Skip to main content

Peptide Microarrays for a Network Analysis of Changes in Molecular Interactions in Cellular Signalling

  • Chapter
  • First Online:
Systems Biology for Signaling Networks

Part of the book series: Systems Biology ((SYSTBIOL))

Abstract

Multiprotein complexes play an essential role in the propagation and integration of cellular signals. Here, peptide microarrays are employed for network-based analyses of signalling-dependent changes in molecular interactions. The peptides correspond to known interaction motifs for SH2 and SH3 domains in cellular signalling proteins. Lysates of resting or stimulated cells are incubated on these arrays and the binding of signalling proteins is detected by immunofluorescence. If, due to signalling-dependent complex formation, a binding site of a protein is blocked, the signal for this protein on the array will be reduced. In addition, complex formation may co-recruit a protein to a peptide on the array leading to the appearance of a signal. Peptides and detected proteins are selected based on available knowledge of the network. This knowledge enables a significant reduction in cell number in comparison to standard mass spectrometry-based proteomics methods for the analysis of molecular complexes. Applications comprise of a functional comparison of signalling networks in different cell types, the determination of the architecture of signalling complexes, the identification of new interactions and analyses of the role of interaction domains in connecting the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angenendt P, Glokler J, Sobek J et al (2003) Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications. J Chromatogr A 1009:97–104

    Article  Google Scholar 

  • Barber EK, Dasgupta JD, Schlossman SF et al (1989) The CD4 and CD8 antigens are coupled to a protein-tyrosine kinase (p56lck) that phosphorylates the CD3 complex. Proc Natl Acad Sci USA 86:3277–3281

    Article  CAS  PubMed  Google Scholar 

  • Bartels M, Schweda AT, Dreikhausen U et al (2007) Peptide-mediated disruption of NFkappaB/NRF interaction inhibits IL-8 gene activation by IL-1 or Helicobacter pylori. J Immunol 179:7605–7613

    CAS  PubMed  Google Scholar 

  • Bouwmeester T, Bauch A, Ruffner H et al (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105

    Article  CAS  PubMed  Google Scholar 

  • Burckstummer T, Bennett KL, Preradovic A et al (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3:1013–1019

    Article  PubMed  Google Scholar 

  • Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7:505–516

    Article  CAS  PubMed  Google Scholar 

  • Dustin ML, Chan AY (2000) Signaling takes shape in the immune system. Cell 103:283–294

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Fotin-Mleczek M, Hufnagel H et al (2005) Break on through to the other side – Biophysics and cell biology shed light on cationic cell-penetrating peptides. Chem Bio Chem 6:2126–2142

    Article  CAS  PubMed  Google Scholar 

  • Gavin AC, Bosche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  PubMed  Google Scholar 

  • Grakoui A, Bromley SK, Sumen C et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    Article  CAS  PubMed  Google Scholar 

  • Grauer OM, Nierkens S, Bennink E et al (2007) CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121:1794–1802

    Article  Google Scholar 

  • Han JD, Bertin N, Hao T et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93

    Article  CAS  PubMed  Google Scholar 

  • Horejsi V, Zhang W, Schraven B (2004) Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat Rev Immunol 4:603–616

    Article  CAS  PubMed  Google Scholar 

  • Houtman JC, Yamaguchi H, Barda-Saad M et al (2006) Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol 13:798–805

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Li L, Wu C et al (2008) Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics 7:768–784

    Article  CAS  PubMed  Google Scholar 

  • Irvin BJ, Williams BL, Nilson AE et al (2000) Pleiotropic contributions of phospholipase C-gamma1 (PLC-gamma1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-gamma1-deficient Jurkat T-cell line. Mol Cell Biol 20:9149–9161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang S, Lechler RI (2006) CD4+CD25+ regulatory T-cell therapy for allergy, autoimmune disease and transplant rejection. Inflamm Allergy Drug Targets 5:239–242

    Article  CAS  PubMed  Google Scholar 

  • Jones RB, Gordus A, Krall JA et al (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439:168–174

    Article  CAS  PubMed  Google Scholar 

  • Kroczek RA, Mages HW, Hutloff A (2004) Emerging paradigms of T-cell co-stimulation. Curr Opin Immunol 16:321–327

    Article  CAS  PubMed  Google Scholar 

  • Ladbury JE, Lemmon MA, Zhou M et al (1995) Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: A reappraisal. Proc Natl Acad Sci USA 92:3199–3203

    Article  CAS  PubMed  Google Scholar 

  • Leonard WJ, Lin JX (2000) Cytokine receptor signaling pathways. J Allergy Clin Immunol 105:877–888

    Article  CAS  PubMed  Google Scholar 

  • Li SS (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Weiss A (2001) Identification of the minimal tyrosine residues required for linker for activation of T cell function. J Biol Chem 276:29588–29595

    Article  CAS  PubMed  Google Scholar 

  • Liu BA, Jablonowski K, Raina M et al (2006) The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 22:851–868

    Article  PubMed  Google Scholar 

  • Machida K, Thompson CM, Dierck K et al (2007) High-throughput phosphotyrosine profiling using SH2 domains. Mol Cell 26:899–915

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer CM, Blohm D (1999) DNA microarrays. Angew Chemie Int Ed 38:2865–2869

    Article  CAS  Google Scholar 

  • Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452

    Article  CAS  PubMed  Google Scholar 

  • Paz PE, Wang S, Clarke H et al (2001) Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells. Biochem J 356:461–471

    Article  CAS  PubMed  Google Scholar 

  • Puntervoll P, Linding R, Gemund C et al (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31:3625–3630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rawlings DJ, Sommer K, Moreno-Garcia ME (2006) The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol 6:799–812

    Article  CAS  PubMed  Google Scholar 

  • Rinner O, Mueller LN, Hubalek M et al (2007) An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat Biotechnol 25:345–352

    Article  CAS  PubMed  Google Scholar 

  • Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Secrist JP, Burns LA, Karnitz L et al (1993) Stimulatory effects of the protein-tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem 268:5886–5893

    CAS  PubMed  Google Scholar 

  • Stiffler MA, Chen JR, Grantcharova VP et al (2007) PDZ domain binding selectivity is optimized across the mouse proteome. Science 317:364–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stoevesandt O, Kohler K, Wolf S et al (2007) A network analysis of changes in molecular interactions in cellular signaling. Mol Cell Proteomics 6:503–513

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  CAS  PubMed  Google Scholar 

  • Thome M (2004) CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol 4:348–359

    Article  CAS  PubMed  Google Scholar 

  • Turner M, Billadeau DD (2002) VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat Rev Immunol 2:476–486

    Article  CAS  PubMed  Google Scholar 

  • Tzivion G, Avruch J (2002) 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem. 277:3061–3064

    Article  CAS  PubMed  Google Scholar 

  • Wange RL (2000) LAT, the linker for activation of T cells: a bridge between T cell-specific and general signaling pathways. Sci STKE 63:RE1

    Google Scholar 

  • Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3:177–186

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Sloan-Lancaster J, Kitchen J et al (1998) LAT: The ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92:83–92

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Trible RP, Zhu M et al (2000) Association of Grb2, Gads and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J Biol Chem 275:23355–23361

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Brock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sinzinger, M.D., Brock, R. (2010). Peptide Microarrays for a Network Analysis of Changes in Molecular Interactions in Cellular Signalling. In: Choi, S. (eds) Systems Biology for Signaling Networks. Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5797-9_28

Download citation

Publish with us

Policies and ethics