Skip to main content

Abstract

The nervous system mediates responses to a wide variety of stimuli. For example, a painful stimulus to the sole of the foot will elicit a rapid contraction of flexor muscles in the leg to withdraw the foot. Bright light reaching the retina elicits the pupillary reflex that serves to constrict the pupil and reduce the amount of light passing through it. Irritation of the lining of the nose can cause a sneeze. All reflexes are elicited by specific stimuli and all are relatively consistent and stereotyped in their appearance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus, J. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.

    Google Scholar 

  • Andersson, G., Ekerot, C.F., Oscarsson, O., and Schouenborg, J. (1987). Convergence of afferent paths to olivo-cerebellar complexes. In M. Glickstein, C.H. Yeo, and J. Stein (Eds.), Cerebellum and neuronal plasticity (pp. 165–174). New York: Plenum.

    Google Scholar 

  • Andersson, G., Garwicz, M., and Hesslow, G. (1988). Evidence for a GABA-mediated cerebellar inhibition of the inferior olive in the cat. Experimental Brain Research, 72, 450–456.

    CAS  Google Scholar 

  • Andersson, G., and Hesslow, G. (1987a). Inferior olive excitability after high frequency climbing fiber activation in the cat. Experimental Brain Research, 67, 523–532.

    CAS  Google Scholar 

  • Andersson, G., and Hesslow, G. (1987b). Activity of Purkinje cells and interpositus neurons during and after periods of high frequency climbing fiber activation in the cat. Experimental Brain Research, 67, 533–542.

    CAS  Google Scholar 

  • Attwell, P.J., Rahman, S., Ivarsson, M., and Yeo, C.H. (1999a). Cerebellar cortical AMPA-kainate receptor blockade prevents performance of classically conditioned nictitating membrane responses. Journal of Neuroscience, 19, RC45.

    PubMed  CAS  Google Scholar 

  • Attwell, P.J., Rahman, S., Ivarsson, M., Gilbert, P.F., and Yeo, C.H. (1999b). Temporary, cerebellar cortical AMPA-receptor blockade prevents acquisition of nictitating membrane conditioning. Society for Neuroscience, Abstracts, 25, 84–84.

    Google Scholar 

  • Bekhterev, V.M. (1932). General principles of human reflexology. New York: International Press.

    Google Scholar 

  • Berger, T.W., and Thompson, R.F. (1978). Identification of pyramidal cells as the critical elements in hippocampal neuronal plasticity during learning. Proceedings of the National Academy of Sciences of the United States of America, 75, 1572–1576.

    PubMed  CAS  Google Scholar 

  • Berger, T.W., Alger, B., and Thompson, R.F. (1976). Neuronal substrate of classical conditioning in the hippocampus. Science, 192, 483–485.

    PubMed  CAS  Google Scholar 

  • Berger, T.W., Laham, R.I., and Thompson, R.F. (1980). Hippocampal unit-behavior correlations during classical conditioning. Brain Research, 193, 229–248.

    PubMed  CAS  Google Scholar 

  • Berger, T.W., Rinaldi, P.C., Weisz, D.J., and Thompson, R.F. (1983). Single-unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. Journal of Neurophysiology, 50, 1197–1219.

    PubMed  CAS  Google Scholar 

  • Berkeley, K.J., and Hand, P.J. (1978). Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and spinal trigeminal nuclei. Jorunal of Comparative Neurology, 180, 252–264.

    Google Scholar 

  • Berthier, N.E., and Moore, J.W. (1986). Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Experimental Brain Research, 63, 341–350.

    CAS  Google Scholar 

  • Berthier, N.E., and Moore, J.W. (1990). Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits. Experimental Brain Research, 83, 44–54.

    CAS  Google Scholar 

  • Bloedel, J.R., and Bracha, V. (1995). On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behavioural Brain Research, 68, 1–44.

    PubMed  CAS  Google Scholar 

  • Bracha, V., Webster, M.L., Winters, N.K., Irwin, K.B., and Bloedel, J. R. (1994). Effects of muscimol inactivation of the cerebellar interposed-dentate nuclear complex on the performance of the nictitating membrane response in the rabbit. Experimental Brain Research, 100, 453–468.

    CAS  Google Scholar 

  • Brodai, A. (1981). The cerebellum. In Neurological anatomy in relation to clinical medicine. New York: Oxford University Press.

    Google Scholar 

  • Brodai, P. (1992). The cerebellum. In The central nervous system: structure and function (pp. 262–282). New York: Oxford University Press.

    Google Scholar 

  • Brodai, P., and Bjaalie, J.G. (1992). Organization of the pontine nuclei. Neuroscience Research, 13, 83–118.

    Google Scholar 

  • Brodai, A., Destombes, J., Lacerda, A.M., and Angaut, P. (1972). A cerebellar projection onto the pontine nuclei. An experimental anatomical study in the cat. Experimental Brain Research, 16, 115–139.

    Google Scholar 

  • Brogden, W.J. (1939). The effect of frequency of reinforcement upon the level of conditioning. Journal of Experimental Psychology, 24, 419–431.

    Google Scholar 

  • Brogden, W.J., and Gannt, W.H. (1948). Intraneural conditioning: cerebellar conditioned reflexes. Archives of Neurological Psychiatry, 48, 437–455.

    Google Scholar 

  • Bromiley, R.B. (1948). Conditioned responses in a dog after removal of neocortex. Journal of Comparative Physiology and Psychology, 41, 102–110.

    CAS  Google Scholar 

  • Brons, J.F., and Woody, C.D. (1980). Long-term changes in excitability of cortical neurons after Pavlovian conditioning and extinction. Journal of Neurophysioly, 44, 605–615.

    CAS  Google Scholar 

  • Burne, R.A., Azizi, G.A., Mihailoff, G., and Woodward, D.J. (1981). The tectopontine projection in the rat with comments on visual pathways to the basilar pons. Journal of Comparative Neurology, 202, 287–307.

    PubMed  CAS  Google Scholar 

  • Cegavske, C.F., Thompson, R.F., Patterson, M.M., and Gormezano, I. (1976). Mechanisms of efferent neuronal control of the reflex nicitating membrane response in rabbit (Oryctolagus cuniculus). Journal of Comparative Physiology and Psychology, 90, 411–423.

    CAS  Google Scholar 

  • Chapman, P.F., Steinmetz, J.E., Sears, L.L., and Thompson, R.F. (1990). Effects of lidocaine injection in the interpositus nucleus and red nucleus on conditioned behavioral and neuronal responses. Brain Research, 537, 149–156.

    PubMed  CAS  Google Scholar 

  • Clark, R.E., and Lavond, D.G. (1993). Reversible lesions of the red nucleus during acquisition and retention of a classically conditioned behavior in rabbits. Behavioral Neuroscience, 107, 264–270.

    PubMed  CAS  Google Scholar 

  • Clark, R.E., and Lavond, D.G. (1996). Neural unit activity in the trigeminal complex with interpositus or red nucleus inactivation during classical eyeblink conditioning. Behavioral Neuroscience, 110, 13–21.

    PubMed  CAS  Google Scholar 

  • Clark, G.A., McCormick, D.A., Lavond, D.G., and Thompson, R.F. (1984). Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Research, 291, 125–136.

    PubMed  CAS  Google Scholar 

  • Clark, R.E., Zhang, A.A., and Lavond, D.G. (1992). Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior. Behavioral Neuroscience, 106, 879–888.

    PubMed  CAS  Google Scholar 

  • Clark, R.E., Gohl, E.B., and Lavond, D.G. (1997). The learning-related activity that develops in the pontine nuclei during classical eye-blink conditioning is dependent on the interpositus nucleus. Learning and Memory, 3, 532–544.

    PubMed  CAS  Google Scholar 

  • Colin, P., Manil, J., and Desclin, J.C. (1980). The olivocerebellar system. 1. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers. Brain Research, 187, 3–27.

    PubMed  CAS  Google Scholar 

  • Culler, F., and Mettler, F.A. (1934). Conditioned behavior in a decorticate dog. Journal of Comparative Physiology and Psychology, 18, 291–303.

    Google Scholar 

  • Daum, I., Channon, S., Polkey, C.E., and Gray, J.A. (1991). Classical conditioning after temporal lobe lesions in man: impairment in conditional discrimination. Behavioral Neuroscience, 105, 396–408.

    PubMed  CAS  Google Scholar 

  • Davis, K.D., and Dostrovsky, J.O. (1986). Modulatory influences of red nucleus stimulation on the somatosensory responses of cat trigeminal subnucleus oralis neurons. Experimental Neurology, 91, 80–101.

    PubMed  CAS  Google Scholar 

  • De Schutter, E., and Maex, R. (1996). The cerebellum: cortical processing and theory. Current Opinion in Neurobiology, 6, 759–764.

    PubMed  Google Scholar 

  • Desmond, J.E., and Moore, J.W. (1982). A brain stem region essential for the classically conditioned but not unconditioned nictitating membrane response. Physiology & behavior, 28, 1029–1033.

    CAS  Google Scholar 

  • Desmond, J.E., and Moore, J.W. (1988). Adaptive timing in neural networks: the conditioned response. Biology and Cybernetics, 58, 405–415.

    CAS  Google Scholar 

  • Desmond, J.E., and Moore, J.W. (1991). Single-unit activity in red nucleus during the classically conditioned rabbit nictitating membrane response. Neuroscience Research, 10, 260–279.

    PubMed  CAS  Google Scholar 

  • Dietrichs, E., Bjaalie, J.G., and Brodai, P. (1983). Do pontocerebellar fibers send collaterals to the cerebellar nuclei? Brain Research, 259, 127–131.

    PubMed  CAS  Google Scholar 

  • Disterhoft, J.F., Quinn, K.J., Weiss, C., and Shipley, M.T. (1985). Accessory abducens nucleus and conditioned eye retraction/nictitating membrane extension in rabbit. Journal of Neurosciences, 5, 941–950.

    CAS  Google Scholar 

  • Donhoffer, H. (1966). The role of the cerebellum in the instrumental conditional reflex. Acta Physiologica Academiae Scientarium Hungaricae, 29, 247–251.

    CAS  Google Scholar 

  • Doty, R.W. (1969). Electrical stimulation of the brain in behavioral context. Annual Review of Psychology, 20, 289–320.

    PubMed  CAS  Google Scholar 

  • Doty, R.W., Rutledge, L. T., and Larson, B. (1956). Conditioned reflexes established to electrical stimulation of cat cerebral cortex. Journal of Neurophysiology, 19, 401–405.

    PubMed  CAS  Google Scholar 

  • du Lac, S., Raymond, J.L., Sejnowski, T.J., and Lisberger, S.G. (1995). Learning and memory in the vestibulo-ocular reflex. Annual Review of Neuroscience, 18, 409–441.

    PubMed  Google Scholar 

  • Fanardjian, V.V. (1961). The influence of cerebellar ablation on conditioned motor reflexes in dogs. Journal of Higher Nervous Activity, 11, 920–926.

    Google Scholar 

  • Flourens, P. (1824). Recherches expérimentales sur les propriétés et les fonctions de systèeme nerveux, dans les animaux vertébrés. Paris: Crevot.

    Google Scholar 

  • Garcia, K.S., Steele, P.M., and Mauk, M.D. (1999). Cerebellar cortex lesions prevent acquisition of conditioned eyelid responses. Journal of Neuroscience, 19, 10940–10947.

    PubMed  CAS  Google Scholar 

  • Gellman, R., Houk, J.C., and Gibson, A.R. (1983). Somatosensory properties of the inferior olive of the cat. Journal of Comparative Neurology, 215, 228–243.

    PubMed  CAS  Google Scholar 

  • Gilbert, P. (1975). How the cerebellum could memorise movements. Nature, 254, 688–689.

    PubMed  CAS  Google Scholar 

  • Gilbert, P.F. (1974). A theory of memory that explains the function and structure of the cerebellum. Brain Research, 70, 1–18.

    PubMed  CAS  Google Scholar 

  • Gormezano, I. (1966). Classical conditioning. In A.H. Black and W.F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 385–420). New York: McGraw-Hill.

    Google Scholar 

  • Gormezano, I., and Moore, J.W. (1969). Classical conditioning. In M.H. Marx (Ed.), Learning: processes. New York: Macmillan.

    Google Scholar 

  • Gormezano, I., Schneiderman, N., Deaux, E.G., and Fuentes, I. (1962). Nictitating membrane: classical conditioning and extinction in the albino rabbit. Science, 138, 34.

    Google Scholar 

  • Gormezano, I., Kehoe, E.J., and Marshall-Goodell, B. (1983). Twenty years of classical conditioning research with the rabbit. In J.M. Sprague and A.N. Epstein, (Eds.), Progress in psychobiology and physiological psychology (pp. 197–275). New York: Academic Press.

    Google Scholar 

  • Granit, R., and Phillips, C.G. (1956). Excitatory and inhibitory processes acting on individual Purkinje cells of the cerebellum in cats. Journal of Physiology (London), 133, 520–547.

    CAS  Google Scholar 

  • Gruart, A., and Yeo, C.H. (1995). Cerebellar cortex and eyeblink conditioning: bilateral regulation of conditioned responses. Experimental Brain Research, 104, 431–448.

    CAS  Google Scholar 

  • Gruart, A., Schreurs, B.G., del Toro, E.D., and Delgado-Garcia, J.M. (2000). Kinetic and frequency-domain properties of reflex and conditioned eyelid responses in the rabbit. Journal of Neurophysiology, 83, 836–852.

    PubMed  CAS  Google Scholar 

  • Hardiman, M.J., and Yeo, C.H. (1992). The effect of kainic acid lesions of the cerebellar cortex on the conditioned nictitating membrane response in the rabbit. European Jorunal of Neuroscience, 4, 966–980.

    Google Scholar 

  • Hardiman, M.J., Ramnani, N., and Yeo, C.H. (1996). Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit. Experimental Brain Research, 110, 235–247.

    CAS  Google Scholar 

  • Harvey, J.A., Land, T., and McMaster, S.E. (1984). Anatomical study of the rabbit’s corneal-VIth nerve reflex: connections between cornea, trigeminal sensory complex, and the abducens and accessory abducens nuclei. Brain Research, 301, 307–321.

    PubMed  CAS  Google Scholar 

  • Harvey, J.A., Welsh, J.P., Yeo, C.H., and Romano, A.G. (1993). Recoverable and nonre-coverable deficits in conditioned responses after cerebellar cortical lesions. Journal of Neuroscience, 13, 1624–1635.

    PubMed  CAS  Google Scholar 

  • Hesslow, G. (1986). Inhibition of inferior olivary transmission by mesencephalic stimulation in the cat. Neuroscience Letters, 63, 76–80.

    PubMed  CAS  Google Scholar 

  • Hesslow, G. (1994a). Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat. Journal of Physiology (London), 476, 245–256.

    CAS  Google Scholar 

  • Hesslow, G. (1994b). Correspondence between climbing fiber input and motor output in eyeblink-related areas in cat cerebellar cortex. Journal of Physiology (London), 476, 229–244.

    CAS  Google Scholar 

  • Hesslow, G. (1995). Classical conditioning of eyeblink in decerebrate cats and ferrets. In W.R. Ferrell and U. Proske (Eds.), Neural Control of Movement (pp. 117–122). New York: Plenum Press.

    Google Scholar 

  • Hesslow, G. (1996). Positive cerebellar feedback loops. Behavioral and Brain Sciences, 19, 455–456.

    Google Scholar 

  • Hesslow, G., and Ivarsson, M. (1994). Suppression of cerebellar Purkinje cells during conditioned responses in ferrets. Neuroreport, 5, 649–652.

    PubMed  CAS  Google Scholar 

  • Hesslow, G., and Ivarsson, M. (1996). Inhibition of the inferior olive during conditioned responses in the decerebrate ferret. Experimental Brain Research, 110, 36–46.

    CAS  Google Scholar 

  • Hesslow, G., Svensson, P., and Ivarsson, M. (1999). Learned movements elicited by direct stimulation of cerebellar mossy fiber afferents. Neuron, 24, 179–185.

    PubMed  CAS  Google Scholar 

  • Holstege, G., and Collewijn, H. (1982). The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. Journal of Comparative Neurology, 209, 139–175.

    PubMed  CAS  Google Scholar 

  • Holstege, G., and Tan, J. (1988). Projections from the red nucleus and surrounding areas to the brainstem and spinal cord in the cat. An HRP and autoradiographical tracing study. Behavioural Brain Research, 28, 33–57.

    PubMed  CAS  Google Scholar 

  • Holstege, G., Tan, J., van Ham, J.J., and Graveland, G.A. (1986a). Anatomical observations on the afferent projections to the retractor bulbi motoneuronal cell group and other pathways possibly related to the blink reflex in the cat. Brain Research, 374, 321–334.

    PubMed  CAS  Google Scholar 

  • Holstege, G., van Ham, J.J., and Tan, J. (1986b). Afferent projections to the orbicularis oculi motoneuronal cell group. An autoradiographical tracing study in the cat. Brain Research, 374, 306–320.

    PubMed  CAS  Google Scholar 

  • Houk, J.C., Buckingham, J.T., and Barto, A.G. (1996). Models of the cerebellum and motor learning. Behavioral Brain Science, 19, 368–383.

    Google Scholar 

  • Ito, M. (1972). Cerebellar control of the vestibular neurons: physiology and pharmacology. Progress in Brain Research, 37, 377–390.

    PubMed  CAS  Google Scholar 

  • Ito, M. (1982). Cerebellar control of the vestibulo-ocular reflex—around the flocculus hypothesis. Annual Review of Neuroscience, 5, 275–296.

    PubMed  CAS  Google Scholar 

  • Ito, M. (1984). The cerebellum and neuronal control. New York: Raven Press.

    Google Scholar 

  • Ito, M. (1998). Cerebellar learning in the vestibulo-ocular reflex. Trends in Cognition Science, 219, 321.

    Google Scholar 

  • Ivarsson, M., and Hesslow, G. (1993). Bilateral control of the orbicularis oculi muscle by one cerebellar hemisphere in the ferret. Neuroreport, 4, 1127–1130.

    Google Scholar 

  • Ivarsson, M., and Svensson, P. (2000). Conditioned eyeblink response consists of two distinct components. Journal of Neurophysiology, 83, 796–807.

    PubMed  CAS  Google Scholar 

  • Ivarsson, M., Svensson, P., and Hesslow, G. (1997). Bilateral disruption of conditioned responses after unilateral blockade of cerebellar output in the decerebrate ferret. Journal of Physiology (London), 502, 189–201.

    CAS  Google Scholar 

  • James, G.O., Hardiman, M.J., and Yeo, C.H. (1987). Hippocampal lesions and trace conditioning in the rabbit. Behavioural Brain Research, 23, 109–116.

    PubMed  CAS  Google Scholar 

  • Kamin, L.J. (1969). Predictability, surprise attention and conditioning. In B. Campbell and R. Church, (Eds.), Punishment and aversive behavior (pp. 279–296). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Kawamura, K. (1975). The pontine projection from the inferior colliculus in the cat. An experimental anatomical study. Brain Research, 95, 309–322.

    PubMed  CAS  Google Scholar 

  • Kemble, E.D., Albin, J.M., and Leonard, D.W. (1972). The effects of amygdaloid lesions on a classically conditioned auditory discrimination in the rabbit (Oryctalagus cuniculus). Psychonomic Science, 26, 43–44.

    Google Scholar 

  • Kim, J.J., Krupa, D.J., and Thompson, R.F. (1998). Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science, 279, 570–573.

    PubMed  CAS  Google Scholar 

  • Krupa, D.J., and Thompson, R.F. (1995). Inactivation of the superior cerebellar peduncle blocks expression but not acquisition of the rabbit’s classically conditioned eye-blink response. Proceedings of the National Academy of Sciences of the United States of America, 92, 5097–5101.

    PubMed  CAS  Google Scholar 

  • Krupa, D.J., Thompson, J.K., and Thompson, R.F. (1993). Localization of a memory trace in the mammalian brain. Science, 260, 989–991.

    PubMed  CAS  Google Scholar 

  • Larseil, O. (1970). The comparative anatomy and histology of the cerebellum from monotremes through apes. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Larseil, O., and Jansen, J. (1972). The comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections, and the cerebellar cortex. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Lavond, D.G., Hembree, T.L., and Thompson, R.F. (1985). Effect of kainic acid lesions of the cerebellar interpositus nucleus on eyelid conditioning in the rabbit. Brain Research, 326, 179–182.

    PubMed  CAS  Google Scholar 

  • Lavond, D.G., Steinmetz, J.E., Yokaitis, M.H., and Thompson, R.F. (1987). Reacquisition of classical conditioning after removal of cerebellar cortex. Experimental Brain Research, 67, 569–593.

    CAS  Google Scholar 

  • Llinas, R., and Welsh, J.P. (1993). On the cerebellum and motor learning. Current Opinion in Neurobiology, 3 958–965.

    PubMed  CAS  Google Scholar 

  • Llinas, R., and Yarom, Y. (1981). Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurons in vitro. Journal of Physiology (London), 315, 569–584.

    CAS  Google Scholar 

  • Llinas, R., Baker, R., and Sotelo, C. (1974). Electrotonic coupling between neurons in cat inferior olive. Journal of Neurophysiology, 37, 560–571.

    PubMed  CAS  Google Scholar 

  • Llinas, R., Lang, E.J., and Welsh, J.P. (1997). memory: alternative views. Learning & Memory, 3, 445–455.

    CAS  Google Scholar 

  • Loucks, R.B. (1933). Preliminary report of a technique for stimulation or destruction of tissue beneath the integument and the establishing of conditioned responses with faradization of the cerebral cortex. Journal of Comparative Physiology and Psychology, 16, 439–444.

    Google Scholar 

  • Loucks, R.B. (1935). The experimental delimitation of neural structures essential for learning. II. The conditioning of salivary and striped muscle responses to faradization of the sigmoid gyri. Journal of Psychology, 1, 5–44.

    Google Scholar 

  • Luciani, L. (1915). The hind-brain. In G.M. Holmes, (Ed.) Human physiology (pp. 419–485). London: MacMillan.

    Google Scholar 

  • Marchant, H.G., III, and Moore, J.W. (1973). Blocking of the rabbit’s conditioned nictitation response in Kamin’s two-stage paradigm. Journal of Experimental Psychology, 101, 155–158.

    PubMed  Google Scholar 

  • Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology (London), 202, 437–470.

    CAS  Google Scholar 

  • Mauk, M.D. (1997). Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues? Neuron, 18, 343–346.

    PubMed  CAS  Google Scholar 

  • Mauk, M.D., and Donegan, N.H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learning & Memory, 4, 130–158.

    CAS  Google Scholar 

  • Mauk, M.D., and Thompson, R.F. (1987). Retention of classically conditioned eyelid responses following acute decerebration. Brain Research, 403, 89–95.

    PubMed  CAS  Google Scholar 

  • Mauk, M.D., Steinmetz, J.E., and Thompson, R.F. (1986). Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proceedings of the National Academy of Sciences of the United States of America, 83, 5349–5353.

    PubMed  CAS  Google Scholar 

  • McCormick, D.A., and Thompson, R.F. (1984a). Cerebellum: essential involvement in the classically conditioned eyelid response. Science, 223, 296–299.

    PubMed  CAS  Google Scholar 

  • McCormick, D.A., and Thompson, R.F. (1984b). Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. Journal of Neuroscience, 4, 2811–2822.

    PubMed  CAS  Google Scholar 

  • McCormick, D.A., Clark, G.A., Lavond, D.G., and Thompson, R.F. (1982a). Initial localization of the memory trace for a basic form of learning. Proceedings of the National Academy of Sciences of the United States of America, 79, 2731–2735.

    PubMed  CAS  Google Scholar 

  • McCormick, D.A., Guyer, P.E., and Thompson, R.F. (1982b). Superior cerebellar peduncle lesions selectively abolish the ipsilateral classically conditioned nictitating membrane/eyelid response of the rabbit. Brain Research, 244, 347–350.

    PubMed  CAS  Google Scholar 

  • McCormick, D.A., Lavond, D.G., and Thompson, R.F. (1983). Neuronal responses of the rabbit brainstem during performance of the classically conditioned nictitating membrane (NM)/eyelid response. Brain Research, 271, 73–88.

    PubMed  CAS  Google Scholar 

  • McCormick, D.A., Steinmetz, J.E., and Thompson, R.F. (1985). Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Research, 359, 120–130.

    PubMed  CAS  Google Scholar 

  • Medina, J.F., and Mauk, M.D. (1999). Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse. Journal of Neuroscience, 19, 7140–7151.

    PubMed  CAS  Google Scholar 

  • Miles, F.A.,and Lisberger, S.G. (1981). Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annual Review of Neuroscience, 4, 273–299.

    PubMed  CAS  Google Scholar 

  • Miles, T.S., and Wiesendanger, M. (1975a). Organisation of climbing fiber projections to the cerebellar cortex from trigeminal cutaneous afferents and from the SI face area of the cat. Journal of Physiology (London), 245, 409–424.

    CAS  Google Scholar 

  • Miles, T.S., and Wiesendanger, M. (1975b). Climbing fiber inputs to cerebellar Purkinje cells from trigeminal cutaneous afferents and the SI face area of the cerebral cortex in the cat. Journal of Physiology (London), 245, 425–445.

    CAS  Google Scholar 

  • Montarolo, P.G., Palestini, M., and Strata, P. (1982). The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. Journal of Physiology (London), 332, 187–202.

    CAS  Google Scholar 

  • Moore, J.W., Yeo, C.H., Oakley, D.A., and Steele-Russell, I. (1980). Conditioned inhibition of the nictitating membrane response in decorticate rabbit. Behavioural Brain Research, 1, 397–409.

    PubMed  CAS  Google Scholar 

  • Moyer, J.R., Deyo, R.A., and Disterhoft, J.F. (1990). Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behavioral Neuroscience, 104, 243–252.

    PubMed  Google Scholar 

  • Nelson, B., and Mugnaini, E. (1989). Origins of GABA-ergic inputs to the inferior olive. In P. Strata (Ed.), The olivocerebellar system in motor control (pp. 86–107). Berlin: Springer.

    Google Scholar 

  • Nordholm, A.F., Thompson, J.K., Dersarkissian, C., and Thompson, R.F. (1993). Lidocaine infusion in a critical region of cerebellum completely prevents learning of the conditioned eyeblink response. Behavioral Neuroscience, 107, 882–886.

    PubMed  CAS  Google Scholar 

  • Norman, R.J., Villablanca, J.R., Brown, K.A., Schwafel, J.A., and Buchwald, J.A. (1974). Classical eyeblink conditioning in the bilaterally hemispherectomized cat. Experimental Neurology, 44, 363–380.

    PubMed  CAS  Google Scholar 

  • Oakley, D.A., and Russell, I.S. (1972). Neocortical lesions and Pavlovian conditioning. Physiology & behavior, 8, 915–926.

    CAS  Google Scholar 

  • Oakley, D.A., and Russell, I.S. (1975). Role of cortex in Pavlovian discrimination learning. Physiology & behavior, 15, 315–321.

    CAS  Google Scholar 

  • Oakley, D.A., and Russell, I.S. (1977). Subcortical storage of Pavlovian conditioning in the rabbit. Physiology & behavior, 18, 931–937.

    CAS  Google Scholar 

  • Oda, Y., Ito, M., Kishida, H., and Tsukahara, N. (1988). Formation of new cortico-rubral synapses as a possible mechanism for classical conditioning mediated by the red nucleus in cat. Journal of Physiology (Paris), 83, 207–216.

    Google Scholar 

  • Orr, W.B., and Berger, T.W. (1985). Hippocampectomy disrupts the topography of conditioned nictitating membrane responses during reversal learning. Behavioral Neuroscience, 99, 35–45.

    PubMed  CAS  Google Scholar 

  • Pananceau, M., Rispal-Padel, L., and Meftah, E.M. (1996). Synaptic plasticity of the inter-positorubral pathway functionally related to forelimb flexion movements. Journal of Neurophysiology, 75, 2542–2561.

    PubMed  CAS  Google Scholar 

  • Patterson, M.M., Cegavske, C.F., and Thompson, R.F. (1973). Effects of a classical conditioning paradigm on hind-limb flexor nerve response in immobilized spinal cats. Journal of Comparative Physiology and Psychology, 84, 88–97.

    CAS  Google Scholar 

  • Pellegrini, J.J., Horn, A.K., and Evinger, C. (1995). The trigeminally evoked blink reflex. I. Neuronal circuits. Experimental Brain Research, 107, 166–180.

    CAS  Google Scholar 

  • Perrett, S.P., and Mauk, M.D. (1995). Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex. Journal of Neuroscience, 15, 2074–2080.

    PubMed  CAS  Google Scholar 

  • Perrett, S.P., Ruiz, B.P., and Mauk, M.D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. Journal of Neuroscience, 13, 1708–1718.

    PubMed  CAS  Google Scholar 

  • Popov, N.F. (1929). The role of the cerebellum in elaborating the motor conditioned reflexes. In D.S. Fursikov, M.O. Gurevich and A.N. Zalmanzon, (Eds.), Higher Nervous Activity (pp. 140–148). Moscow: Communist Academic Press.

    Google Scholar 

  • Port, R.L., Romano, A.G., Steinmetz, J.E., Mikhail, A.A., and Patterson, M.M. (1986). Retention and acquisition of classical trace conditioned responses by rabbits with hippocampal lesions. Behavioral Neuroscience, 100, 745–752.

    PubMed  CAS  Google Scholar 

  • Port, R.L., Beggs, A.L., and Patterson, M.M. (1987). Hippocampal substrate of sensory associations. Physiology & behavior, 39, 643–647.

    CAS  Google Scholar 

  • Ramnani, N., and Yeo, C.H. (1996). Reversible inactivations of the cerebellum prevent the extinction of conditioned nictitating membrane responses in rabbits. Journal of Physiology (London), 495, 159–168.

    CAS  Google Scholar 

  • Rawson, J.A., and Tilokskulchai, K. (1981). Suppression of simple spike discharges of cerebellar Purkinje cells by impulses in climbing fiber afferents. Neuroscience Letters, 25, 125–130.

    PubMed  CAS  Google Scholar 

  • Raymond, J.L., Lisberger, S.G., and Mauk, M.D. (1996). The cerebellum: a neuronal learning machine? Science, 272, 1126–1131.

    PubMed  CAS  Google Scholar 

  • Rosenfield, M.E., and Moore, J.W. (1983). Red nucleus lesions disrupt the classically conditioned nictitating membrane response in rabbits. Behavioural Brain Research, 10, 393–398.

    PubMed  CAS  Google Scholar 

  • Rosenfield, M.E., and Moore, J.W. (1995). Connections to cerebellar cortex (Larsell’s HVI) in the rabbit: a WGA-HRP study with implications for classical eyeblink conditioning. Behavioral Neuroscience, 109, 1106–1118.

    PubMed  CAS  Google Scholar 

  • Rosenfield, M.E., Dovydaitis, A., and Moore, J.W. (1985). Brachium conjunctivum and rubrobulbar tract: brain stem projections of red nucleus essential for the conditioned nictitating membrane response. Physiology & behavior, 34, 751–759.

    CAS  Google Scholar 

  • Ross, R.T., Orr, W.B., Holland, P.C., and Berger, T.W. (1984). Hippocampectomy disrupts acquisition and retention of learned conditional responding. Behavioral Neuroscience, 98, 211–225.

    PubMed  CAS  Google Scholar 

  • Schmaltz, L.W., and Theios, J. (1972). Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). Journal of Comparative and Physiological Psychology, 79, 328–333.

    PubMed  CAS  Google Scholar 

  • Schreurs, B.G. (1989). Classical conditioning of model systems: a behavioral review. Psychobiology, 17, 145–155.

    Google Scholar 

  • Scoville, W.B., and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, 20, 11–21.

    CAS  Google Scholar 

  • Sears, L.L., and Steinmetz, J.E. (1991). Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Research, 545, 114–122.

    PubMed  CAS  Google Scholar 

  • Shinoda, Y., Sugiuchi, Y., Futami, T., and Izawa, R. (1992). Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. Journal of Neurophysiology, 67, 547–560.

    PubMed  CAS  Google Scholar 

  • Simpson, J.I., Wylie, D.R., and De Zeeuw, C.I. (1996). On climbing fiber signals and their consequences. Behavioural Brain Science, 19, 384–398.

    Google Scholar 

  • Smith, A.M. (1970). The effects of rubral lesions and stimulation on conditioned forelimb flexion responses in the cat. Physiology & behavior, 5, 1121–1126.

    CAS  Google Scholar 

  • Smith, A M. (1996). Does the cerebellum learn strategies for the optimal time-varying control of joint stiffness? Behavioural Brain Science, 19, 399–410.

    Google Scholar 

  • Smith, M.C., DiLollo, V., and Gormezano, I. (1966). Conditioned jaw movement in the rabbit. Journal of Comparative Physiology and Psychology, 62, 479–483.

    Google Scholar 

  • Solomon, P.R. (1977). Role of the hippocampus in blocking and conditioned inhibition of the rabbit’s nictitating membrane response. Journal of Comparative and Physiological Psychology, 91, 407–417.

    PubMed  CAS  Google Scholar 

  • Solomon, P.R., and Moore, J.W. (1975). Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following dorsal hippocampal ablation. Journal of Comparative and Physiological Psychology, 89, 1192–1203.

    PubMed  CAS  Google Scholar 

  • Solomon, P.R., Van der Schaaf, E.R., Thompson, R.F., and Weisz, D.J. (1986). Hippocampus and trace conditioning of the rabbit’s classically conditioned nictitating membrane response. Behavioral Neuroscience, 100, 729–744.

    PubMed  CAS  Google Scholar 

  • Sotelo, C., Llinas, R., and Baker, R. (1974). Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. Journal of Neurophysiology, 37, 541–559.

    PubMed  CAS  Google Scholar 

  • Steinmetz, J.E., Rosen, D.J., Chapman, P.F., Lavond, D.G., and Thompson, R.F. (1986a). Classical conditioning of the rabbit eyelid response with a mossy-fiber stimulation CS: I. Pontine nuclei and middle cerebellar peduncle stimulation. Behavioral Neuroscience, 100, 878–887.

    PubMed  CAS  Google Scholar 

  • Steinmetz, J.E., Rosen, D.J., Woodruff, P.D., Lavond, D.G., and Thompson, R.F. (1986b). Rapid transfer of training occurs when direct mossy fiber stimulation is used as a conditioned stimulus for classical eyelid conditioning. Neuroscience Research, 3, 606–616.

    PubMed  CAS  Google Scholar 

  • Steinmetz, J.E., Lavond, D.G., and Thompson, R.F. (1989). Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse, 3, 225–233.

    PubMed  CAS  Google Scholar 

  • Steinmetz, J.E., Lavond, D.G., Ivkovich, D., Logan, C.G., and Thompson, R.F. (1992). Disruption of classical eyelid conditioning after cerebellar lesions: damage to a memory trace system or a simple performance deficit? Journal of Neuroscience, 12, 4403–4426.

    PubMed  CAS  Google Scholar 

  • Svensson, P., and Ivarsson, M. (1999). Short-lasting conditioned stimulus applied to the middle cerebellar peduncle elicits delayed conditioned eye blink responses in the decerebrate ferret. European Journal of Neuroscience, 11, 4333–4340.

    PubMed  CAS  Google Scholar 

  • Svensson, P., Ivarsson, M., and Hesslow, G. (1997). Effect of varying the intensity and train frequency of forelimb and cerebellar mossy fiber conditioned stimuli on the latency of conditioned eye-blink responses in decerebrate ferrets. Learning & Memory, 4, 105–115.

    CAS  Google Scholar 

  • Swain, R.A., Shinkman, P.G., Nordholm, A.F., and Thompson, R.F. (1992). Cerebellar stimulation as an unconditioned stimulus in classical conditioning. Behavioral Neuroscience, 106, 739–750.

    PubMed  CAS  Google Scholar 

  • Thach, W.T. (1996). On the specific role of the cerebellum in motor learning cognition: clues from PET activation and lesion studies in man. Behavioral and Brain Sciences, 19, 411–431.

    Google Scholar 

  • Thompson, R.F. (1976). The search for the engram. American Psychologist, 31, 209–227.

    PubMed  CAS  Google Scholar 

  • Tsukahara, N. (1981). Synaptic plasticity in the mammalian central nervous system. Annual Review of Neuroscience, 4, 351–379.

    PubMed  CAS  Google Scholar 

  • Tsukahara, N., and Bando, T. (1970). Red nuclear and interposate nuclear excitation of pontine nuclear cells. Brain Research, 19, 295–298.

    PubMed  CAS  Google Scholar 

  • Tsukahara, N., Bando, T., Kitai, S.T., and Kiyohara, T. (1971). Cerebello-pontine reverbearating circuit. Brain Research, 33, 233–237.

    PubMed  CAS  Google Scholar 

  • Tsukahara, N., Hultborn, H., Murakami, F., and Fujito, Y. (1975). Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation. Journal of Neurophysiology, 38, 1359–1372.

    PubMed  CAS  Google Scholar 

  • Tsukahara, N., Oda, Y., and Notsu, T. (1981). Classical conditioning mediated by the red nucleus in the cat. Journal of Neurosciences, 1, 72–79.

    CAS  Google Scholar 

  • Tyrell, T., and Willshaw, D. (1992). Cerebellar cortex: its simulation and the relevance of Marr’s theory. Philosophical Transactions of the Royal Society of London, 336, 239–257.

    Google Scholar 

  • van Ham, J.J., and Yeo, C.H. (1992). Somatosensory trigeminal projections to the inferior olive, cerebellum and other precerebellar nuclei in rabbits. European Journal of Neuroscience, 4, 317.

    Google Scholar 

  • van Ham, J.J., and Yeo, C.H. (1996a). cornea in the rabbit, studied using WGA-HRP and B-HRP as transganglionic tracers. Experimental Neurology, 142, 217–225.

    PubMed  Google Scholar 

  • van Ham, J.J., and Yeo, C.H. (1996b). Trigeminal inputs to eyeblink motoneurons in the rabbit. Experimental Neurology, 142, 244–257.

    PubMed  Google Scholar 

  • Voogd, J. (1992). The morphology of the cerebellum the last 25 years. European Journal of Morphology, 30, 81–96.

    PubMed  CAS  Google Scholar 

  • Voogd, J., and Glickstein, M. (1998). The anatomy of the cerebellum. Trends in Neuroscience, 21, 370–375.

    CAS  Google Scholar 

  • Watson, J.B. (1916). The place of the conditioned reflex in psychology. Psychological Review, 23, 89–117.

    Google Scholar 

  • Weiskrantz, L., and Warrington, E.K. (1979). Conditioning in amnesic patients. Neuropsychologia, 17, 187–194.

    PubMed  CAS  Google Scholar 

  • Wells, G.R., Hardiman, M.J., and Yeo, C.H. (1989). Visual projections to the pontine nu-clei in the rabbit: orthograde and retrograde tracing studies with WGA-HRP. Journal of Comparative Neurology, 279, 629–652.

    PubMed  CAS  Google Scholar 

  • Welsh, J.P., and Harvey, J.A. (1989). Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response. Journal of Neuroscience, 9, 299–311.

    PubMed  CAS  Google Scholar 

  • Welsh, J.P., and Harvey, J.A. (1991). Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. Journal of Physiology (London), 444, 459–480.

    CAS  Google Scholar 

  • Welsh, J.P., and Harvey, J.A. (1992). The role of the cerebellum in voluntary and reflexive movements: history and current status. In R. Llinas and C. Sotelo (Eds.), The cerebellum revisited (pp. 301–334). New York: Springer-Verlag.

    Google Scholar 

  • Welsh, J.P., and Harvey, J.A. (1998). Acute inactivation of the inferior olive blocks associative learning. European Journal of Neuroscience, 10, 3321–3332.

    PubMed  CAS  Google Scholar 

  • Woodruff-Pak, D.S., Lavond, D.G., and Thompson, R.F. (1985). Trace conditioning: abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Research, 348, 249–260.

    PubMed  CAS  Google Scholar 

  • Woody, C.D. (1970). Conditioned eye-blink: Gross potential activity at coronal-pericruciate cortex of the cat. Journal of Neurophysiology, 33, 838–850.

    PubMed  CAS  Google Scholar 

  • Woody, C.D. (1982). Memory, learning and higher function. New York: Springer-Verlag.

    Google Scholar 

  • Yeo, C.H. (1989). The inferior olive and classical conditioning. In P. Strata (Ed.), The olivocerebellar system in motor control (pp. 363–373). Berlin: Springer.

    Google Scholar 

  • Yeo, C.H., and Hardiman, M.J. (1992). Cerebellar cortex and eyeblink conditioning: a reexamination. Experimental Brain Research, 88, 623–638.

    CAS  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., and Glickstein, M. (1984). Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behavioural Brain Research, 13, 261–266.

    PubMed  CAS  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., and Glickstein, M. (1985a). Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Experimental Brain Research, 60, 87–98.

    CAS  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., and Glickstein, M. (1985b). Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Experimental Brain Research, 60, 99–113.

    CAS  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., and Glickstein, M. (1985c). Classical conditioning of the nictitating membrane response of the rabbit. III. Connections of cerebellar lobule HVI. Experimental Brain Research, 60, 114–126.

    CAS  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., and Glickstein, M. (1985d). Classical conditioning of the nictitating membrane response of the rabbit. III. Connections of cerebellar lobule HVI. Experimental Brain Research, 60, 114–126.

    CAS  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., and Glickstein, M. (1986). Classical conditioning of the nictitating membrane response of the rabbit. IV. Lesions of the inferior olive. Experimental Brain Research, 63, 81–92.

    CAS  Google Scholar 

  • Yeo, C.H., Lobo, D.H., and Baum, A. (1997). Acquisition of a new-latency conditioned nictitating membrane response—major, but not complete, dependence on the ipsilateral cerebellum. Learning & Memory, 3, 557–577.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hesslow, G., Yeo, C.H. (2002). The Functional Anatomy of Skeletal Conditioning. In: Moore, J.W. (eds) A Neuroscientist’s Guide to Classical Conditioning. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8558-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8558-3_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98805-4

  • Online ISBN: 978-1-4419-8558-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics