Skip to main content

Single Molecule Detection with an Aptamer-Integrated Nanopore

  • Chapter
  • First Online:
Nanopores
  • 1241 Accesses

Abstract

Aptamers, also called “synthetic” antibodies, are a broad class of engineered oligonucleotides that can specifically bind targets with high affinity. Upon binding, these powerful molecules can form complex three-dimensional structures and possess sophisticated functions to inhibit pathogen protein, catalyze chemical reactions, controlling gene expression, and regulate cellular functions. These can be therefore potentially applied as tools for exploring biological systems and medical diagnosis. Nanopore detection technology, on the other hand, can “visually” capture the dynamic binding of a single molecule to a ligand in a nanometer-scaled pore through the discrete changes in conductance upon binding. This ability to track single molecule kinetics has made the nanopore a promising single molecule detector. This chapter will be focused on the use of nanopores as a research tool that can be combined with laboratory nanofabrication, bio-friendly surface engineering and site-directed protein engineering to understand aptamer folding process, the interaction between a single aptamer and its target, and to develop aptamer-encoded nanopore sensors for medical and bio-defense detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberti, P. & Mergny, J.L. (2003) DNA duplex-quadruplex exchange as the basis for a nanomolecular machine Proceedings of the National Academy of Sciences of the United States of America 100:1569–1573.

    Google Scholar 

  2. Arthanari, H. & Bolton, P.H. (2001) Functional and dysfunctional roles of quadruplex DNA in cells Chemistry & Biology 8:221–230.

    Google Scholar 

  3. Ashkenasy, N., Sanchez-Quesada, J., Bayley, H. & Ghadiri, M.R. (2005) Recognizing a single base in an individual DNA strand: A step toward DNA sequencing in nanopores Angewandte Chemie-International Edition 44:1401–1404.

    Google Scholar 

  4. Baskerville, S., Zapp, M. & Ellington, A.D. (1999) Anti-Rex aptamers as mimics of the Rex-binding element Journal of Virology 73:4962–4971.

    Google Scholar 

  5. Bayley, H. & Cremer, P.S. (2001) Stochastic sensors inspired by biology Nature 413:226–230.

    Google Scholar 

  6. Bayley, H. et al. (2008) Droplet interface bilayers Mol. Biosyst. 4:1191–1208.

    Google Scholar 

  7. Bayley, H. & Jayasinghe, L. (2004) Functional engineered channels and pores - (Review) Molecular Membrane Biology 21:209–220.

    Google Scholar 

  8. Bezrukov, S.M., Vodyanoy, I. & Parsegian, V.A. (1994) Counting polymers moving through a single ion channel Nature 370:279–281.

    Google Scholar 

  9. Bock, C. et al. (2004) Photoaptamer arrays applied to multiplexed proteomic analysis Proteomics 4:609–618.

    Google Scholar 

  10. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. & Toole, J.J. (1992) Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin Nature 355:564–566.

    Google Scholar 

  11. Braha, O., Gu, L.Q., Zhou, L., Lu, X.F., Cheley, S. & Bayley, H. (2000) Simultaneous stochastic sensing of divalent metal ions Nature Biotechnology 18:1005–1007.

    Google Scholar 

  12. Breaker, R.R. (2004) Natural and engineered nucleic acids as tools to explore biology Nature 432:838–845.

    Google Scholar 

  13. Brody, E.N., Willis, M.C., Smith, J.D., Jayasena, S., Zichi, D. & Gold, L. (1999) The use of aptamers in large arrays for molecular diagnostics Molecular Diagnosis 4:381–388.

    Google Scholar 

  14. Bruno, J.G. & Kiel, J.L. (1999) In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection Biosensors & Bioelectronics 14:457–464.

    Google Scholar 

  15. Cheley, S., Gu, L.Q. & Bayley, H. (2002) Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore Chem. Biol. 9:829–838.

    Google Scholar 

  16. Chou, S.H., Chin, K.H. & Wang, A.H.J. (2005) DNA aptamers as potential anti-HIV agents Trends in Biochemical Sciences 30:231–234.

    Google Scholar 

  17. Cornell, B.A. et al. (1997) A biosensor that uses ion-channel switches Nature 387:580–583.

    Google Scholar 

  18. Costello, R.F., Peterson, I.P., Heptinstall, J., Byrne, N.G. & Miller, L.S. (1998) A robust gel-bilayer channel biosensor Advanced Materials for Optics and Electronics 8:47–52.

    Google Scholar 

  19. Davis, J.T. & Spada, G.P. (2007) Supramolecular architectures generated by self-assembly of guanosine derivatives Chemical Society Reviews 36:296–313.

    Google Scholar 

  20. de Soultrait, V.R., Lozach, P.Y., Altmeyer, R., Tarrago-Litvak, L., Litvak, S. & Andreola, M.L. (2002) DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents Journal of Molecular Biology 324:195–203.

    Google Scholar 

  21. Deamer, D.W. & Branton, D. (2002) Characterization of nucleic acids by nanopore analysis Acc. Chem. Res. 35:817–825.

    Google Scholar 

  22. Ding, S., Gao, C. & Gu, L.Q. (2009) Capturing Single Molecules of Immunoglobulin and Ricin with an Aptamer-Encoded Glass Nanopore Anal. Chem. 81:6649–6655.

    Google Scholar 

  23. Ellington, A.D. & Szostak, J.W. (1990) Invitro Selection of Rna Molecules That Bind Specific Ligands Nature 346:818–822.

    Google Scholar 

  24. Famulok, M. & Szostak, J.W. (1992) Stereospecific Recognition of Tryptophan Agarose by Invitro Selected Rna Journal of the American Chemical Society 114:3990–3991.

    MATH  Google Scholar 

  25. Fertig, N., Blick, R.H. & Behrends, J.C. (2002) Whole cell patch clamp recording performed on a planar glass chip Biophysical Journal 82:3056–3062.

    Google Scholar 

  26. Fletcher, T.M., Sun, D.K., Salazar, M. & Hurley, L.H. (1998) Effect of DNA secondary structure on human telomerase activity Biochemistry 37:5536–5541.

    Google Scholar 

  27. Fologea, D., Gershow, M., Ledden, B., McNabb, D.S., Golovchenko, J.A. & Li, J. (2005) Detecting single stranded DNA with a solid state nanopore Nano Lett. 5:1905–1909.

    Google Scholar 

  28. Gao, C., Ding, S., Tan, Q. & Gu, L.Q. (2009) Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination Anal. Chem. 81:80–86.

    Google Scholar 

  29. Geiger, A., Burgstaller, P., vonderEltz, H., Roeder, A. & Famulok, M. (1996) RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity Nucleic Acids Research 24:1029–1036.

    Google Scholar 

  30. German, I., Buchanan, D.D. & Kennedy, R.T. (1998) Aptamers as ligands in affinity probe capillary electrophoresis Analytical Chemistry 70:4540–4545.

    Google Scholar 

  31. Gokulrangan, G., Unruh, J.R., Holub, D.F., Ingram, B., Johnson, C.K. & Wilson, G.S. (2005) DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy Analytical Chemistry 77:1963–1970.

    Google Scholar 

  32. Gowan, S.M. et al. (2002) A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity Molecular Pharmacology 61:1154–1162.

    Google Scholar 

  33. Gu, L.Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter Nature 398:686–690.

    Google Scholar 

  34. Gu, L.Q., Cheley, S. & Bayley, H. (2001) Capture of a single molecule in a nanocavity Science 291:636–640.

    Google Scholar 

  35. Gu, L.Q., Cheley, S. & Bayley, H. (2003) Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore Proc. Natl. Acad. Sci. U. S. A. 100:15498–15503.

    Google Scholar 

  36. Gu, L.Q., Cheley, S. & Bayley, H. (2005) Dissection of protein-adapter interaction by single-channel recording Biophysical Journal 88:657A.

    Google Scholar 

  37. Gu, L.Q. et al. (2000) Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters Proc. Natl. Acad. Sci. U. S. A. 97:3959–3964.

    Google Scholar 

  38. Hermann, T. & Patel, D.J. (2000) Biochemistry - Adaptive recognition by nucleic acid aptamers Science 287:820–825.

    Google Scholar 

  39. Hesselberth, J.R., Miller, D., Robertus, J. & Ellington, A.D. (2000) In vitro selection of RNA molecules that inhibit the activity of ricin A-chain Journal of Biological Chemistry 275:4937–4942.

    Google Scholar 

  40. Heyduk, E. & Heyduk, T. (2005) Nucleic acid-based fluorescence sensors for detecting proteins Analytical Chemistry 77:1147–1156.

    Google Scholar 

  41. Heyduk, T. & Heyduk, E. (2002) Molecular beacons for detecting DNA binding proteins Nat. Biotechnol. 20:171–176.

    Google Scholar 

  42. Ho, C. et al. (2005) Electrolytic transport through a synthetic nanometer-diameter pore Proc. Natl. Acad. Sci. U. S. A. 102:10445–10450.

    Google Scholar 

  43. Ho, H.A. & Leclerc, M. (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes Journal of the American Chemical Society 126:1384–1387.

    Google Scholar 

  44. Holden, M.A., Jayasinghe, L., Daltrop, O., Mason, A. & Bayley, H. (2006) Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording Nature Chemical Biology 2:314–318.

    Google Scholar 

  45. Holden, M.A., Needham, D. & Bayley, H. (2007) Functional bionetworks from nanoliter water droplets J. AM. CHEM. SOC. 129:8650–8655.

    Google Scholar 

  46. Howorka, S. & Bayley, H. (2002) Probing distance and electrical potential within a protein pore with tethered DNA Biophysical Journal 83:3202–3210.

    Google Scholar 

  47. Howorka, S., Cheley, S. & Bayley, H. (2001) Sequence-specific detection of individual DNA strands using engineered nanopores Nature Biotechnology 19:636–639.

    Google Scholar 

  48. Huang, C.C., Cao, Z., Chang, H.T. & Tan, W. (2004) Protein-protein interaction studies based on molecular aptamers by affinity capillary electrophoresis Anal. Chem. 76:6973–6981.

    Google Scholar 

  49. Hurley, L.H. (2002) DNA and its associated processes as targets for cancer therapy Nature Reviews Cancer 2:188–200.

    Google Scholar 

  50. Iqbal, S.M., Akin, D. & Bashir, R. (2007) Solid-state nanopore channels with DNA selectivity Nature Nanotechnology 2:243–248.

    Google Scholar 

  51. Ito, T., Sun, L. & Crooks, R.M. (2003) Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based Coulter counter Anal. Chem. 75:2399–2406.

    Google Scholar 

  52. Jenison, R.D., Gill, S.C., Pardi, A. & Polisky, B. (1994) High-Resolution Molecular Discrimination by Rna Science 263:1425–1429.

    Google Scholar 

  53. Jenison, R.D., Jennings, S.D., Walker, D.W., Bargatze, R.F. & Parma, D. (1998) Oligonucleotide inhibitors of P-selectin-dependent neutrophil-platelet adhesion Antisense & Nucleic Acid Drug Development 8:265–279.

    Google Scholar 

  54. Jeon, S.H., Kayhan, B., Ben-Yedidia, T. & Arnon, R. (2004) A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin Journal of Biological Chemistry 279:48410–48419.

    Google Scholar 

  55. Jeon, T.J., Malmstadt, N. & Schmidt, J.J. (2006) Hydrogel-encapsulated lipid membranes Journal of the American Chemical Society 128:42–43.

    Google Scholar 

  56. Jing, N. et al. (2000) Stability-activity relationships of a family of G-tetrad forming oligonucleotides as potent HIV inhibitors - A basis for anti-HIV drug design Journal of Biological Chemistry 275:3421–3430.

    Google Scholar 

  57. Jing, N.J. & Hogan, M.E. (1998) Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug Journal of Biological Chemistry 273:34992–34999.

    Google Scholar 

  58. Jing, N.J., Rando, R.F., Pommier, Y. & Hogan, M.E. (1997) Ion selective folding of loop domains in a potent anti-HIV oligonucleotide Biochemistry 36:12498–12505.

    Google Scholar 

  59. Kang, X.F., Cheley, S., Rice-Ficht, A.C. & Bayley, H. (2007) A storable encapsulated bilayer chip containing a single protein nanopore Journal of the American Chemical Society 129:4701–4705.

    Google Scholar 

  60. Kankia, B.I. & Marky, L.A. (2001) Folding of the thrombin aptamer into a G-quadruplex with Sr2+: Stability, heat, and hydration Journal of the American Chemical Society 123:10799–10804.

    Google Scholar 

  61. Karhanek, M., Kemp, J.T., Pourmand, N., Davis, R.W. & Webb, C.D. (2005) Single DNA molecule detection using nanopipettes and nanoparticles Nano Lett. 5:403–407.

    Google Scholar 

  62. Kasianowicz, J.J., Brandin, E., Branton, D. & Deamer, D.W. (1996) Characterization of individual polynucleotide molecules using a membrane channel Proc. Natl. Acad. Sci. U. S. A. 93:13770–13773.

    Google Scholar 

  63. Kasianowicz, J.J., Burden, D.L., Han, L.C., Cheley, S. & Bayley, H. (1999) Genetically engineered metal ion binding sites on the outside of a channel’s transmembrane beta-barrel Biophysical Journal 76:837–845.

    Google Scholar 

  64. Kerwin, S.M. (2000) G-quadruplex DNA as a target for drug design Current Pharmaceutical Design 6:441–471.

    Google Scholar 

  65. Kirby, R. et al. (2004) Aptamer-based sensor arrays for the detection and quantitation of proteins Anal. Chem. 76:4066–4075.

    Google Scholar 

  66. Klajn, R. et al. (2004) Multicolour micropatterning of thin films of dry gels Nature Materials 3:729–735.

    Google Scholar 

  67. Klug, S.J., Huttenhofer, A. & Famulok, M. (1999) In vitro selection of RNA aptamers that bind special elongation factor SelB, a protein with multiple RNA-binding sites, reveals one major interaction domain at the carboxyl terminus Rna-a Publication of the Rna Society 5:1180–1190.

    Google Scholar 

  68. Knoll, W. et al. (2000) Functional tethered lipid bilayers J Biotechnol 74:137–58.

    Google Scholar 

  69. Kohli, P., Harrell, C.C., Cao, Z.H., Gasparac, R., Tan, W.H. & Martin, C.R. (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity Science 305:984–986.

    Google Scholar 

  70. Li, J., Gershow, M., Stein, D., Brandin, E. & Golovchenko, J.A. (2003) DNA molecules and configurations in a solid-state nanopore microscope Nat. Mater. 2:611–615.

    Google Scholar 

  71. Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M.J. & Golovchenko, J.A. (2001) Ion-beam sculpting at nanometre length scales Nature 412:166–169.

    Google Scholar 

  72. Li, J.W.J. & Tan, W.H. (2002) A single DNA molecule nanomotor Nano Letters 2:315–318.

    Google Scholar 

  73. Luchian, T., Shin, S.H. & Bayley, H. (2003) Kinetics of a three-step reaction observed at the single-molecule level Angewandte Chemie-International Edition 42:1925–1929.

    Google Scholar 

  74. Maglia, G. et al. (2009) Droplet networks with incorporated protein diodes show collective properties Nat. Nanotechnol. 4:437–440.

    Google Scholar 

  75. Malmstadt, N., Jeon, T.J. & Schmidt, J.J. (2008) Long-lived planar lipid bilayer membranes anchored to an in situ polymerized hydrogel Adv Mater 20:84–89.

    Google Scholar 

  76. Malmstadt, N., Nash, M.A., Purnell, R.F. & Schmidt, J.J. (2006) Automated formation of lipid-bilayer membranes in a microfluidic device Nano Letters 6:1961–1965.

    Google Scholar 

  77. Marathias, V.M. & Bolton, P.H. (2000) Structures of the potassium-saturated, 2 : 1, and intermediate, 1 : 1, forms of a quadruplex DNA Nucleic Acids Research 28:1969–1977.

    Google Scholar 

  78. Martin, C.R. & Siwy, Z.S. (2007) Learning nature’s way: Biosensing with synthetic nanopores Science 317:331–332.

    Google Scholar 

  79. Mathe, J., Visram, H., Viasnoff, V., Rabin, Y. & Meller, A. (2004) Nanopore unzipping of individual DNA hairpin molecules Biophysical Journal 87:3205–3212.

    Google Scholar 

  80. Mayer, M., Yang, J., Gitlin, I., Gracias, D.H. & Whitesides, G.M. (2004) Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins Proteomics 4:2366–2376.

    Google Scholar 

  81. Meller, A. (2003) Dynamics of polynucleotide transport through nanometre-scale pores Journal of Physics-Condensed Matter 15:R581–R607.

    Google Scholar 

  82. Movileanu, L., Howorka, S., Braha, O. & Bayley, H. (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore Nature Biotechnology 18:1091–1095.

    Google Scholar 

  83. Mueller, P., Rudin, D.O., Tien, H.T. & Wescott, W.C. (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system Nature 194:979–80.

    Google Scholar 

  84. Nakane, J., Wiggin, M. & Marziali, A. (2004) A nanosensor for transmembrane capture and identification of single nucleic Acid molecules Biophys. J. 87:615–621.

    Google Scholar 

  85. Neidle, S. & Parkinson, G. (2002) Telomere maintenance as a target for anticancer drug discovery Nature Reviews Drug Discovery 1:383–393.

    Google Scholar 

  86. Neidle, S. & Parkinson, G.N. (2003) The structure of telomeric DNA Current Opinion in Structural Biology 13:275–283.

    Google Scholar 

  87. Nilsson, J., Lee, J.R.I., Ratto, T.V. & tant, S.E. (2006) Localized functionalization of single nanopores Adv Mater 18:427–431.

    Google Scholar 

  88. Padmanabhan, K., Padmanabhan, K.P., Ferrara, J.D., Sadler, J.E. & Tulinsky, A. (1993) The Structure of Alpha-Thrombin Inhibited by a 15-Mer Single-Stranded-DNA Aptamer Journal of Biological Chemistry 268:17651–17654.

    Google Scholar 

  89. Parkinson, G.N., Lee, M.P.H. & Neidle, S. (2002) Crystal structure of parallel quadruplexes from human telomeric DNA Nature 417:876–880.

    Google Scholar 

  90. Phan, A.T., Kuryavyi, V., Ma, J.B., Faure, A., Andreola, M.L. & Patel, D.J. (2005) An interlocked dimeric parallel-stranded DNA quadruplex: A potent inhibitor of HIV-1 integrase Proceedings of the National Academy of Sciences of the United States of America 102:634–639.

    Google Scholar 

  91. Rajendran, M. & Ellington, A.D. (2002) Selecting nucleic acids for biosensor applications Combinatorial Chemistry & High Throughput Screening 5:263–270.

    Google Scholar 

  92. Sackmann, E. (1996) Supported membranes: Scientific and practical applications Science 271:43–48.

    Google Scholar 

  93. Saleh, O.A. & Sohn, L.L. (2003) Direct detection of antibody-antigen binding using an on-chip artificial pore Proc. Natl. Acad. Sci. U. S. A. 100:820–824.

    Google Scholar 

  94. Schurer, H. et al. (2001) Aptamers that bind to the antibiotic moenomycin A Bioorganic & Medicinal Chemistry 9:2557–2563.

    Google Scholar 

  95. Sen, D. & Gilbert, W. (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis Nature 334:364–366.

    Google Scholar 

  96. Sen, D. & Gilbert, W. (1990) A sodium-potassium switch in the formation of four-stranded G4-DNA Nature 344:410–414.

    Google Scholar 

  97. Sexton, L.T., Horne, L.P., Sherrill, S.A., Bishop, G.W., Baker, L.A. & Martin, C.R. (2007) Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor Journal of the American Chemical Society 129:13144–13152.

    Google Scholar 

  98. Shim, J.W. & Gu, L.Q. (2007) Stochastic sensing on a modular chip containing a single-ion channel Anal. Chem. 79:2207–2213.

    Google Scholar 

  99. Shim, J.W. & Gu, L.Q. (2008) Encapsulating a single G-quadruplex aptamer in a protein nanocavity J Phys Chem B 112:8354–8360.

    Google Scholar 

  100. Shim, J.W., Tan, Q. & Gu, L.Q. (2009) Single-molecule detection of folding and unfolding of a single G-quadruplex aptamer in a nanopore nanocavity Nucleic Acids Research 37:972–982.

    Google Scholar 

  101. Simonsson, T. (2001) G-quadruplex DNA structures - Variations on a theme Biological Chemistry 382:621–628.

    Google Scholar 

  102. Siwy, Z. et al. (2002) Rectification and voltage gating of ion currents in a nanofabricated pore Europhysics Letters 60:349–355.

    Google Scholar 

  103. Siwy, Z., Trofin, L., Kohli, P., Baker, L.A., Trautmann, C. & Martin, C.R. (2005) Protein biosensors based on biofunctionalized conical gold nanotubes Journal of the American Chemical Society 127:5000–5001.

    Google Scholar 

  104. Song, L.Z., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H. & Gouaux, J.E. (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore Science 274:1859–1866.

    Google Scholar 

  105. Stadtherr, K., Wolf, H. & Lindner, P. (2005) An aptamer-based protein biochip Analytical Chemistry 77:3437–3443.

    Google Scholar 

  106. Sun, L.Q., Cairns, M.J., Saravolac, E.G., Baker, A. & Gerlach, W.L. (2000) Catalytic nucleic acids: From lab to applications Pharmacological Reviews 52:325–347.

    Google Scholar 

  107. Tang, Z.W. et al. (2007) Selection of aptamers for molecular recognition and characterization of cancer cells Anal. Chem. 79:4900–4907.

    Google Scholar 

  108. Tereshko, V., Skripkin, E. & Patel, D.J. (2003) Encapsulating streptomycin within a small 40-mer RNA Chemistry & Biology 10:175–187.

    Google Scholar 

  109. Tombelli, S., Minunni, M. & Mascini, M. (2005) Analytical applications of aptamers Biosens. Bioelectron. 20:2424–2434.

    Google Scholar 

  110. Tuerk, C. & Gold, L. (1990) Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands to Bacteriophage-T4 Dna-Polymerase Science 249:505–510.

    Google Scholar 

  111. Uram, J.D., Ke, K., Hunt, A.J. & Mayer, M. (2006) Label-free affinity assays by rapid detection of immune complexes in submicrometer pores Angew. Chem. Int. Ed. 45:2281–2285.

    Google Scholar 

  112. Vercoutere, W., Winters-Hilt, S., Olsen, H., Deamer, D., Haussler, D. & Akeson, M. (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel Nature Biotechnology 19:248–252.

    Google Scholar 

  113. Wang, H., Dunning, J.E., Huang, A.P., Nyamwanda, J.A. & Branton, D. (2004) DNA heterogeneity and phosphorylation unveiled by single-molecule electrophoresis Proc. Natl. Acad. Sci. U. S. A. 101:13472–13477.

    Google Scholar 

  114. Wang, K.Y., Krawczyk, S.H., Bischofberger, N., Swaminathan, S. & Bolton, P.H. (1993) The Tertiary Structure of a DNA Aptamer Which Binds to and Inhibits Thrombin Determines Activity Biochemistry 32:11285–11292.

    Google Scholar 

  115. Wang, K.Y., McCurdy, S., Shea, R.G., Swaminathan, S. & Bolton, P.H. (1993) A DNA Aptamer Which Binds to and Inhibits Thrombin Exhibits a New Structural Motif for DNA Biochemistry 32:1899–1904.

    Google Scholar 

  116. Wang, K.Y., Swaminathan, S. & Bolton, P.H. (1994) Tertiary Structure Motif of Oxytricha Telomere DNA Biochemistry 33:7517–7527.

    Google Scholar 

  117. Wanunu, M. & Meller, A. (2007) Chemically modified solid-state nanopores Nano Letters 7:1580–1585.

    Google Scholar 

  118. Wen, J.D. & Gray, D.M. (2004) Selection of genomic sequences that bind tightly to Ff gene 5 protein: primer-free genomic SELEX Nucleic Acids Research 32.

    Google Scholar 

  119. Weston, S.A., Tucker, A.D., Thatcher, D.R., Derbyshire, D.J. & Pauptit, R.A. (1994) X-ray structure of recombinant ricin A-chain at 1.8 +à resolution J. MOL. BIOL. 244:410–422.

    Google Scholar 

  120. White, R.J. et al. (2007) Single ion-channel recordings using glass nanopore membranes J. Am. Chem. Soc. 129:11766–11775.

    Google Scholar 

  121. White, R.R., Sullenger, B.A. & Rusconi, C.P. (2000) Developing aptamers into therapeutics Journal of Clinical Investigation 106:929–934.

    Google Scholar 

  122. Wiegand, T.W., Williams, P.B., Dreskin, S.C., Jouvin, M.H., Kinet, J.P. & Tasset, D. (1996) High-affinity oligonucleotide ligands to human IgE inhibit binding to FcΓˆˆ receptor I J. Immunol. 157:221–230.

    Google Scholar 

  123. Wilson, C., Nix, J. & Szostak, J. (1998) Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot Biochemistry 37:14410–14419.

    Google Scholar 

  124. Xiao, Y., Lubin, A.A., Heeger, A.J. & Plaxco, K.W. (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor Angew. Chem. Int. Ed. 44:5456–5459.

    Google Scholar 

  125. Zahler, A.M., Williamson, J.R., Cech, T.R. & Prescott, D.M. (1991) Inhibition of Telomerase by G-Quartet Dna Structures Nature 350:718–720.

    Google Scholar 

  126. Zimmerman, J.M. & Maher, L.J. (2002) In vivo selection of spectinomycin-binding RNAs Nucleic Acids Research 30:5425–5435.

    Google Scholar 

Download references

Acknowledgments

Financial support from NSF CAREER (0546165), National Institutes of Health (GM079613), University of Missouri Research Board and Startup Fund. The author’s work was conducted in a facility constructed with support from Research Facilities Improvement Program Grant C06-RR-016489-01 from the National Center for Research Resources, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gu, LQ. (2011). Single Molecule Detection with an Aptamer-Integrated Nanopore. In: Iqbal, S., Bashir, R. (eds) Nanopores. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8252-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8252-0_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8251-3

  • Online ISBN: 978-1-4419-8252-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics