T., Low, N. M., Allison, T. J., Prospera, T. D., Hoogenboom, H. R., Nissim, A., Cox, J. P. L., Harrison, J. L., Zaccolo, M., Gherardi, E. and Winter, G., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

    PubMed  CAS  Google Scholar 

  • Griffiths, A.D. and Duncan, A.R., 1998, Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9: 102–108.

    Article  PubMed  CAS  Google Scholar 

  • Grillo-Lopez, A.J., 2002, Zevalin: the first radioimmunotherapy approved for the treatment of lymphoma. Expert Rev. Anticancer Ther. 2: 485–493.

    Article  PubMed  CAS  Google Scholar 

  • Gumpert, J. and Hoischen, C., 1998, Use of cell wall-less bacteria (L-forms) for efficient expression and secretion of heterologous gene products. Curr. Opin. Biotechnol. 9: 506–509.

    Article  PubMed  CAS  Google Scholar 

  • Gura, T. 2002, Therapeutic antibodies: magic bullets hit the target. Nature 417: 584–586.

    Article  PubMed  CAS  Google Scholar 

  • Haab, B.B., Dunham, M.J., and Brown, P.O., 2001, Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2: RESEARCH0004.

    Google Scholar 

  • Hanes, J., Jermutus, L. and Plilckthun, A., 2000, Selecting and evolving functional proteins in vitro by ribosome display. Methods Enzymol. 328: 404–430.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J.L. and Craik, C.S., 2000, Proteases: The tip of the iceberg. Cell 101: 136–137.

    Article  Google Scholar 

  • Hawkins, R.E., Russell, S.J. and Winter, G., 1992, Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226: 889–896.

    Article  PubMed  CAS  Google Scholar 

  • Hayhurst, A. and Georgiou, G., 2001, High-throughput antibody isolation. Curr. Opin. Chem. Biol. 5: 683–689.

    Article  PubMed  CAS  Google Scholar 

  • Hiniker, A. and Bardwell, J.C., 2003, Disulfide bond isomerisation in prokaryotes. Biochemistry 42: 1179–1185.

    Article  PubMed  CAS  Google Scholar 

  • Holliger, P., Prospera, T. and Winter, G., 1993, “Diabodies”: Small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90: 6444–6448.

    Article  PubMed  CAS  Google Scholar 

  • Holliger, P. and Hoogenboom, H., 1998, Antibodies come back from the brink. Nat Biotechnol, 16: 1015–1016.

    Article  PubMed  CAS  Google Scholar 

  • Hoogenboom, H.R., Lutgerink, J.T., Pelsers, M.M., Rousch, M.J., Coote, J., van Neer, N., de Bruine, A., van Nieuwenhoven, F.A., Glatz, J.F., and Arends, J.W., 1999, Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library. Eur. J. Biochem. 260: 774–784.

    Article  PubMed  CAS  Google Scholar 

  • Hooper, J.D., Clements, J.A., Quigley, J.P., and Antails, T.M., 2001, Type II transmembrane serine protease. J. Biol. Chem. 276: 857–860.

    Article  PubMed  CAS  Google Scholar 

  • Horn, U., Strittmatter, W., Krebber, A., Knupfer, U., Kujau, M., Wenderoth, R., Muller, K., Matzku, S., Plückthun, A., and Riesenberg, D., 1996, High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimised expression vector and high-cell-density fermentation under non-limited growth conditions. Appl. Microbiol. Biotechnol. 46: 524–532.

    CAS  Google Scholar 

  • Huls, G.A., Heijnen, I.A., Cuomo, M.E., Koningsberger, J.C., Wiegman, L., Boel, E., van der Vuurst de Vries, A.R., Loyson, S.A., Helfrich, W., van Berge Henegouwen, G.P., van Meijer, M., De Kruif, J. and Logtenberg, T., 1999, A recombinant, fully human monoclonal antibody with anti-tumour activity constructed from phage-displayed antibody fragments. Nature Biotech. 17: 276–281.

    Article  CAS  Google Scholar 

  • Humphreys, D.P., Chapman, A.P., Reeks, D.G., Lang, V. and Stephens, P.E., 1997, Formation of dimeric Fabs in Escherichia coli: effect of hinge size and isotype, presence of interchain disulphide bond, Fab’ expression levels, tail piece sequences and growth conditions. J. Immunol. Methods 209: 193–202.

    CAS  Google Scholar 

  • Humphreys, D.P., Vetterlein, O.M., Chapman, A.P., King, D.J., Antoniw, P., Suitters, A.J., Reeks, D.G., Parton, T.A., King, L.M., Smith, B.J., Lang, V. and Stephens, P.E., 1998, F(ab’)2 molecules made from Escherichia coli produced Fab’ with hinge sequences conferring increased serum survival in an animal model. J. Immunol. Methods 217: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Humphreys, D.P. and Glover, D.J., 2001, Therapeutic antibody production technologies: molecules, applications, expression and purification. Curr. Opin. Drug Discov. Devel. 4: 172–185.

    PubMed  CAS  Google Scholar 

  • Humphreys, D.P., Carrington, B., Bowering, L.C., Ganesh, R., Sehdev, M., Smith, B.J., King, L.M., Reeks, D.G., Lawson, A. and Popplewell, A.G., 2002, A plasmid system for optimisation of Fab(‘) production in Escherichia coli importance of balance of heavy chain and light chain synthesis. Protein Expr. Purif., 26: 309–320.

    CAS  Google Scholar 

  • Jaenicke, R. and Lilie, H., 2000, Folding and association of oligomeric and multimeric proteins. Adv. Protein Chem. 53: 329–401.

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke, R., Schurig, H., Beaucamp, N. and Ostendorp, R., 1996, Structure and stability of hyperstable proteins: glycolytic enzymes from the hyperthermophilic bacterium Thermotoga maritima. Adv. Protein Chem. 48: 181–269.

    Article  PubMed  CAS  Google Scholar 

  • Jaffers, G., Fuller, T. C, Cosimi, A. B., Russell, P. S., Winn, H. J. and Colvin, R. B., 1986, Monoclonal antibody therapy. Anti-idiotypic and non-anti-idiotypic antibodies to OKT3 arising despite intense immunosuppression. Transplantation 41: 572–578.

    Article  PubMed  CAS  Google Scholar 

  • Jefferis, R., Lund, J., and Pound, J.D., 1998, IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol. Rev. 163: 59–76.

    Article  PubMed  CAS  Google Scholar 

  • Jefferis, R. and Lund, J., 2002, Interaction sites on human IgG-Fc for FcgammaR: current models. Immunol. Lett., 82: 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Jermutus, L., Ryabova, L.A. and Pliickthun, A., 1998, Recent advances in producing and selecting functional proteins by using cell-free translation. Curr. Opin. Biotechnol. 9: 534-548. Jiang, X., Ookubo, Y., Fujii, I., Nakano, H. and Yamane, T., 2002, Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system. FEBSLett. 514: 290–294.

    Google Scholar 

  • Jirholt, P., Ohlin, M., Borrebaeck, C. A. K. and Söderlind, E., 1998, Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework. Gene 215: 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D., Kroos, N., Anema, R., Van Montfort, B., Vooys, A., Van Der, K.S., Van Der, H.E., Smits, S., Schouten, J., Brouwer, K., Lagerwerf, F., Van Berkel, P., Opstelten, D.J., Logtenberg, T. and Bout, A., 2003, High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol. Prog. 19: 163-168.

    Google Scholar 

  • Joos, T. O., Stoll, D., Templin, M., Virnekäs, B., and Ostendorp, R., 2002, Method for the relative determination of physicochemical properties. WO 02/086494.

    Google Scholar 

  • Joos, T.O., Stoll, D. and Templin, M.F., 2002, Miniaturised multiplexed immunoassays. Curr. Opin. Chem. Biol. 6: 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Kellermann, S. A. and Green, L. L., 2002, Antibody discovery: the use of transgenic mice to generate human monoclonal antibodies for therapeutics. Curr. Opin. Biotechnol. 13:593–597.

    Article  PubMed  CAS  Google Scholar 

  • Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T. and Yokoyama, S., 1999, Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442: 15–19.

    Article  PubMed  CAS  Google Scholar 

  • King, A., Boocock, C., Sharkey, A.M., Gardner, L., Beretta, A., Siccardi, A.G. and Loke, Y.W., 1996a, Evidence for the expression of HLA-C class I mRNA and protein by human first trimester trophoblast. J. Immunol. 156: 2068–2076.

    CAS  Google Scholar 

  • King, A., Burrows, T., and Locke, Y.W., 1996b, Human uterine natural killer cells. Nat. Immun. 15: 41–52.

    Google Scholar 

  • Kipriyanov, S.M., Moldenhauer, G., Schuhmacher, J., Cochlovius, B., der Lieth, C.W., Matys, E.R., and Little, M., 1999, Bispecific tandem diabody for tumour therapy with improved antigen binding and pharmacokinetics. J Mol Biol, 293: 41–56.

    Article  PubMed  CAS  Google Scholar 

  • Klint, P. and Claesson-Welsh, L., 1999, Signal transduction by fibroblast growth factor receptors. Front. Biosci. 4: D165–177.

    Article  PubMed  CAS  Google Scholar 

  • Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A. and Virnekäs, B., 2000, Fully synthetic Human Combinatorial Antibody Libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296: 57–86.

    Article  PubMed  CAS  Google Scholar 

  • Köhler, G. and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.

    Article  PubMed  Google Scholar 

  • Krebs, B., Rauchenberger, R., Reiffert, S., Rothe, C., Tesar, M., Thomassen, E., Cao, M., Dreier, T., Fischer, D., Höß, A., Inge, L., Knappik, A., Marget, M., Pack, P., Meng, X., Schier, R., Söhlemann, P., Winter, J., Wölle, J. and Kretzschmar, T., 2001, High-throughput generation and engineering of recombinant human antibodies. J. Immunol. Methods 254: 67–84.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar, T. and von Rüden, T., 2002, Antibody discovery: phage display. Curr. Opin. Biotechnol. 13: 598–602.

    Article  PubMed  CAS  Google Scholar 

  • Kujau, M.J., Hoischen, C., Riesenberg, D. and Gumpert, J., 1998, Expression and secretion of functional miniantibodies McPC603scFvDhlx in cell-wall-less L-form strains of Proteus mirabilis and Escherichia coli: a comparison of the synthesis capacities of L-form strains with an E. coli producer strain. Appl. Microbiol. Biotechnol. 49: 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Laden, J.C., Philibert, P., Torreilles, F., Pugniere, M. and Martineau, P., 2002, Expression and folding of an antibody fragment selected in vivo for high expression levels in Escherichia coli cytoplasm. Res. Microbiol. 153: 469–474.

    Article  PubMed  CAS  Google Scholar 

  • Lesley, S.A., 2001, High-throughput proteomics: protein expression and purification in the postgenomic world. Protein Expr. Purif. 22: 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Zhu, Y.X., Plowright, E.E., Bergsagel, P.L., Chesi, M., Patterson, B., Hawley, T.S., Hawley, R.G., and Stewart, A.K., 2001, The myeloma-associated oncogene fibroblast growth factor receptor 3 is transforming in hematopoietic cells. Blood 97: 2413–2419.

    Article  PubMed  CAS  Google Scholar 

  • Lilie, H., Lang, K., Rudolph, R. and Buchner, J., 1993, Prolyl isomerases catalyze antibody folding in vitro. Protein Sci. 2: 1490–1496.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C.Y., Anders, J., Johnson, M. and Dickson, R.B., 1999a, Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J. Biol. Chem. 274: 18237–18242.

    Article  CAS  Google Scholar 

  • Lin, C.Y., Anders, J., Johnson, M., Sang, Q.A., and Dickson, R.B., 1999b, Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J. Biol. Chem. 274: 18231–18236.

    Article  CAS  Google Scholar 

  • Little, M., Kipriyanov, S. M., Le Gall, F. and Moldenhauer, G., 2000, Of mice and men: hybridoma and recombinant antibodies. Immunol. Today 21: 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Löhning, C., 2001, Novel methods for displaying (poly)peptides/proteins on bacteriophage particles via disulfide bonds. WO 01/05950.

    Google Scholar 

  • Lorenz, H.M., 2002, Technology evaluation: adalimumab, Abbott laboratories. Curr. Opin. Mol. Ther. 4: 185–190.

    PubMed  CAS  Google Scholar 

  • Low, N.M., Holliger, P. and Winter, G., 1996, Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. Mol. Biol. 260: 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Lu, D., Jimenez, X., Zhang, H., Bohlen, P., Witte, L., and Zhu, Z., 2002, Fab-scFv fusion protein: an efficient approach to production of bispecific antibody fragments. J Immunol Methods, 267: 213–226.

    Article  PubMed  CAS  Google Scholar 

  • Lueking, A., Horn, M., Eickhoff, H., Bussow, K., Lehrach, H. and Walter, G., 1999, Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270: 103–111.

    Article  PubMed  CAS  Google Scholar 

  • MacBeath, G. and Schreiber, S.L., 2000, Printing proteins as microarrays for high-throughput function determination. Science 289: 1760–1763.

    PubMed  CAS  Google Scholar 

  • Marget, M., Sharma, B.B., Tesar, M., Kretzschmar, T., Jenisch, S., Westphal, E., Davarnia, P., Weiss, E., Ulbrecht, M., Kabelitz, D. and Krönke, M., 2000, Bypassing hybridoma technology: HLA-C reactive human single-chain antibody fragments (scFv) derived from a synthetic phage display library (HuCAL) and their potential to discriminate HLA class I specificities. Tissue Antigens 56: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Marlin, S.D. and Springer, T.A., 1987, Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51: 813–819.

    Article  PubMed  CAS  Google Scholar 

  • Martineau, P., Jones, P. and Winter, G., 1998, Expression of an antibody fragment at high levels in the bacterial cytoplasm. J. Mol. Biol. 280: 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, B.W., 1995, Studies on protein stability with T4 lysozyme. Adv. Protein Chem., 46: 249–278.

    Article  PubMed  CAS  Google Scholar 

  • Milstein, C. and Cuello, A.C., 1983, Hybrid hybridomas and their use in immunohistochemistry. Nature 305: 537–540.

    Article  PubMed  CAS  Google Scholar 

  • Mimura, Y., Ghirlando, R., Sondermann, P., Lund, J. and Jefferis, R., 2001, The molecular specificity of IgG-Fc interactions with Fc gamma receptors. Adv. Exp. Med. Biol. 495: 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Morton, H.C., Atkin, J.D., Owens, R.J. and Woof, J.M., 1993, Purification and characterization of chimeric human IgAl and IgA2 expressed in COS and Chinese hamster ovary cells. J. Immunol. 151: 4743–4752.

    PubMed  CAS  Google Scholar 

  • Mourad, G.J., Preffer, F.I., Wee, S.L., Powelson, J.A., Kawai, T., Delmonico, F.L., Knowles, R.W., Cosimi, A.B. and Colvin, R.B., 1998, Humanized IgGl and IgG4 anti-CD4 monoclonal antibodies: effects on lymphocytes in the blood, lymph nodes, and renal allografts in cynomolgus monkeys. Transplantation, 65: 632–641.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, ?. A., Hubner, B., Löhning, C., Rauchenberger, R., Reiffert, S., Thomassen-Wolf, E., Zahn, S., Leyer, S., Schier, E. M., Zahradnik, A., Brunner, C., Stanglmaier, M., Anderson, S., Dunn, M., Hallek, M., Kretzschmar, T. and Tesar, M., 2002, Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells. Nat. Med. 8: 801–807.

    PubMed  CAS  Google Scholar 

  • Naski, M.C. and Ornitz, D.M., 1998, FGF signaling in skeletal development. Front. Biosci. 3: D781–794.

    PubMed  CAS  Google Scholar 

  • Newell, M.K., VanderWall, J., Beard, K.S. and Freed, J.H., 1993, Ligation of major histocompatiblity complex class II molecules mediates apoptotic cell death in resting B lymphocytes. Proc. Natl. Acad. Sci. USA 90: 10459–10463.

    Article  PubMed  CAS  Google Scholar 

  • O’Shea, E.K., Rutkowski, R., Stafford, W.F.III and Kim, P.S., 1989, Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science 245: 646–648.

    Article  PubMed  Google Scholar 

  • Pack, P. and Pliickthun, A., 1992, Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in Escherichia coli. Biochemistry 31: 1579–1584.

    Article  PubMed  CAS  Google Scholar 

  • Pack, P., Kujau, M., Schroeckh, V., Knupfer, U., Wenderoth, R., Riesenberg, D. and Pliickthun, A., 1993, Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli. Biotechnology (N. Y.) 11: 1271–1277.

    CAS  Google Scholar 

  • Pack, P., Muller, K., Zahn, R. and Pliickthun, A., 1995, Tetravalent miniantibodies with high avidity assembling in Escherichia coli. J. Mol. Biol. 246: 28–34.

    Article  PubMed  CAS  Google Scholar 

  • Palomares, L.A., Joosten, C.E., Hughes, P.R., Granados, R.R. and Shuler, M.L., 2003, Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol. Prog. 19: 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Peluso, P., Wilson, D.S., Do, D., Tran, H., Venkatasubbaiah, M., Quincy, D., Heidecker, B., Poindexter, K., Tolani, N., Phelan, M., Witte, K., Jung, L.S., Wagner, P. and Nock, S., 2003, Optimising antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 312: 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Perelson, A. S., 1989, Immune network theory. Immunol. Rev. 110: 5–36.

    Article  PubMed  CAS  Google Scholar 

  • Persic, L., Horn, I. R., Rybak, S., Cattaneo, A., Hoogenboom, H. R. and Bradbury, A., 1999, Single-chain variable fragments selected on the 57-76 p21 Ras neutralising epitope from phage antibody libraries recognise the parental protein. FEBS Lett. 443:112–116.

    Article  PubMed  CAS  Google Scholar 

  • Pliickthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. and Riesenberg, D., 1996, Producing antibodies in Escherichia coli: from PCR to fermentation. In: B.D. Hames (ed.), Antibody Engineering, pp. 203–249. Oxford, United Kingdom: Oxford University Press.

    Google Scholar 

  • Pliickthun, A. and Pack, P., 1997, New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology 3: 83–105.

    Article  Google Scholar 

  • Pober, J.S., Gimbrone, M.A. Jr, Lapierre, L.A., Mendrick, D.L., Fiers, W., Rothlein, R., and Springer T.A., 1986, Overlapping patterns of activation of human endothelial cells by interleukin 1, tumour necrosis factor, and immune interferon. J. Immunol. 137: 1893–1896.

    PubMed  CAS  Google Scholar 

  • Queen, C., Schneider, W. P., Selick, H. E., Payne, P. W., Landolfi, N. F., Duncan, J. F., Avdalovic, N. M., Levitt, M., Junghans, R. P. and Waldmann, T. A., 1989, A humanized antibody that binds to the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 86: 10029–10033.

    Article  PubMed  CAS  Google Scholar 

  • Rader, C. and Barbas, C.F.III., 1997, Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8: 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Ramjiawan, B., Maiti, P., Aftanas, A., Kaplan, H., Fast, D., Mantsch, H.H. and Jackson, M., 2000, Noninvasive localization of tumours by immunofluorescence imaging using a single chain Fv fragment of a human monoclonal antibody with broad cancer specificity. Cancer 89:1134–1144.

    Article  PubMed  CAS  Google Scholar 

  • Rauchenberger, R., Borges, E., Thomassen-Wolf, E., Rom, E., Adar, R., Vaniv, Y., Malka, A., Cumakov, I., Kotzer, S., Resnitzky, D., Knappik, A., Reiffert, S., Prassler, J., Jury, K., Waldherr, D., Bauer, S., Kretzschmar, T., Yayon, A. and Rothe, C., Human combinatorial Fab library, HuCAL®-Fab 1, yielding the first specific and functional antibodies against the human receptor tyrosine kinase FGFR3. J. Biol. Chem. 2003, In press

    Google Scholar 

  • Reichert, J.M., 2001, Monoclonal antibodies in the clinic. Nat. Biotechnol. 19: 819–822.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, J.M., 2002, Therapeutic monoclonal antibodies: trends in development and approval in the US. Curr. Opin. Mol. Ther. 4: 110–118.

    PubMed  CAS  Google Scholar 

  • Rheinnecker, M., Hardt, C., Ilag, L.L., Kufer, P., Gruber, R., Hoess, A., Lupas, A., Rottenberger, C., Plückthun, A. and Pack, P., 1996, Multivalent antibody fragments with high functional affinity for a tumour-associated carbohydrate antigen. J. Immunol. 157: 2989–2997.

    PubMed  CAS  Google Scholar 

  • Rippmann, J.F., Klein, M., Hoischen, C., Brocks, B., Rettig, W.J., Gumpert, J., Pfizenmaier, K., Mattes, R. and Moosmayer, D., 1998, Procaryotic expression of single-chain variable-fragment (scFv) antibodies: secretion in L-form cells of Proteus mirabilis leads to active product and overcomes the limitations of periplasmic expression in Escherichia coli. Appl. Environ. Microbiol. 64: 4862–4869.

    PubMed  CAS  Google Scholar 

  • Rothlein, R., Dustin, M.L., Marlin, S.D. and Springer, T.A., 1986, A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 137: 1270–1274.

    PubMed  CAS  Google Scholar 

  • Ryabova, L.A., Desplancq, D., Spirin, A.S. and Plückthun, A., 1997, Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nat. Biotechnol. 15: 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Sblattero, D. and Bradbury, A., 2000, Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotech. 18: 75–80.

    Article  CAS  Google Scholar 

  • Schäffner, J., Winter, J., Rudolph, R. and Schwarz, E., 2001, Cosecretion of chaperones and low-molecular-size medium additives increases the yield of recombinant disulfide-bridged proteins. Appl. Environ. Microbiol. 67: 3994–4000.

    Article  PubMed  Google Scholar 

  • Schellekens, H., 2002, Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin Ther. 24: 1720–1740.

    Article  PubMed  CAS  Google Scholar 

  • Schier, R., Bye, J., Apell, G., Mc Call, A., Adams, G.P., Malmqvist, M., Weiner, L.M. and Marks, J.D., 1996a, Isolation of high-affinity monomelic human anti-c-erbB2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255: 28–43.

    Article  CAS  Google Scholar 

  • Schier, R., McCall, A., Adams, G.P., Marshall, K.W., Merritt, H., Yim, M., Crawford, R.S., Weiner, L.M., Marks, C. and Marks, J.D., 1996b, Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263: 551–567.

    Article  CAS  Google Scholar 

  • Schmiedl, A., Breitling, F., Winter, C.H., Queitsch, I., and Dübel, S., 2000, Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli. J. Immunol. Methods 242: 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Schwenk, J.M., Stoll, D., Templin, M.F., and Joos, T.O., 2002, Cell microarrays: an emerging technology for the characterization of antibodies. Biotechniques, Suppl, 54–61.

    Google Scholar 

  • Sheets, M. D., Amersdorfer, P., Finnern, R., Sargent, P., Lindqvist, E., Schier, R., Hemingsen, G., Wong, C., Gerhardt, J. C. and Marks, J. D., 1998, Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95: 6157–6162.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, R.W., Allen, B., Pavlik, P., Marks, J. D. and Bradbury, A., 2000, Mass spectral analysis of a protein complex using single-chain antibodies selected on a peptide target: applications to functional genomics. J. Mol. Biol. 302:285–293.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, L.C. and Yansura, D.G., 1996, Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat. Biotechnol. 14: 629–634.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, L.C, Reilly, D., Klimowski, L., Raju, T.S., Meng, G., Sims, P., Hong, K., Shields, R.L., Damico, L.A., Rancatore, P. and Yansura, D.G., 2002, Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods 263: 133–147.

    Article  PubMed  CAS  Google Scholar 

  • Skerra, A. and Plückthun, A., 1988, Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240: 1038–1041.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.W., Marlin, S.D., Rothlein, R., Toman, C. and Anderson, D.C., 1989, Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J. Clin. Invest. 83: 2008–2017.

    Article  PubMed  CAS  Google Scholar 

  • Söderlind, E., Strandberg, L., Jirholt, P., Kobayashi, N., Alexeiva, V., Aberg, A.-M., Nilsson, A., Jansson, B., Ohlin, M., Wingren, C., Danielson, L., Carlsson, R. and Borrebaeck, C.A.K., 2000, Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat. Biotech. 18: 852–856.

    Article  Google Scholar 

  • Spirin, A.S., Baranov, V.l., Ryabova, L.A., Ovodov, S.Y. and Alakhov, Y.B., 1988, A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242: 1162–1164.

    Article  PubMed  CAS  Google Scholar 

  • Sun, C., Kilburn, D., Lukashin, A., Crowell, T., Gardner, H., Brundiers, R., Diefenbach, B. and Carulli, J.P., 2003, Kirrel2, a novel immunoglobulin superfamily gene expressed primarily in beta cells of the pancreatic islets. Genomics 82: 130–142.

    Article  PubMed  CAS  Google Scholar 

  • Sun, J., Pons, J., and Craik, C.S., 2003, Potent and selective inhibition of membrane-type serine protease 1 by human single-chain antibodies. Biochemistry 42: 892–900.

    Article  PubMed  CAS  Google Scholar 

  • Sykes, K.F. and Johnston, S.A., 1999, Linear expression elements: a rapid, in vivo, method to screen for gene functions. Nat. Biotechnol. 17: 355–359.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, T., Harris, J.L., Huang, W., Yan, K.W., Coughlin, S.R. and Craik, C.S., 2000, Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275: 26333–26342.

    Article  PubMed  CAS  Google Scholar 

  • Templin, M.F., Stoll, D., Schrenk, M., Traub, P.C., Vohringer, C.F. and Joos, T.O., 2002, Protein microarray technology. Trends Biotechnol. 20: 160–166.

    Article  PubMed  CAS  Google Scholar 

  • Tey, B.T., Singh, R.P., Piredda, L., Piacentini, M. and Al Rubeai, M., 2000, Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J. Biotechnol. 79, 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Truman, J.-P., Ericson, M.L., Choqueux-Seebold, J.M., Charron, D.J. and Mooney, N.A., 1994, Lymphocyte programmed cell death is mediated via HLA class II DR. Intl. Immunol. 6: 887–896.

    Article  CAS  Google Scholar 

  • Vaickus, L., Jones, V.E., Morton, C.L., Whitford, K. and Bacon, R.N., 1989, Antiproliferative mechanism of anti-class II monoclonal antibodies. Cell Immunol. 119: 445–458.

    Article  PubMed  CAS  Google Scholar 

  • Van Seventer, G.A., Shimizu, Y., Horgan, K.J. and Shaw, S., 1990, The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J. Immunol. 144: 4579–4586.

    PubMed  Google Scholar 

  • Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., Earnshaw, J. C, McCafferty, J., Hodits, R. A., Wilton, J. and Johnson K. S., 1996, Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotech. 14: 309–314.

    Article  CAS  Google Scholar 

  • Venter, J. C. and Adams, M. D., 1993. WO 93/00353.

    Google Scholar 

  • Venturi, M., Seifert, C. and Hunte, C., 2002, High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J. Mol. Biol. 315: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Vidovic, D., Falcioni, F., Siklodi, B., Belunis, C.J., Bolin, D.R., Ito, K. and Nagy Z.A., 1995, Down-regulation of class II major histocompatibility complex molecules on antigen presenting ceils by antibody fragments. Eur. J. Immunol. 25: 3349–3355.

    Article  PubMed  CAS  Google Scholar 

  • Vidovic, D. and Toral, J., 1998, Selective apoptosis of neoplastic cells by the HLA-DR-specific monoclonal antibody. Cancer Lett. 128: 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. and Moroney, S.E., 1994, Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucl. Acids Res. 22: 5600–5607.

    Article  PubMed  Google Scholar 

  • Voutsadakis, I.A., 2002, Gemtuzumab Ozogamicin (CMA-676, Mylotarg) for the treatment of CD33+ acute myeloid leukemia. Anticancer Drugs 13: 685–692.

    Article  PubMed  CAS  Google Scholar 

  • Waldmann, T.A., Levy, R. and Coller, B.S., 2000, Emerging therapies: spectrum of applications of monoclonal antibody therapy. Hematology (Am. Soc. Hematol. Educ. Program), 394–408.

    Google Scholar 

  • Wall, J.G. and Plückthun, A., 1999, The hierarchy of mutations influencing the folding of antibody domains in Escherichia coli. Protein Eng. 12: 605–611.

    CAS  Google Scholar 

  • Walter, G., Bussow, K., Lueking, A. and Glokler, J., 2002, High-throughput protein arrays: prospects for molecular diagnostics. Trends Mol. Med. 8: 250–253.

    Article  PubMed  CAS  Google Scholar 

  • Watters, J.M., Telleman, P. and Junghans, R.P., 1997, An optimised method for cell-based phage display panning. Immunotechnology 3: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Webster, M.K. and Donoghue, D.J., 1997, Enhanced signaling and morphological transformation by a membrane-localized derivative of the fibroblast growth factor receptor 3 kinase domain. Trends Genet. 13: 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Weir, A.N. and Bailey, N.A., 1997, Process for obtaining antibodies utilizing heat treatment. US 5,665,866.

    Google Scholar 

  • Weir, A.N., Nesbitt, A., Chapman, A.P., Popplewell, A.G., Antoniw, P. and Lawson, A.D., 2002, Formatting antibody fragments to mediate specific therapeutic functions. Biochem. Soc. Trans. 30:512–516.

    Article  PubMed  CAS  Google Scholar 

  • Willuda, J., Honegger, A., Waibel, R., Schubiger, P.A., Stahel, R., Zangemeister-Wittke, U. and Plückthun, A., 1999, High thermal stability is essential for tumour targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res. 59: 5758–5767.

    PubMed  CAS  Google Scholar 

  • Willuda, J., Kubetzko, S., Waibel, R., Schubiger, P.A., Zangemeister-Wittke, U. and Plückthun, A., 2001, Tumour targeting of mono-, di-, and tetravalent anti-p l85(HER-2) miniantibodies multimerised by self-associating peptides. J. Biol. Chem. 276: 14385–14392.

    PubMed  CAS  Google Scholar 

  • Wörn, A. and Plückthun, A., 1999, Different equilibrium stability behaviour of scFv fragments: identification, classification, and improvement by protein engineering. Biochemistry 38: 8739–8750.

    Article  PubMed  Google Scholar 

  • Wörn, A. and Plückthun, A., 2001, Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305: 989–1010.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., Green, K., Pinz-Sweeney, S., Briones, A.T., Burton, D.R. and Barbas III, C.F., 1995, CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254: 392–403.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ostendorp, R., Frisch, C., Urban, M. (2004). Generation, Engineering and Production of Human Antibodies Using Hucal®. In: Subramanian, G. (eds) Antibodies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8877-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8877-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4702-6

  • Online ISBN: 978-1-4419-8877-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics