Skip to main content

Adipocyte Development and Experimental Obesity

  • Chapter
  • First Online:
Obesity Before Birth

Part of the book series: Endocrine Updates ((ENDO,volume 30))

Abstract

Abstract Adipose tissue is not only an energy storage depot but also a dynamic endocrine organ that secretes important mediators of systemic metabolism and inflammation. This chapter provides an overview of the developmental, molecular, and physiological mechanisms that regulate adipose tissue growth and function. We then present evidence for disruptions in adipocyte development, lipolysis, lipogenesis, and hormonal signaling in the context of developmentally programmed obesity. Low birth weight (LBW) individuals have abnormal adipose tissue distribution, defects in the regulation of lipolysis, and alterations in several hormonal axes involved in adipocyte physiology. Adipose tissue development is particularly perturbed in LBW infants with accelerated postnatal growth, or “catch-up growth.” Data from a variety of experimental models of programmed obesity have identified mechanisms contributing to several of these alterations. However, the pathophysiology of LBW-associated obesity remains incompletely elucidated, particularly with regard to the role of mesenchymal stem cell commitment to adipocyte fate and epigenetic regulation of adipose tissue development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wojcicki JM, Heyman MB. Let’s move – childhood obesity prevention from pregnancy and infancy onward. N Engl J Med. 2010;362(16):1457–9.

    Article  PubMed  CAS  Google Scholar 

  2. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998;78(3):783–809.

    PubMed  CAS  Google Scholar 

  3. Takahashi M, Kamei Y, Ezaki . O. Mest/Peg1 imprinted gene enlarges adipocytes and is a marker of adipocyte size. Am J Physiol Endocrinol Metab. 2005;288(1):E117–E24.

    Article  PubMed  CAS  Google Scholar 

  4. Tseng YH, Butte AJ, Kokkotou E, et al. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat Cell Biol. 2005;7(6):601–11.

    Article  PubMed  CAS  Google Scholar 

  5. Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.

    Article  PubMed  CAS  Google Scholar 

  6. Knittle JL, Timmers K, Ginsberg-Fellner F, Brown RE, Katz DP. The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size. J Clin Invest. 1979;63(2):239–46.

    Article  PubMed  CAS  Google Scholar 

  7. Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.

    Article  PubMed  CAS  Google Scholar 

  8. Green H, Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975;5(1):19–27.

    Article  PubMed  CAS  Google Scholar 

  9. Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell. 2008;135(2):240–9.

    Article  PubMed  CAS  Google Scholar 

  10. Tang W, Zeve D, Suh JM, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583–6.

    Article  PubMed  CAS  Google Scholar 

  11. Huang H, Song TJ, Li X, et al. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA. 2009;106(31):12670–5.

    Article  PubMed  CAS  Google Scholar 

  12. Tseng YH, Kokkotou E, Schulz TJ, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454(7207):1000–4.

    Article  PubMed  CAS  Google Scholar 

  13. Arango NA, Szotek PP, Manganaro TF, et al. Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol. 2005;288(1):276–83.

    Article  PubMed  CAS  Google Scholar 

  14. Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science. 2000;289(5481):950–3.

    Article  PubMed  CAS  Google Scholar 

  15. Monteiro MC, Wdziekonski B, Villageois P, et al. Commitment of mouse embryonic stem cells to the adipocyte lineage requires retinoic acid receptor beta and active GSK3. Stem Cells Dev. 2009;18(3):457–63.

    Article  PubMed  CAS  Google Scholar 

  16. Fritton JC, Kawashima Y, Mejia W, et al. The insulin-like growth factor-1 binding protein acid-labile subunit alters mesenchymal stromal cell fate. J Biol Chem. 2010;285(7):4709–14.

    Article  PubMed  CAS  Google Scholar 

  17. Akerblad P, Lind U, Liberg D, Bamberg K, Sigvardsson M. Early B-cell factor (O/E-1) is a promoter of adipogenesis and involved in control of genes important for terminal adipocyte differentiation. Mol Cell Biol. 2002;22(22):8015–25.

    Article  PubMed  CAS  Google Scholar 

  18. Large V, Peroni O, Letexier D, Ray H, Beylot M. Metabolism of lipids in human white adipocyte. Diabetes Metab. 2004;30(4):294–309.

    Article  PubMed  CAS  Google Scholar 

  19. Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med. 2002;80(12):753–69.

    Article  PubMed  CAS  Google Scholar 

  20. Goudriaan JR, Tacken PJ, Dahlmans VE, et al. Protection from obesity in mice lacking the VLDL receptor. Arterioscler Thromb Vasc Biol. 2001;21(9):1488–93.

    Article  PubMed  CAS  Google Scholar 

  21. Luiken JJ, Arumugam Y, Dyck DJ, et al. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem. 2001;276(44):40567–73.

    Article  PubMed  CAS  Google Scholar 

  22. Letexier D, Pinteur C, Large V, Frering V, Beylot M. Comparison of the expression and activity of the lipogenic pathway in human and rat adipose tissue. J Lipid Res. 2003;44(11):2127–34.

    Article  PubMed  CAS  Google Scholar 

  23. Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol Endocrinol Metab. 2002;282(1):E46–E51.

    PubMed  CAS  Google Scholar 

  24. De Pauw A, Tejerina S, Raes M, Keijer J, Arnould T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. Am J Pathol. 2009;175(3):927–39.

    Article  PubMed  CAS  Google Scholar 

  25. Hollenberg CH, Raben MS, Astwood EB. The lipolytic response to corticotropin. Endocrinology. 1961;68:589–98.

    Article  PubMed  CAS  Google Scholar 

  26. Vaughan M, Berger JE, Steinberg D. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem. 1964;239:401–9.

    PubMed  CAS  Google Scholar 

  27. Osuga J, Ishibashi S, Oka T, et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA. 2000;97(2):787–92.

    Article  PubMed  CAS  Google Scholar 

  28. Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306(5700):1383–6.

    Article  PubMed  CAS  Google Scholar 

  29. Zimmermann R, Lass A, Haemmerle G, Zechner R. Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim Biophys Acta. 2009;1791(6):494–500.

    Article  PubMed  CAS  Google Scholar 

  30. Steinberg D, Huttunen JK. The role of cyclic AMP in activation of hormone-sensitive lipase of adipose tissue. Adv Cyclic Nucleotide Res. 1972;1:47–62.

    PubMed  CAS  Google Scholar 

  31. Goodman HM, Kostyo JL. Altered profiles of biological activity of growth hormone fragments on adipocyte metabolism. Endocrinology. 1981;108(2):553–8.

    Article  PubMed  CAS  Google Scholar 

  32. Rossmeisl M, Flachs P, Brauner P, et al. Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores. Int J Obes Relat Metab Disord. 2004;28 Suppl 4:S38–S44.

    Article  PubMed  CAS  Google Scholar 

  33. Soeder K, Snedden S, Cao W, et al. The β3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. JBC. 1999;274(17):12017–22.

    Article  CAS  Google Scholar 

  34. Juan CC, Chang CL, Lai YH, Ho LT. Endothelin-1 induces lipolysis in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab. 2005;288(6):E1146–E52.

    Article  PubMed  CAS  Google Scholar 

  35. Sengenes C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J. Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J. 2000;14(10):1345–51.

    Article  PubMed  CAS  Google Scholar 

  36. Gagnon A, Antunes TT, Ly T, et al. Thyroid-stimulating hormone stimulates lipolysis in adipocytes in culture and raises serum free fatty acid levels in vivo. Metabolism. 2010;59(4):547–53.

    Article  PubMed  CAS  Google Scholar 

  37. Marcus C, Ehren H, Bolme P, Arner P. Regulation of lipolysis during the neonatal period. Importance of thyrotropin. J Clin Invest. 1988;82(5):1793–7.

    Article  PubMed  CAS  Google Scholar 

  38. Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett. 2008;582(1):117–31.

    Article  PubMed  CAS  Google Scholar 

  39. Moskowitz J, Fain JN. Hormonal regulation of lipolysis and phosphorylase activity in human fat cells. J Clin Invest. 1969;48(10):1802–8.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  PubMed  CAS  Google Scholar 

  41. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early onset obesity in humans. Nature. 1997;387:903–8.

    Article  PubMed  CAS  Google Scholar 

  42. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. JBC. 1996;271(18):10697–703.

    Article  CAS  Google Scholar 

  43. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–6.

    Article  PubMed  CAS  Google Scholar 

  44. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95.

    Article  PubMed  CAS  Google Scholar 

  45. Civitarese AE, Ukropcova B, Carling S, et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 2006;4(1):75–87.

    Article  PubMed  CAS  Google Scholar 

  46. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307(5708):426–30.

    Article  PubMed  CAS  Google Scholar 

  47. Revollo JR, Korner A, Mills KF, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007;6(5):363–75.

    Article  PubMed  CAS  Google Scholar 

  48. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324(5927):654–7.

    Article  PubMed  CAS  Google Scholar 

  49. Berndt J, Kloting N, Kralisch S, et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes. 2005;54(10):2911–6.

    Article  PubMed  CAS  Google Scholar 

  50. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307–12.

    Article  PubMed  CAS  Google Scholar 

  51. Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82(12):4196–200.

    Article  PubMed  CAS  Google Scholar 

  52. Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436(7049):356–62.

    Article  PubMed  CAS  Google Scholar 

  53. Graham TE, Yang Q, Bluher M, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med. 2006;354(24):2552–63.

    Article  PubMed  CAS  Google Scholar 

  54. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–39.

    Article  PubMed  CAS  Google Scholar 

  55. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.

    Article  PubMed  CAS  Google Scholar 

  56. Feuerer M, Herrero L, Cipolletta D, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15(8):930–9.

    Article  PubMed  CAS  Google Scholar 

  57. Kiess W, Petzold S, Topfer M, et al. Adipocytes and adipose tissue. Best Pract Res Clin Endocrinol Metab. 2008;22(1):135–53.

    Article  PubMed  CAS  Google Scholar 

  58. Poissonnet CM, Burdi AR, Garn SM. The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev. 1984;10(1–2):1–11.

    Article  PubMed  CAS  Google Scholar 

  59. Andersen GE, Christensen NC, Petersen MB, Johansen KB. Fatty acid composition of subcutaneous adipose tissue in mother-infant pairs. Acta Paediatr Scand. 1987;76(1):87–90.

    Article  PubMed  CAS  Google Scholar 

  60. Widdowson EM, Spray CM. Chemical development in utero. Arch Dis Child. 1951;26(127):205–14.

    Article  PubMed  CAS  Google Scholar 

  61. Whitelaw A. Subcutaneous fat in newborn infants of diabetic mothers: an indication of quality of diabetic control. Lancet. 1977;1(8001):15–8.

    Article  PubMed  CAS  Google Scholar 

  62. Bispham J, Gopalakrishnan GS, Dandrea J, et al. Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology. 2003;144(8):3575–85.

    Article  PubMed  CAS  Google Scholar 

  63. Symonds ME, Lomax MA. Maternal and environmental influences on thermoregulation in the neonate. Proc Nutr Soc. 1992;51(2):165–72.

    Article  PubMed  CAS  Google Scholar 

  64. Symonds ME, Mostyn A, Pearce S, Budge H, Stephenson T. Endocrine and nutritional regulation of fetal adipose tissue development. J Endocrinol. 2003;179(3):293–9.

    Article  PubMed  CAS  Google Scholar 

  65. Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. Brown adipose tissue and seasonal variation in humans. Diabetes. 2009;58(11):2583–7.

    Article  PubMed  CAS  Google Scholar 

  66. Moragas A, Toran N. Prenatal development of brown adipose tissue in man. A morphometric and biomathematical study. Biol Neonate. 1983;43(1–2):80–5.

    PubMed  CAS  Google Scholar 

  67. Cannon B, Nedergaard J. Adrenergic regulation of brown adipocyte differentiation. Biochem Soc Trans. 1996;24(2):407–12.

    PubMed  CAS  Google Scholar 

  68. Schermer SJ, Bird JA, Lomax MA, Shepherd DA, Symonds ME. Effect of fetal thyroidectomy on brown adipose tissue and thermoregulation in newborn lambs. Reprod Fertil Dev. 1996;8(6):995–1002.

    Article  PubMed  CAS  Google Scholar 

  69. Stephenson T, Budge H, Mostyn A, et al. Fetal and neonatal adipose maturation: a primary site of cytokine and cytokine-receptor action. Biochem. Soc Trans. 2001;29(Pt 2):80–5.

    Article  PubMed  CAS  Google Scholar 

  70. Wu SY, Kim JK, Chopra IJ, Murata Y, Fisher DA. Postnatal changes in lambs of two pathways for thyroxine 5-monodeiodination in brown adipose tissue. Am J Physiol. 1991;261(2 Pt 1):E257–E61.

    PubMed  CAS  Google Scholar 

  71. Iglesias R, Fernandez JA, Mampel T, Obregon MJ, Villarroya F. Iodothyronine 5-deiodinase activity in rat brown adipose tissue during development. Biochim Biophys Acta. 1987;923(2):233–40.

    Article  PubMed  CAS  Google Scholar 

  72. Clarke L, Heasman L, Firth K, Symonds ME. Influence of route of delivery and ambient temperature on thermoregulation in newborn lambs. Am J Physiol. 1997;272(6 Pt 2):R1931–9.

    PubMed  CAS  Google Scholar 

  73. Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25.

    Article  PubMed  CAS  Google Scholar 

  74. Almind K, Manieri M, Sivitz WI, Cinti S, Kahn CR. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc Natl Acad Sci USA. 2007;104(7):2366–71.

    Article  PubMed  CAS  Google Scholar 

  75. Timmons JA, Wennmalm K, Larsson O, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA. 2007;104(11):4401–6.

    Article  PubMed  CAS  Google Scholar 

  76. Seale P, Bjork B, Yang W, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7.

    Article  PubMed  CAS  Google Scholar 

  77. Teruel T, Valverde AM, Benito M, Lorenzo M. Transforming growth factor beta 1 induces differentiation-specific gene expression in fetal rat brown adipocytes. FEBS Lett. 1995;364(2):193–7.

    Article  PubMed  CAS  Google Scholar 

  78. Olshansky SJ, Passaro DJ, Hershow RC, et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005;352(11):1138–45.

    Article  PubMed  CAS  Google Scholar 

  79. Oliveira A, Rodriguez-Artalejo F, Severo M, Lopes C. Indices of central and peripheral body fat: association with non-fatal acute myocardial infarction. Int J Obes (Lond). 2010;34(4):733–41.

    Article  CAS  Google Scholar 

  80. Klein S, Allison DB, Heymsfield SB, et al. Waist circumference and cardiometabolic risk: a consensus statement from Shaping America’s Health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity (Silver Spring). 2007;15(5):1061–7.

    Article  Google Scholar 

  81. Carey VJ, Walters EE, Colditz GA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study. Am J Epidemiol. Apr 1 1997;145:614–9.

    Article  PubMed  CAS  Google Scholar 

  82. Snijder MB, Dekker JM, Visser M, et al. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. Am J Clin Nutr. 2003;77(5):1192–7.

    PubMed  CAS  Google Scholar 

  83. Misra A, Garg A, Abate N, et al. Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes Res. 1997;5(2):93–9.

    Article  PubMed  CAS  Google Scholar 

  84. Tanko LB, Bagger YZ, Alexandersen P, Larsen PJ, Christiansen C. Peripheral adiposity exhibits an independent dominant antiatherogenic effect in elderly women. Circulation. 2003;107(12):1626–31.

    Article  PubMed  Google Scholar 

  85. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7(5):410–20.

    Article  PubMed  CAS  Google Scholar 

  86. Nelson TL, Vogler GP, Pedersen NL, Hong Y, Miles TP. Genetic and environmental influences on body fat distribution, fasting insulin levels and CVD: are the influences shared? Twin Res. 2000;3(1):43–50.

    CAS  Google Scholar 

  87. Garg A, Agarwal AK. Lipodystrophies: disorders of adipose tissue biology. Biochim Biophys Acta. 2009;1791(6):507–13.

    Article  PubMed  CAS  Google Scholar 

  88. Vohl MC, Sladek R, Robitaille J, et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes Res. 2004;12(8):1217–22.

    Article  PubMed  CAS  Google Scholar 

  89. Gesta S, Bluher M, Yamamoto Y, et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA. 2006;103(17):6676–81.

    Article  PubMed  CAS  Google Scholar 

  90. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.

    Article  PubMed  CAS  Google Scholar 

  91. Law CM, Barker DJ, Osmond C, Fall CH, Simmonds SJ. Early growth and abdominal fatness in adult life. J Epidemiol Community Health. 1992;46(3):184–6.

    Article  PubMed  CAS  Google Scholar 

  92. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298(6673):564–7.

    Article  PubMed  CAS  Google Scholar 

  93. Barker DJ, Hales CN, Fall CH, et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36(1):62–7.

    Article  PubMed  CAS  Google Scholar 

  94. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295(7):349–53.

    Article  PubMed  CAS  Google Scholar 

  95. Ravelli AC, Der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 year in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70(5):811–6.

    PubMed  CAS  Google Scholar 

  96. Stein AD, Zybert PA, van de BM, Lumey LH. Intrauterine famine exposure and body proportions at birth: the Dutch Hunger Winter. Int J Epidemiol. 2004;33(4):831–6.

    Article  PubMed  Google Scholar 

  97. Stein AD, Kahn HS, Rundle A, et al. Anthropometric measures in middle age after exposure to famine during gestation: evidence from the Dutch famine. Am J Clin Nutr. 2007;85(3):869–76.

    PubMed  CAS  Google Scholar 

  98. Ravelli ACJ, van der Meulen JHP, Michels RPJ, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351:173–7.

    Article  PubMed  CAS  Google Scholar 

  99. Frisancho AR, Klayman JE, Matos J. Newborn body compositon and its relationship to linear growth. Am J Clin Nutr. 1977;30(5):704–11.

    PubMed  CAS  Google Scholar 

  100. Garnett SP, Cowell CT, Baur LA, et al. Abdominal fat and birth size in healthy prepubertal children. Int. J Obes Relat Metab Disord. 2001;25(11):1667–73.

    Article  PubMed  CAS  Google Scholar 

  101. Frisancho AR. Prenatal compared with parental origins of adolescent fatness. Am J Clin Nutr. 2000;72(5):1186–90.

    PubMed  CAS  Google Scholar 

  102. Loos RJ, Beunen G, Fagard R, Derom C, Vlietinck R. Birth weight and body composition in young adult men – a prospective twin study. Int J Obes Relat Metab Disord. 2001;25(10):1537–45.

    Article  PubMed  CAS  Google Scholar 

  103. Loos RJ, Beunen G, Fagard R, Derom C, Vlietinck R. Birth weight and body composition in young women: a prospective twin study. Am J Clin Nutr. 2002;75(4):676–82.

    PubMed  CAS  Google Scholar 

  104. Kensara OA, Wootton SA, Phillips DI, et al. Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr. 2005;82(5):980–7.

    PubMed  CAS  Google Scholar 

  105. Okosun IS, Liao Y, Rotimi CN, Dever GE, Cooper RS. Impact of birth weight on ethnic variations in subcutaneous and central adiposity in American children aged 5–11 years. A study from the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord. 2000;24(4):479–84.

    Article  PubMed  CAS  Google Scholar 

  106. Bavdekar A, Yajnik CS, Fall CH, et al. Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8, or both?. Diabetes. 1999;48(12):2422–9.

    Article  PubMed  CAS  Google Scholar 

  107. Labayen I, Moreno LA, Blay MG, et al. Early programming of body composition and fat distribution in adolescents. J Nutr. 2006;136(1):147–52.

    PubMed  CAS  Google Scholar 

  108. Malina RM, Katzmarzyk PT, Beunen G. Birth weight and its relationship to size attained and relative fat distribution at 7 to 12 years of age. Obes Res. 1996;4(4):385–90.

    Article  PubMed  CAS  Google Scholar 

  109. Barker M, Robinson S, Osmond C, Barker DJ. Birth weight and body fat distribution in adolescent girls. Arch Dis Child. 1997;77(5):381–3.

    Article  PubMed  CAS  Google Scholar 

  110. Sachdev HS, Fall CH, Osmond C, et al. Anthropometric indicators of body composition in young adults: relation to size at birth and serial measurements of body mass index in childhood in the New Delhi birth cohort. Am J Clin Nutr. 2005;82(2):456–66.

    PubMed  CAS  Google Scholar 

  111. Gunnarsdottir I, Birgisdottir BE, Benediktsson R, Gudnason V, Thorsdottir I. Association between size at birth, truncal fat and obesity in adult life and its contribution to blood pressure and coronary heart disease; study in a high birth weight population. Eur J Clin Nutr. 2004;58(5):812–8.

    Article  PubMed  CAS  Google Scholar 

  112. Rogers IS, Ness AR, Steer CD, et al. Associations of size at birth and dual-energy X-ray absorptiometry measures of lean and fat mass at 9–10 year of age. Am J Clin Nutr. 2006;84(4):739–47.

    PubMed  CAS  Google Scholar 

  113. Matthes JW, Lewis PA, Davies DP, Bethel JA. Body size and subcutaneous fat patterning in adolescence. Arch Dis Child. 1996;75(6):521–3.

    Article  PubMed  CAS  Google Scholar 

  114. Euser AM, Finken MJ, Keijzer-Veen MG, et al. Associations between prenatal and infancy weight gain and BMI, fat mass, and fat distribution in young adulthood: a prospective cohort study in males and females born very preterm. Am J Clin Nutr. 2005;81(2):480–7.

    PubMed  CAS  Google Scholar 

  115. Sayer AA, Syddall HE, Dennison EM, et al. Birth weight, weight at 1 year of age, and body composition in older men: findings from the Hertfordshire Cohort Study. Am J Clin Nutr. 2004;80(1):199–203.

    PubMed  CAS  Google Scholar 

  116. Wells JC, Chomtho S, Fewtrell MS. Programming of body composition by early growth and nutrition. Proc Nutr Soc. 2007;66(3):423–34.

    Article  PubMed  Google Scholar 

  117. Bhargava SK, Sachdev HS, Fall CH, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med. 2004;350(9):865–75.

    Article  PubMed  CAS  Google Scholar 

  118. Ekelund U, Ong KK, Linne Y, et al. Association of weight gain in infancy and early childhood with metabolic risk in young adults. J Clin Endocrinol Metab. 2007;92(1):98–103.

    Article  PubMed  CAS  Google Scholar 

  119. Ekelund U, Ong K, Linne Y, et al. Upward weight percentile crossing in infancy and early childhood independently predicts fat mass in young adults: the Stockholm Weight Development Study (SWEDES). Am J Clin Nutr. 2006;83(2):324–30.

    PubMed  CAS  Google Scholar 

  120. Fall CH, Sachdev HS, Osmond C, et al. Adult metabolic syndrome and impaired glucose tolerance are associated with different patterns of BMI gain during infancy: data from the New Delhi Birth Cohort. Diabetes Care. 2008;31(12):2349–56.

    Article  PubMed  Google Scholar 

  121. Dulloo AG, Girardier L. Adaptive changes in energy expenditure during refeeding following low-calorie intake: evidence for a specific metabolic component favoring fat storage. Am J Clin Nutr. 1990;52(3):415–20.

    PubMed  CAS  Google Scholar 

  122. Harris PM. Changes in adipose tissue of the rat due to early undernutrition followed by rehabilitation. 1. Body composition and adipose tissue cellularity. Br J Nutr. 1980;43(1):15–26.

    Article  PubMed  CAS  Google Scholar 

  123. Mericq V, Ong KK, Bazaes R, et al. Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia. 2005;48(12):2609–14.

    Article  PubMed  CAS  Google Scholar 

  124. Iniguez G, Ong K, Bazaes R, et al. Longitudinal changes in insulin-like growth factor-I, insulin sensitivity, and secretion from birth to age three years in small-for-gestational-age children. J Clin Endocrinol Metab. 2006;91(11):4645–9.

    Article  PubMed  CAS  Google Scholar 

  125. Iniguez G, Ong K, Pena V, et al. Fasting and post-glucose ghrelin levels in SGA infants: relationships with size and weight gain at one year of age. J Clin Endocrinol Metab. 2002;87(12):5830–3.

    Article  PubMed  CAS  Google Scholar 

  126. Chatelain PG, Nicolino M, Claris O, Salle B, Chaussain J. Multiple hormone resistance in short children born with intrauterine growth retardation? Horm Res. 1998;49 Suppl 2:20–2.

    Article  CAS  Google Scholar 

  127. Challa AS, Evagelidou EN, Cholevas VI, et al. Growth factors and adipocytokines in prepubertal children born small for gestational age: relation to insulin resistance. Diabetes Care. 2009;32(4):714–9.

    Article  PubMed  CAS  Google Scholar 

  128. Vickers MH, Ikenasio BA, Breier BH. IGF-I treatment reduces hyperphagia, obesity, and hypertension in metabolic disorders induced by fetal programming. Endocrinology. 2001;142(9):3964–73.

    Article  PubMed  CAS  Google Scholar 

  129. Vickers MH, Ikenasio BA, Breier BH. Adult growth hormone treatment reduces hypertension and obesity induced by an adverse prenatal environment. J Endocrinol. 2002;175(3):615–23.

    Article  PubMed  CAS  Google Scholar 

  130. Leger J, Garel C, Fjellestad-Paulsen A, Hassan M, Czernichow P. Human growth hormone treatment of short-stature children born small for gestational age: effect on muscle and adipose tissue mass during a 3-year treatment period and after 1 year’s withdrawal. J Clin Endocrinol Metab. 1998;83(10):3512–6.

    Article  PubMed  CAS  Google Scholar 

  131. Eriksson J, Lindi V, Uusitupa M, et al. The effects of the Pro12Ala polymorphism of the PPARgamma-2 gene on lipid metabolism interact with body size at birth. Clin Genet. 2003;64(4):366–70.

    Article  PubMed  CAS  Google Scholar 

  132. Patel D, Kalhan S. Glycerol metabolism and triglyceride-fatty acid cycling in the human newborn: effect of maternal diabetes and intrauterine growth retardation. Pediatr Res. 1992;31(1):52–8.

    Article  PubMed  CAS  Google Scholar 

  133. Diderholm B, Ewald U, Ahlsson F, Gustafsson J. Energy substrate production in infants born small for gestational age. Acta Paediatr. 2007;96(1):29–34.

    Article  PubMed  Google Scholar 

  134. Bazaes RA, Salazar TE, Pittaluga E, et al. Glucose and lipid metabolism in small for gestational age infants at 48 hours of age. Pediatrics. 2003;111(4 Pt 1):804–9.

    Article  PubMed  Google Scholar 

  135. Christensen NC. Free fatty acids, glycerol and triglycerides during the first 24 hours in infants with a birth weight less than or equal to 2700 grams. Acta Paediatr Scand. 1981;70(4):485–90.

    Article  PubMed  CAS  Google Scholar 

  136. Boiko J, Jaquet D, Chevenne D, et al. In situ lipolytic regulation in subjects born small for gestational age. Int J Obes (Lond). 2005;29(6):565–70.

    Article  CAS  Google Scholar 

  137. Stefan N, Weyer C, Levy-Marchal C, et al. Endogenous glucose production, insulin sensitivity, and insulin secretion in normal glucose-tolerant Pima Indians with low birth weight. Metabolism. 2004;53(7):904–11.

    Article  PubMed  CAS  Google Scholar 

  138. Ozanne SE, Nicholas HC. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech Ageing Dev. 2005;126(8):852–4.

    Article  PubMed  Google Scholar 

  139. Guan H, Arany E, van Beek JP, et al. Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Physiol Endocrinol Metab. 2005;288(4):E663–E73.

    Article  PubMed  CAS  Google Scholar 

  140. Bieswal F, Hay SM, McKinnon C, et al. Prenatal protein restriction does not affect the proliferation and differentiation of rat preadipocytes. J Nutr. 2004;134(6):1493–9.

    PubMed  CAS  Google Scholar 

  141. Zhang T, Guan H, Arany E, Hill DJ, Yang K. Maternal protein restriction permanently programs adipocyte growth and development in adult male rat offspring. J Cell Biochem. 2007;101(2):381–8.

    Article  PubMed  CAS  Google Scholar 

  142. Bol VV, Reusens BM, Remacle CA. Postnatal catch-up growth after fetal protein restriction programs proliferation of rat preadipocytes. Obesity (Silver Spring). 2008;16(12):2760–3.

    Article  Google Scholar 

  143. Desai M, Guang H, Ferelli M, Kallichanda N, Lane RH. Programmed upregulation of adipogenic transcription factors in intrauterine growth-restricted offspring. Reprod Sci. 2008;15(8):785–96.

    Article  PubMed  CAS  Google Scholar 

  144. Duffield JA, Vuocolo T, Tellam R, et al. Intrauterine growth restriction and the sex specific programming of leptin and peroxisome proliferator activated receptor gamma (PPARgamma) mRNA expression in visceral fat in the lamb. Pediatr Res. 2009;66(1):59–65.

    Article  PubMed  CAS  Google Scholar 

  145. Ozanne SE, Dorling MW, Wang CL, Nave BT, Impaired PI. 3-kinase activation in adipocytes from early growth-restricted male rats. Am J Physiol Endocrinol Metab. 2001;280(3):E534–9.

    PubMed  CAS  Google Scholar 

  146. Ozanne SE, Dorling MW, Wang CL, Petry CJ. Depot-specific effects of early growth retardation on adipocyte insulin action. Horm Metab Res. 2000;32(2):71–5.

    Article  PubMed  CAS  Google Scholar 

  147. Muhlhausler BS, Ritorto V, Schultz C, et al. Birth weight and gender determine expression of adipogenic, lipogenic and adipokine genes in perirenal adipose tissue in the young adult sheep. Domest Anim Endocrinol. 2008;35(1):46–57.

    Article  PubMed  CAS  Google Scholar 

  148. Isganaitis E, Jimenez-Chillaron J, Woo M, et al. Accelerated postnatal growth increases lipogenic gene expression and adipocyte size in low-birth weight mice. Diabetes. 2009;58(5):1192–200.

    Article  PubMed  CAS  Google Scholar 

  149. Colle E, Schiff D, Andrew G, Bauer CB, Fitzhardinge P. Insulin responses during catch-up growth of infants who were small for gestational age. Pediatrics. 1976;57(3):363–71.

    PubMed  CAS  Google Scholar 

  150. Iniguez G, Ormazabal P, Lopez T, et al. IGF-IR/ERK content and response to IGF-I and insulin in adipocytes from small for gestational age children. Growth Horm IGF Res. 2009;19(3):256–61.

    Article  PubMed  CAS  Google Scholar 

  151. Jensen CB, Martin-Gronert MS, Storgaard H, et al. Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight. PLoS One. 2008;3(11):e3738.

    Article  PubMed  CAS  Google Scholar 

  152. Ozanne SE, Jensen CB, Tingey KJ, et al. Decreased protein levels of key insulin signalling molecules in adipose tissue from young men with a low birthweight – potential link to increased risk of diabetes? Diabetologia. 2006;49(12):2993–9.

    Article  PubMed  CAS  Google Scholar 

  153. Ozanne SE, Jensen CB, Tingey KJ, et al. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia. 2005;48(3):547–52.

    Article  PubMed  CAS  Google Scholar 

  154. Jimenez-Chillaron JC, Hernandez-Valencia M, Reamer C, et al. Beta-cell secretory dysfunction in the pathogenesis of low birth weight-associated diabetes: a murine model. Diabetes. 2005;54(3):702–11.

    Article  PubMed  CAS  Google Scholar 

  155. Cettour-Rose P, Samec S, Russell AP, et al. Redistribution of glucose from skeletal muscle to adipose tissue during catch-up fat: a link between catch-up growth and later metabolic syndrome. Diabetes. 2005;54(3):751–6.

    Article  PubMed  CAS  Google Scholar 

  156. Seckl JR, Meaney MJ. Glucocorticoid programming. Ann N Y Acad Sci. 2004;1032:63–84.

    Article  PubMed  CAS  Google Scholar 

  157. Engeli S, Bohnke J, Feldpausch M, et al. Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes Res. 2004;12(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  158. Boullu-Ciocca S, Paulmyer-Lacroix O, Fina F, et al. Expression of the mRNAs coding for the glucocorticoid receptor isoforms in obesity. Obes Res. 2003;11(8):925–9.

    Article  PubMed  CAS  Google Scholar 

  159. Tenhola S, Turpeinen U, Halonen P, Hamalainen E, Voutilainen R. Association of serum lipid concentrations, insulin resistance index and catch-up growth with serum cortisol/cortisone ratio by liquid chromatography tandem mass spectrometry in children born small for gestational age. Pediatr Res. 2005;58(3):467–71.

    Article  PubMed  CAS  Google Scholar 

  160. Gnanalingham MG, Mostyn A, Symonds ME, Stephenson T. Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2. Am J Physiol Regul Integr Comp Physiol. 2005;289(5):R1407–R15.

    Article  PubMed  CAS  Google Scholar 

  161. Johansson S, Norman M, Legnevall L, et al. Increased catecholamines and heart rate in children with low birth weight: perinatal contributions to sympathoadrenal overactivity. J Intern Med. 2007;261(5):480–7.

    Article  PubMed  CAS  Google Scholar 

  162. Tenhola S, Martikainen A, Rahiala E, et al. Increased adrenocortical and adrenomedullary hormonal activity in 12-year-old children born small for gestational age. J Pediatr. 2002;141(4):477–82.

    Article  PubMed  CAS  Google Scholar 

  163. Wang X, Cui Y, Tong X, Ye H, Li S. Effects of the Trp64Arg polymorphism in the beta3-adrenergic receptor gene on insulin sensitivity in small for gestational age neonates. J Clin Endocrinol Metab. 2004;89(10):4981–5.

    Article  PubMed  CAS  Google Scholar 

  164. Oyama K, Padbury J, Martinez A, et al. Effects of fetal growth retardation on the development of central and peripheral catecholaminergic pathways in the sheep. J Dev Physiol. 1992;18(5):217–22.

    PubMed  CAS  Google Scholar 

  165. van der KD, Deal C, de Kort S, et al. Insulin-like growth factor-binding protein-1: serum levels, promoter polymorphism, and associations with components of the metabolic syndrome in short subjects born small for gestational age. J Clin Endocrinol Metab. 2009;94(4):1386–92.

    Article  CAS  Google Scholar 

  166. Iwashita M, Sakai K, Kudo Y, Takeda Y. Phosphoisoforms of insulin-like growth factor binding protein-1 in appropriate-for-gestational-age and small-for-gestational-age fetuses. Growth Horm IGF. Res. 1998;8(6):487–93.

    Article  PubMed  CAS  Google Scholar 

  167. Harigaya A, Nagashima K, Nako Y, Morikawa A. Relationship between concentration of serum leptin and fetal growth. J Clin Endocrinol Metab. 1997;82(10):3281–4.

    Article  PubMed  CAS  Google Scholar 

  168. Marchini G, Fried G, Ostlund E, Hagenas L. Plasma leptin in infants: relations to birth weight and weight loss. Pediatrics. 1998;101(3 Pt 1):429–32.

    Article  PubMed  CAS  Google Scholar 

  169. Pulzer F, Haase U, Knupfer M, et al. Serum leptin in formerly small-for-gestational-age children during adolescence: relationship to gender, puberty, body composition, insulin sensitivity, creatinine, and serum uric acid. Metabolism. 2001;50(10):1141–6.

    Article  PubMed  CAS  Google Scholar 

  170. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279(1):E83–7.

    PubMed  CAS  Google Scholar 

  171. Sugden MC, Langdown ML, Munns MJ, Holness MJ. Maternal glucocorticoid treatment modulates placental leptin and leptin receptor expression and materno-fetal leptin physiology during late pregnancy, and elicits hypertension associated with hyperleptinaemia in the early-growth-retarded adult offspring. Eur J Endocrinol. 2001;145(4):529–39.

    Article  PubMed  CAS  Google Scholar 

  172. Nusken KD, Dotsch J, Rauh M, Rascher W, Schneider H. Uteroplacental insufficiency after bilateral uterine artery ligation in the rat: impact on postnatal glucose and lipid metabolism and evidence for metabolic programming of the offspring by sham operation. Endocrinology. 2008;149(3):1056–63.

    Article  PubMed  CAS  Google Scholar 

  173. Desai M, Gayle D, Han G, Ross MG. Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth-restricted offspring. Reprod Sci. 2007;14(4):329–37.

    Article  PubMed  Google Scholar 

  174. Sivan E, Mazaki-Tovi S, Pariente C, et al. Adiponectin in human cord blood: relation to fetal birth weight and gender. J Clin Endocrinol Metab. 2003;88(12):5656–60.

    Article  PubMed  CAS  Google Scholar 

  175. Laudes M, Oberhauser F, Bilkovski R, et al. Human fetal adiponectin and retinol-binding protein (RBP)-4 levels in relation to birth weight and maternal obesity. Exp Clin Endocrinol Diabetes. 2009;117(3):146–9.

    Article  PubMed  CAS  Google Scholar 

  176. Gohlke BC, Bartmann P, Fimmers R, et al. Fetal adiponectin and resistin in correlation with birth weight difference in monozygotic twins with discordant growth. Horm Res. 2008;69(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  177. Jaquet D, Deghmoun S, Chevenne D, Czernichow P, Levy-Marchal C. Low serum adiponectin levels in subjects born small for gestational age: impact on insulin sensitivity. Int J Obes (Lond). 2006;30(1):83–7.

    Article  CAS  Google Scholar 

  178. Tamakoshi K, Yatsuya H, Wada K, et al. Low birth weight is associated with reduced adiponectin concentration in adult. Ann Epidemiol. 2006;16(9):669–74.

    Article  PubMed  Google Scholar 

  179. Ibanez L, Lopez-Bermejo A, Suarez L, et al. Visceral adiposity without overweight in children born small for gestational age. J Clin Endocrinol Metab. 2008;93(6):2079–83.

    Article  PubMed  CAS  Google Scholar 

  180. Ibanez L, Lopez-Bermejo A, Diaz M, et al. High-molecular-weight adiponectin in children born small- or appropriate-for-gestational-age. J Pediatr. 2009;155(5):740–2.

    Article  PubMed  CAS  Google Scholar 

  181. Cianfarani S, Martinez C, Maiorana A, et al. Adiponectin levels are reduced in children born small for gestational age and are inversely related to postnatal catch-up growth. J Clin Endocrinol Metab. 2004;89(3):1346–51.

    Article  PubMed  CAS  Google Scholar 

  182. Iniguez G, Soto N, Avila A, et al. Adiponectin levels in the first two years of life in a prospective cohort: relations with weight gain, leptin levels and insulin sensitivity. J Clin Endocrinol Metab. 2004;89(11):5500–3.

    Article  PubMed  CAS  Google Scholar 

  183. Tenhola S, Todorova B, Jaaskelainen J, et al. Serum glucocorticoids and adiponectin associate with insulin resistance in children born small for gestational age. Eur J Endocrinol. 2010;162(3):551–7.

    Article  PubMed  CAS  Google Scholar 

  184. Araki S, Dobashi K, Kubo K, et al. Plasma visfatin concentration as a surrogate marker for visceral fat accumulation in obese children. Obesity (Silver Spring). 2008;16(2):384–8.

    Article  CAS  Google Scholar 

  185. Amarilyo G, Oren A, Mimouni FB, et al. Increased cord serum inflammatory markers in small-for-gestational-age neonates. J Perinatol. 2010.

    Google Scholar 

  186. Martos-Moreno GA, Barrios V, Sáenz de Pipaón M, et al. Influence of prematurity and growth restriction on the adipokine profile, IGF1, and ghrelin levels in cord blood: relationship with glucose metabolism. Eur J Endocrinol. 2009;161(3):381–9.

    Article  PubMed  CAS  Google Scholar 

  187. Casano-Sancho P, Lopez-Bermejo A, Fernandez-Real JM, et al. The tumour necrosis factor (TNF)-alpha-308GA promoter polymorphism is related to prenatal growth and postnatal insulin resistance. Clin Endocrinol (Oxf). 2006;64(2):129–35.

    Article  CAS  Google Scholar 

  188. Jefferies CA, Hofman PL, Keelan JA, Robinson EM, Cutfield WS. Insulin resistance is not due to persistently elevated serum tumor necrosis-alpha levels in small for gestational age, premature, or twin children. Pediatr Diabetes. 2004;5(1):20–5.

    Article  PubMed  Google Scholar 

  189. Willemsen RH, van Dijk M, de Rijke YB, et al. Effect of growth hormone therapy on serum adiponectin and resistin levels in short, small-for-gestational-age children and associations with cardiovascular risk parameters. J Clin Endocrinol Metab. 2007;92(1):117–23.

    Article  PubMed  CAS  Google Scholar 

  190. Murano I, Barbatelli G, Parisani V, et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res. 2008;49(7):1562–8.

    Article  PubMed  CAS  Google Scholar 

  191. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–300.

    Article  PubMed  CAS  Google Scholar 

  192. Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118(6):2316–24.

    PubMed  CAS  Google Scholar 

  193. Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem. 2008;283(20):13611–26.

    Article  PubMed  CAS  Google Scholar 

  194. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005;135(6):1382–6.

    PubMed  CAS  Google Scholar 

  195. Lillycrop KA, Phillips ES, Torrens C, et al. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr. 2008;100(2):278–82.

    Article  PubMed  CAS  Google Scholar 

  196. Moon YS, Smas CM, Lee K, et al. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol. 2002;22(15):5585–92.

    Article  PubMed  CAS  Google Scholar 

  197. Jimenez-Chillaron JC, Isganaitis E, Charalambous M, et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes. 2009;58(2):460–8.

    Article  PubMed  CAS  Google Scholar 

  198. Lee J, Saha PK, Yang QH, et al. Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci USA. 2008;105(49):19229–34.

    Article  PubMed  CAS  Google Scholar 

  199. Nakade K, Pan J, Yoshiki A, et al. JDP2 suppresses adipocyte differentiation by regulating histone acetylation. Cell Death Differ. 2007;14(8):1398–405.

    Article  PubMed  CAS  Google Scholar 

  200. Gupta RK, Arany Z, Seale P, et al. Transcriptional control of preadipocyte determination by Zfp423. Nature. 2010;464(7288):619–23.

    Article  PubMed  CAS  Google Scholar 

  201. Abella A, Dubus P, Malumbres M, et al. Cdk4 promotes adipogenesis through PPARgamma activation. Cell Metab. 2005;2(4):239–49.

    Article  PubMed  CAS  Google Scholar 

  202. Fajas L, Landsberg RL, Huss-Garcia Y, et al. E2Fs regulate adipocyte differentiation. Dev Cell. 2002;3(1):39–49.

    Article  PubMed  CAS  Google Scholar 

  203. Fontaine C, Staels B. The orphan nuclear receptor Rev-erbalpha: a transcriptional link between circadian rhythmicity and cardiometabolic disease. Curr Opin Lipidol. 2007;18(2):141–6.

    Article  PubMed  CAS  Google Scholar 

  204. Lehrke M, Lazar MA. The many faces of PPARgamma. Cell. 2005;123(6):993–9.

    Article  PubMed  CAS  Google Scholar 

  205. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289–312.

    Article  PubMed  CAS  Google Scholar 

  206. Lefterova MI, Zhang Y, Steger DJ, et al. PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 2008;22(21):2941–52.

    Article  PubMed  CAS  Google Scholar 

  207. Brey CW, Nelder MP, Hailemariam T, Gaugler R, Hashmi S. Kruppel-like family of transcription factors: an emerging new frontier in fat biology. Int J Biol Sci. 2009;5(6):622–36.

    Article  PubMed  CAS  Google Scholar 

  208. Jin W, Takagi T, Kanesashi SN, et al. Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell. 2006;10(4):461–71.

    Article  PubMed  CAS  Google Scholar 

  209. Moise AR, Lobo GP, Erokwu B, et al. Increased adiposity in the retinol saturase-knockout mouse. FASEB J. 2010;24(4):1261–70.

    Article  PubMed  CAS  Google Scholar 

  210. Suh JM, Zeve D, McKay R, et al. Adipose is a conserved dosage-sensitive antiobesity gene. Cell Metab. 2007;6(3):195–207.

    Article  PubMed  CAS  Google Scholar 

  211. Sul HS. Minireview: Pref-1: role in adipogenesis and esenchymal cell fate. Mol Endocrinol. 2009;23(11):1717–25.

    Article  PubMed  CAS  Google Scholar 

  212. Yu C, Markan K, Temple KA, et al. The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor gamma transcriptional activity and repress 3T3-L1 adipogenesis. J Biol Chem. 2005;280(14):13600–5.

    Article  PubMed  CAS  Google Scholar 

  213. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–6.

    Article  PubMed  CAS  Google Scholar 

  214. Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007;6(2):105–14.

    Article  PubMed  CAS  Google Scholar 

  215. Suh JM, Gao X, McKay J, et al. Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab. 2006;3(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  216. Leonardsson G, Steel JH, Christian M, et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci USA. 2004;101(22):8437–42.

    Article  PubMed  CAS  Google Scholar 

  217. Guo W, Flanagan J, Jasuja R, et al. The effects of myostatin on adipogenic differentiation of human bone marrow-derived mesenchymal stem cells are mediated through cross-communication between Smad3 and Wnt/beta-catenin signaling pathways. J Biol Chem. 2008;283(14):9136–45.

    Article  PubMed  CAS  Google Scholar 

  218. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996;10:1096–107.

    Article  PubMed  CAS  Google Scholar 

  219. Postic C, Dentin R, Denechaud PD, Girard J. ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annu Rev Nutr. 2007;27:179–92.

    Article  PubMed  CAS  Google Scholar 

  220. Phan J, Reue K. Lipin, a lipodystrophy and obesity gene. Cell Metab. 2005;1(1):73–83.

    Article  PubMed  CAS  Google Scholar 

  221. Beylot M, Peroni O, Diraison F, Large V. In vivo studies of intrahepatic metabolic pathways. Diab Metab. 1997;23(3):251–7.

    CAS  Google Scholar 

  222. Jimenez-Chillaron JC, Hernandez-Valencia M, Lightner A, et al. Reductions in caloric intake and early postnatal growth prevent glucose intolerance and obesity associated with low birthweight. Diabetologia. 2006;49(8):1974–84.

    Article  PubMed  CAS  Google Scholar 

  223. Woo M, Patti ME. Diabetes risk begins in utero. Cell Metab. 2008;8(1):5–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge research grant support from the American Diabetes Association (research grant and mentored postdoctoral fellowship awards to MEP and EI), the Graetz Foundation (to MEP), the Lawson-Wilkins Pediatric Endocrine Society (to EI), and Canadian Institutes of Health Research (to EI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Isganaitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Isganaitis, E., Patti, ME. (2011). Adipocyte Development and Experimental Obesity. In: Lustig, R. (eds) Obesity Before Birth. Endocrine Updates, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7034-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7034-3_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7033-6

  • Online ISBN: 978-1-4419-7034-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics