Skip to main content

Convection Heat Transfer in Electronic Equipment

  • Chapter
Book cover Advanced Thermal Design of Electronic Equipment

Abstract

Of the three modes of heat transfer (conduction, convection, and radiation), the convection mode has the most varied applications. Convection is actually the result of two energy transfer mechanisms: fluid motion and molecular motion. The molecular motion at the heat transfer interface is the result of conduction through the stagnant thermal boundary layer. Heat transfer through this layer is based upon Fourier’s Law [1], ΔT=qL/KA c . In convective heat transfer the engineer is faced with estimating the heat transfer coefficient, h c , for a surface. Usually this coefficient comes from texts of empirical formulas, which are based on actual experiments and observations. We cannot calculate the heat transfer coefficient exactly because we can analytically solve only the differential equations governing convection for the simplest flows and geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fourier, J., The Physical Theory of Heat, Dover Publications, New York, 1955. (Originally published in 1822.)

    Google Scholar 

  2. Nusselt, E. W. H., VDIZ, Germany, 53 1750, 1905.

    Google Scholar 

  3. Colburn, A. P., “A Method of Correlating Heat Transfer Data and a Comparison with Fluid Friction.” Trans. AIChE, 29, 174, 1933.

    Google Scholar 

  4. Eckert, E. R. G., “Engineering Relations for Heat Transfer and Friction in High Velocity Laminar and Turbulent Boundary Layer Flow over Surfaces with Constant Pressure and Temperature,” Trans. ASME, 78, 1273–1284, 1956.

    Google Scholar 

  5. Kraus, A. D., and Bar-Cohen, A., Design and Analysis of Heat Sinks, Wiley-Inter-science, New York, 287, 1995.

    Google Scholar 

  6. Elenbaas, M., “Heat Dissipation of Parallel Plates by Free Convection.” Physica, 9, 1, 1942.

    Article  Google Scholar 

  7. Prandtl, L., Essentials of Fluid Dynamics, Blackie, London, p. 413, 1952.

    MATH  Google Scholar 

  8. Lewis, G. W., J Roy. Aero. Soc, Great Britain, 43, 771, 1939.

    Google Scholar 

  9. Letter Symbols for Chemical Engineering, American Standards Association, y 10.12, p. 9, 1955.

    Google Scholar 

  10. Sherwood. T. K., Pigford, R. L., and Wilkie, C. R., Mass Transfer, McGraw-Hill, New York, 1975.

    Google Scholar 

  11. Edwards, D. K., Denny, V. E., and Mills, A. F., Transfer Processes, 2nd edition, Hemisphere, Washington, D. C., 1979.

    Google Scholar 

  12. Mills, A. F., “Experimental Investigation of Turbulent Heat Transfer in the Entrance Region of a Circular Conduit,” J. Mech. Eng. Sci., 4, 63–77, 1962.

    Article  Google Scholar 

  13. Swearingen, T. W., and McEligot, D. M., “Internal Laminar Heat Transfer with Gas Property Variation,” Trans. ASME, Ser. C, J. Heat Transfer, 93, 432–140, 1971.

    Article  Google Scholar 

  14. Prandtl, L., “Bericht uber Untersuchungen zur ausgebildeten Turbulenz,” ZAMM, 5, 136, 1925.

    MATH  Google Scholar 

  15. Moody, L. F., “Friction Factors for Pipe Flow.” Trans. ASME, 66, 671, 1944.

    Google Scholar 

  16. Chilton, T. H., and Colburn, A. P., Ind. Eng. Chem., 26, 1183, 1934.

    Article  Google Scholar 

  17. Dittus, F. W, and Boelter, L. M. K., University of California Publications of Engineering, Vol. 2, p. 443, Berkeley, CA, 1930.

    Google Scholar 

  18. Sieder, E. N., and Tate, G. E., Ind. Eng. Chem., 28, 1429, 1936. “Heat Transfer and Pressure Drop of Liquids in Tubes.”

    Article  Google Scholar 

  19. Gnielinski, V., New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow.” Int. Chem. Eng., 16, 359, 1976.

    Google Scholar 

  20. Shah, R. K., and London, A. L., Laminar Flow Forced Convection in Ducts, Academic Press, New York, 1978.

    Google Scholar 

  21. Kays, W. M., and Crawford, M. E., Convective Heat and Mass Transfer, McGrawHill, New York, 1980.

    Google Scholar 

  22. Campbell, D. A., and Perkins, H. C., “Variable Property Turbulent Heat and Momentum Transfer for Air in a Vertical Round-Corner, Triangular Duct,” Int. J. Heat Mass Transfer, 11, 1003–1013, 1968.

    Article  Google Scholar 

  23. Perkins, K. R., Shade, K. W., and McEligot, D. M., “Heated Laminarizing Gas Flow in a Square Duct,” Int. J. Heat Mass Transfer, 16, 897–916, 1973.

    Article  Google Scholar 

  24. Carnavos, T. C., “Cooling Air in Turbulent Flow with Internally Finned Tubes,” Heat Transfer Eng., 1, 43–46, 1979.

    Article  Google Scholar 

  25. Kreith, F., and Bohn, M. S., Principles of Heat Transfer, 4th edition, Harper & Row, New York, p. 328, 1986.

    Google Scholar 

  26. Pohlhausen, E., Z. “Der Wärmeaustausch zwischen festen Könpern und Flüssigkeiten mit Kleiner Reibung und Kleiner Wärmeleitung.” Angew. Math. Mech., 1, 115, 1921.

    Article  MATH  Google Scholar 

  27. Churchill, S. W., and Ozoe, H. J., Heat Transfer, 95, 78, 1973.

    Article  Google Scholar 

  28. Schlichting, H., Boundary Layer Theory, 6th edition, McGraw-Hill, New York, 1968.

    Google Scholar 

  29. White, F. M., Viscous Fluid Flow, McGraw-Hill, New York, 1974.

    MATH  Google Scholar 

  30. von Kármán, T., “The Analogy Between Fluid Friction and Heat Transfer,” Trans. ASME, 61, 705–710, 1939.

    Google Scholar 

  31. Squire, H. B., Modern Developments in Fluid Dynamics, 3rd edition, Vol. 2, Clarendon, Oxford, (1950).

    Google Scholar 

  32. Giedt, W. H., “Investigation of Variation of Point Unit-Heat-Transfer Coefficient Around a Cylinder Normal to an Airstream,” Trans. ASME, 71, 375–381, 1949.

    Google Scholar 

  33. Hilpert, R., “Wärmeabgue von Geheizten Drähten und Rohren im Lufstrom,” Forsch. Geb. Ingenieurwes., 4, 215, 1933.

    Article  Google Scholar 

  34. Zukauskas, A.A., “Heat Transfer from Tubes in Cross Flow,” in J. P. Hartnett and T. F. Irvine, Jr., Eds., Advances in Heat Transfer, Vol. 8, Academic Press, New York, pp. 93–108, 1972.

    Google Scholar 

  35. Quarmby, A, and Al-Fakhri, A. A. M., “Effect of Finite Length on Forced Convection Heat Transfer from Cylinders,” Int. J. Heat Mass Transfer, 23, 463–469, 1980.

    Article  Google Scholar 

  36. Yardi, N. R., and Sukhatme, S. P., “Effects of Turbulence Intensity and Integral Length Scale of a Turbulent Free Stream on Forced Convection Heat Transfer from a Circular Cylinder in Crossflow,” Proc. 6th Int. Heat Transfer Conf., Hemisphere, Washington, D. C., 1978.

    Google Scholar 

  37. Nakai, S., and Okazaki, T., “Heat Transfer from a Horizontal Circular Wire at Small Reynolds and Grashof Numbers-I. Pure Convection,” Int. J. Heat Mass Transfer, 18, 387–396, 1975.

    Article  MATH  Google Scholar 

  38. Churchill, S. W., and Bernstein, M., J. Heat Transfer, 99, 300, 1977.

    Article  Google Scholar 

  39. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, 2nd Edition, John Wiley, New York, 1962. (Equation rewritten by Mills, A. F., Heat and Mass Transfer, Irwin, Chicago, 1995.)

    Google Scholar 

  40. Whitaker, S., “Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles,” AIChE J., 18, 361–271, 1972.

    Article  Google Scholar 

  41. Jacob, M., Heat Transfer, Vol. 1, John Wiley, New York, 1949.

    Google Scholar 

  42. Obasaju, E. D., “On the Effects of End Plates on the Mean Forces on Square Sectioned Cylinders,” J. Indust. Aerodynom., 4, 179–186, 1979.

    Article  Google Scholar 

  43. Delany, N. K., and Sorensen, N. E., “Low Speed Drag of Cylinders of Various Shapes,” NAC A Technical Note 3038, Ames Aeronautical Laboratory, Moffet Field, CA, 1953.

    Google Scholar 

  44. Mahrenholtz, O., and Bardowicks, H., “Aeroelastic Problems at Masts and Chimneys,” J. Indust. Aerodynam., 4, 261–272, 1979.

    Article  Google Scholar 

  45. Courchesne, J., and Lanville, A., “A Comparison of Correction Methods Used in the Evaluation of Drag Coefficient Measurements for Two-Dimensional Rectangular Cylinders,” J. Fluids Eng., 101, 506–510, 1979.

    Article  Google Scholar 

  46. Dipprey, D. F., and Sabersky, R. H., “Heat and Momentum Transfer in Smooth and Rough Tubes at Various Prandtl Numbers,” Int. J. Heat Mass Transfer, 6, 239–353, 1963.

    Article  Google Scholar 

  47. Sparrow, E. M., Yanezinoreno, A., and Otis, D. R., “Convective Heat Transfer Response to Height Differences in an Array of Block-Like Electronic Components,” Int. J. Heat Mass Transfer, 27, 1984.

    Google Scholar 

  48. Wills, M., “Thermal Analysis of Air-Cooled PCBs,” pt. 1, Electron. Prod., 11–18, 5/1983.

    Google Scholar 

  49. Sparrow, E. M., and Ramsey, J. W., “Heat Transfer and Pressure Drop for a Staggered Wall-Attached Array of Cylinders with Tip Clearances,” Int. J. Heat Mass Transfer, 21, 1369, 1978.

    Article  Google Scholar 

  50. Martin, H., “Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces,” in J. P. Hartnett and T. F Irvine, Jr., Eds., Advanced in Heat Transfer, Vol. 13, Academic Press, New York, 1977.

    Google Scholar 

  51. Boussinesq, J., Essai sur la Théorie des Equaux Courantes, Mem. Préséntes Acad. Sci., Paris, 23, 46, 1877.

    Google Scholar 

  52. Gebhart, B., Heat Transfer, 2nd Edition, Chap. 8, McGraw-Hill, New York, 1970.

    Google Scholar 

  53. Hilpert, R., “Wärmeabgue von Geheizten Drähten und Rohren im Lufstrom,” Forsch. Arbriten Ing. Wesen., 4, pp. 215–224, 1933.

    Article  Google Scholar 

  54. Churchill, S. W, and Chu, H. H. S., “Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate,” Int. J. Heat Mass Transfer, 18, 1323, 1975.

    Article  Google Scholar 

  55. Eckert, E. R. G., and Jackson, T. W., “Analysis of Turbulent Free Convection Boundary Layer on a Flat Plate,” NACA TR-1015, 7/1950.

    Google Scholar 

  56. Brown, A. I., and Marco, S. M., Introduction to Heat Transfer, 2nd edition, McGraw-Hill, New York, p. 136, 1951.

    Google Scholar 

  57. Bar-Cohen, A., and Rohsenow, M. M., “Thermally Optimum Spacing of Vertical Natural Convection Cooled Parallel Plates, J. Heat Transfer, 106, 116, 1984.

    Article  Google Scholar 

  58. Rich, B. R., “An Investigation of Heat Transfer from an Inclined Flat Plate in Free Convection,” Trans. ASME, 75, 489, 1953.

    Google Scholar 

  59. McAdams, W. H., Heat Transmission, 3rd edition, McGraw-Hill, New York, Chap. 7, 1954.

    Google Scholar 

  60. Nikuradse, J., “Strömungsgesetzein Rauhen Rohren, Forsch. Arbriten Ing. Wesen., 361, 1–22, 1933.

    Google Scholar 

  61. Hatfield, D. W., and Edwards, D. K., “Edge and Aspect Ratio Effects on Natural Convection from the Horizontal Heated Plate Facing Downwards,” Int. J. Heat Mass Transfer, 24, 1019–1024, 1981. (As presented in Mills, A. F., Heat and Mass Transfer, Irwin, Chicago, p. 296, 1995)

    Article  Google Scholar 

  62. Steinberg, D. S., Cooling Techniques for Electronic Equipment, 2nd edition, Wiley-Interscience, New York, p. 103, 1991.

    Google Scholar 

  63. Globe. S., and Dropkin, D., “Natural Convection Heat Transfer in Liquids Confined Between Two Horizontal Plates,” J. Heat Transfer, 81C, 24, 1959.

    Google Scholar 

  64. Hollands, K. G. T., Raithby, G. D., and Konicek, L., “Correlation Equations for Free Convection Heat Transfer in Horizontal Layers of Air and Water,” Int. J. Heat Mass Transfer, 18, 879–884, 1975.

    Article  Google Scholar 

  65. Catton, I., “Natural Convection in Enclosures,” Proc. 6th Int. Heat Transfer Conf., Vol. 6, Toronto, Canada, pp. 13–31, 1978.

    Google Scholar 

  66. MacGregor, R. K., and Emery, A. P., “Free Convection through Vertical Plane Layers: Moderate and High Prandtl Number Fluids,” J. Heat Transfer, 91, 391, 1969.

    Article  Google Scholar 

  67. Hollands, K. G. T., Unny, S. E., Raithby, G. D., and Konicek, L., “Free Convective Heat Transfer across Inclined Air Layers,” J. Heat Transfer, 98, 189, 1976.

    Article  Google Scholar 

  68. Ayyaswamy, P. S., and Catton, I., “The Boundary-Layer Regime for Natural Convection in a Differentially Heated, Tilted Rectangular Cavity,” J. Heat Transfer, 95, 543, 1973.

    Article  Google Scholar 

  69. Arnold, J. N., Catton, I., and Edwards, D. K., “Experimental Investigation of Natural Convection in Inclined Rectangular Regions of Differing Aspect Ratios,” ASME Paper, 75-HT-62, 1975.

    Google Scholar 

  70. Al-Arabi, M., and Khamis, M., “Natural Convection Heat Transfer from Inclined Cylinders,” Int. J. Heat Mass Transfer, 25, 3–15, 1982.

    Article  Google Scholar 

  71. Sparrow, E. M., and Gregg, J. L., “Laminar free Convection Heat Transfer from the Outer Surface of a Vertical Circular Cylinder,” Trans. ASME, 78, 1823, 1956.

    Google Scholar 

  72. LeFevre, E. J., and Ede, A. J., “Laminar Free Convection from the Outer Surface of a Vertical Circular Cylinder,” Proc. 9th Int. Congr. Appl. Mech., Brussels, Vol. 4, pp. 175–183, 1956.

    Google Scholar 

  73. Yuge, T., “Experiments on Heat Transfer from Spheres Including Combined Natural and Forced Convection,” Trans. ASME Ser. C, J. Heat Transfer, 82, 214–220, 1960.

    Article  Google Scholar 

  74. Churchill, S. W., “Free Convection Around Immersed Bodies,” Hemisphere Heat Exchanger Design Handbook, G. F. Hewitt, Ed., Hemisphere, Washington, D. C., 2.5.7, 1990.

    Google Scholar 

  75. Oosthuizen P. H., and Donaldson, E., “Free Convection Heat Transfer from Vertical Cones,” Trans. ASME, Ser. C, J. Heat Transfer, 94, 330–331, 1972.

    Article  Google Scholar 

  76. Oosthuizen P. H., “Free Convection Heat Transfer from Horizontal Cones,” J. Heat Transfer, 95, 409, 1973.

    Article  Google Scholar 

  77. Al-Arabi, M., and El-Rafaee, M. M., “Heat Transfer by Natural Convection from Corrugated Plates to Air,” Int. J. Heat Mass Transfer, 21, 357, 1978.

    Article  Google Scholar 

  78. Lienhard, J. H., “On the Commonality of Equations for Natural Convection From Immersed Bodies,” Int. J. Heat Mass Transfer, 16, 2121–2123, 1973.

    Article  Google Scholar 

  79. Bilitzky, A., “The Effect of Geometry on Heat Transfer by Convection from a PinFin Array,” MS Thesis, Dept. Mech. Eng., Ben-Gurion University, Beer Sheva, Israel, 1986.

    Google Scholar 

  80. Zografos, A. I., and Sunderland, J. E., “Natural Convection from Pin Fins,” Exp. Thermal Fluid Sci., 3, 440–449, 1990.

    Article  Google Scholar 

  81. Zografos, A. I., and Sunderland, J. E., “Numerical Simulation of Natural Convection from Pin-Fin Arrays,” ASME HTD-157, 55–66, 1990.

    Google Scholar 

  82. Sparrow, E. M., and Vemuri, S. B., “Orientation Effects on Natural Convection/Radiation Heat Transfer from Pin-Fin Arrays,” Int. J. Heat Mass Transfer, 29, 3, 359–368, 1986.

    Article  Google Scholar 

  83. Aihara, T., Maruyama, S., and Kobayakawa, S., “Free Convective/Radiative Heat Transfer from Pin-Fin Arrays with a Vertical Base Plate (General Representation of Heat Transfer Performance),“ Int. J Heat Mass Trans., 33, 1223–1232, 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Remsburg, R. (1998). Convection Heat Transfer in Electronic Equipment. In: Advanced Thermal Design of Electronic Equipment. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8509-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8509-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4633-3

  • Online ISBN: 978-1-4419-8509-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics