Skip to main content

Self-assembled Nanogel Engineering

  • Chapter
  • First Online:
Biomedical Applications of Hydrogels Handbook

Abstract

Functional nanogels have been designed by the self-assembly of various associating polymers. In particular, cholesterol-bearing polysaccharides form physically crosslinked nanogels by self-assembly in water. The nanogels trap proteins mainly by hydrophobic interaction and show chaperon-like activity. They are useful as polymeric nanocarriers especially in protein delivery. Macrogels with well-defined nanostructures were obtained by self-assembly and chemical crosslinking of these nanogels as building blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708

    Article  CAS  Google Scholar 

  2. Oh JK, Drumright R, Siegwart DJ et al (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477

    Article  CAS  Google Scholar 

  3. Akiyoshi K, Deguchi S, Moriguchi N et al (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–3068

    Article  CAS  Google Scholar 

  4. Akiyoshi K, Deguchi S, Tajima H et al (1997) Microscopic structure and thermoresponsiveness of a hydrogels nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules 30:857–861

    Article  CAS  Google Scholar 

  5. Kuroda K, Fujimoto K, Sunamoto J et al (2002) Hierarchical self-assembly of hydrophobically modified pullulan in water: gelsation by networks of nanoparticles. Langmuir 18:3780–3786

    Article  CAS  Google Scholar 

  6. Akiyoshi K, Sunamoto J (1996) Supramolecular assembly of hydrophobized polysaccharide. Supramol Sci 3:157–163

    Article  CAS  Google Scholar 

  7. Morimoto N, Nomura SM, Miyazawa N et al (2006) Nanogel engineered designs for polymeric drug delivery. In: Svenson S (ed) Polymeric drug delivery volume ii – polymeric matrices and drug particle engineering, ACS Symposium Series 924. American Chemical Society, Washington, DC

    Google Scholar 

  8. Akiyama E, Morimoto N, Kujawa P et al (2007) Self-assembled nanogels of cholesteryl-modified polysaccharides: effect of the polysaccharide structure on their association characteristics in the dilute and semi-dilute regimes. Biomacromolecules 8:2366–2373

    Article  CAS  Google Scholar 

  9. Akiyoshi K, Ueminami A, Kurumada S et al (2000) Self-association of cholesteryl-bearing poly(l-lysine) in water and control of its secondary structure by host-guest interaction with cyclodextrin. Macromolecules 33:6752–6756

    Article  CAS  Google Scholar 

  10. Akiyoshi K, Kang E-C, Kurumada S et al (2000) Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly(N-­isopropylacrylamides). Macromolecules 33:3244–3249

    Article  CAS  Google Scholar 

  11. Morimoto N, Winnik FM, Akiyoshi K (2007) Botryoidal assembly of cholesteryl-pullulan/poly(N-­isopropylacrylamide) nanogels. Langmuir 23:217–223

    Article  CAS  Google Scholar 

  12. Morimoto N, Qiu XP, Winnik FM et al (2008) Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecules 41:5985–5987

    Article  CAS  Google Scholar 

  13. Morimoto N, Obeid R, Yamane S et al (2009) Composite nanomaterials by self-assembly and controlled crystallization of poly(2-isopropyl-2-oxazoline)-grafted polysaccharide. Soft Matter 5:1597–1600

    Article  CAS  Google Scholar 

  14. Hirakura T, Nomura Y, Aoyama Y et al (2004) Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones. Biomacromolecules 5:1804–1809

    Article  CAS  Google Scholar 

  15. Nishikawa T, Akiyoshi K, Sunamoto J (1994) Supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the self-aggregate of cholesterol-bearing pullulan and alpha-chymotrypsin. Macromolecules 27:7654–7659

    Article  CAS  Google Scholar 

  16. Nishikawa T, Akiyoshi K, Sunamoto J (1996) Macromolecular complexation between bovine serum albumin and self-assembled hydrogel nanoparticle of hydrophobized polysaccharides. J Am Chem Soc 118:6110–6115

    Article  CAS  Google Scholar 

  17. Akiyoshi K, Sasaki Y, Sunamoto J (1999) Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B. Bioconj Chem 10:321–324

    Article  CAS  Google Scholar 

  18. Nomura Y, Ikeda M, Yamaguchi N et al (2003) Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone. FEBS Lett 553:271–276

    Article  CAS  Google Scholar 

  19. Nomura Y, Sasaki Y, Takagi M et al (2005) Thermoresponsive controlled association of protein with a dynamic nanogel of hydrophobized polysaccharide and cyclodextrin: heat shock protein-like activity of artificial molecular chaperone. Biomacromolecules 6:447–452

    Article  CAS  Google Scholar 

  20. Kopecek J (2002) Swell gels. Nature 417:388–390

    Article  CAS  Google Scholar 

  21. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  CAS  Google Scholar 

  22. Byrne ME, Park K, Peppas NA (2002) Molecular imprinting within hydrogels. Adv Drug Deliv Rev 54:149–161

    Article  CAS  Google Scholar 

  23. Akiyoshi K, Kobayashi S, Shichibe S et al (1998) Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release 54:313–320

    Article  CAS  Google Scholar 

  24. Gu X-G, Schmitt M, Hiasa A et al (1998) A novel hydrophobized polysaccharide/oncoprotein complex vaccine induces in vitro and in vivo cellular and humoral immune responses against HER2 expressing murine sarcoma. Cancer Res 58:3385–3390

    CAS  Google Scholar 

  25. Ikuta Y, Katayama N, Wang L et al (2002) Presentation of a major histocompatibility complex class 1-binding peptide by monocyte-derived dendritic cells incorporating hydrophobized polysaccharide-truncated HER2 protein complex: implications for a polyvalent immuno-cell therapy. Blood 99:3717–3724

    Article  CAS  Google Scholar 

  26. Kitano S, Kageyama S, Nagata Y et al (2006) Induction of HER2-specific T Cell immune responses in patients vaccinated with truncated HER2 A. Clin Cancer Res 2:7397–7405

    Article  Google Scholar 

  27. Kageyama S, Kitano S, Hirayama M et al (2008) Humoral immune responses in patients vaccinated with HER2 protein complexed with cholesteryl pullulan nanogel (CHP-HER2). Cancer Sci 99:601–607

    Article  CAS  Google Scholar 

  28. Uenaka A, Wada H, Isobe M et al (2007) T cell immunomonitoring and tumor responses in patients immunized with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein. Cancer Immun 7:9–20

    Google Scholar 

  29. Alles N, Soysa NS, Mian AH et al (2009) Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. Eur J Pharm Sci 37:83–88

    Article  CAS  Google Scholar 

  30. Shimizu T, Kishida T, Hasegawa U et al (2008) Nanogel DDS enables sustained release of a cytokine for tumor immunotherapy. Biochem Biophys Res Commun 367:330–335

    Article  CAS  Google Scholar 

  31. Ayame H, Morimoto N, Akiyoshi K (2008) Self-assembled cationic nanogels for intracellular protein delivery system. Bioconj Chem 19:882–890

    Article  CAS  Google Scholar 

  32. Morimoto N, Tamada J, Sawada S et al (2009) Interaction of self-assembled cationic nanogels with oligo-dna and function as artificial nucleic acid chaperone. Chem Lett 38:496–497

    Article  CAS  Google Scholar 

  33. Sugawara A, Yamane S, Akiyoshi K (2006) Nanogel-templated mineralization: polymer-calcium phosphate hybrid nanomaterials. Macromol Rapid Commun 27:441–446

    Article  CAS  Google Scholar 

  34. Yamane S, Sugawara A, Sasaki Y et al (2009) Nanogel-calcium phosphate hybrid nanoparticles with negative or positive charges for potential biomedical applications. Bull Chem Soc Jpn 82:416–418

    Article  CAS  Google Scholar 

  35. Yamane S, Sugawara A, Watanabe A et al (2009) Hybrid nanoapatitby polysaccharide nanogel-templated mineralization. J Bioact Compat Polym 24:129–150

    Article  Google Scholar 

  36. Hasegawa U, Nomura SM, Kaul CS et al (2005) Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem Biophys Res Commun 331:917–921

    Article  CAS  Google Scholar 

  37. Toita S, Hasegawa U, Koga H et al (2008) Protein-conjugated QD effectively delivered into living cells by a cationic nanogel. J Nanosci Nanotechol 8:1–7

    Article  Google Scholar 

  38. Fukui T, Kobayashi H, Hasegawa U et al (2007) Intracellular delivery of nanogel-quantum dot hybrid nanoparticles into human periodontal ligament cells. Drug Metab Lett 1:131–135

    Article  CAS  Google Scholar 

  39. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36

    Article  CAS  Google Scholar 

  40. Morimoto N, Endo T, Iwasaki Y et al (2005) Design of hybrid hydrogels with self-assembled nanogels as cross-linkers: interaction with proteins and chaperone-like activity. Biomacromolecules 6:1829–1834

    Article  CAS  Google Scholar 

  41. Morimoto N, Ohki T, Kurita K et al (2008) Thermo-responsive hydrogels with nanodomains: rapid shrinking of nanogel-crosslinking hydrogel of poly (N-isopropyl acrylamide). Macromol Rapid Commun 29:672–676

    Article  CAS  Google Scholar 

  42. Kato N, Hasegawa U, Morimoto N et al (2007) Nanogel-based delivery system enhances PGE2 effects on bone formation. J Cell Biochem 101:1063–1070

    Article  CAS  Google Scholar 

  43. Hayashi C, Hasegawa U, Saita Y et al (2009) Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor. J Cell Phys 220:1–7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Akiyoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morimoto, N., Akiyoshi, K. (2010). Self-assembled Nanogel Engineering. In: Ottenbrite, R., Park, K., Okano, T. (eds) Biomedical Applications of Hydrogels Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5919-5_18

Download citation

Publish with us

Policies and ethics