Skip to main content

Nitric Oxide-Releasing Molecules for Cancer Therapy and Chemoprevention

  • Chapter
  • First Online:
Nitric Oxide (NO) and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1111 Accesses

Abstract

The Nobel Prize for Medicine and Physiology in 1998 to Furchgott, Ignarro, and Murad provided a new impetus to research in prodrugs of the messenger molecule, nitric oxide (NO). Although more famously known for its cardiovascular roles in the treatment of angina (nitrates) and more recently erectile dysfunction (Viagra®), NO has been extensively researched within the realm of cancer biology. This review briefly highlights the various chemical classes of NO donors with potential utility in cancer chemotherapy and chemoprevention. These molecules release NO upon bioactivation and thus engender the therapeutic rationale of using them in a clinical setting. Bearing these factors in mind, and in the light of current research findings, special emphasis is given to a newer generation of NORMs (nitric oxide-releasing molecules), viz., NONOates, NO-NSAIDs, and furoxans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Kaabi, S.S., Williams, D.L.H., Bonnett, R., and Ooi, S.L. (1982). A kinetic investigation of the thionitrite from (±)-2-acetylamino-2-carboxy-1,1-dimethylethanethiol as a possible nitrosating agent. J. Chem. Soc. Perkin Trans. 2, 227–230.

    Google Scholar 

  • Albert, A. (1958). Chemical aspects of selective toxicity. Nature 182, 421–423.

    Article  PubMed  CAS  Google Scholar 

  • Alston, T.A., Porter, D.J., and Bright, H.J. (1985). Generation of nitric oxide by enzymatic oxidation of N-hydroxy-N-nitrosamines. J. Biol. Chem. 260, 4069–4074.

    PubMed  CAS  Google Scholar 

  • Armstrong, R.N. (1991). Glutathione S-transferases: Reaction mechanism, structure, and function. Chem. Res. Toxicol. 4, 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, R.N. (1997). Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol. 10, 2–18.

    Article  PubMed  CAS  Google Scholar 

  • Balbo, S., Lazzarato, L., Di Stilo, A., Fruttero, R., Lombaert, N., and Kirsch-Volders, M. (2008). Studies of the potential genotoxic effects of furoxans: The case of Cas 1609 and of the water-soluble analogue of Chf 2363. Toxicol. Lett. 178, 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, J.J. (1987). Drug design, drug discovery development In Williams, M., and Malick, J.B. (ed.). (p. 447). Clifton, NJ, Humana Press.

    Google Scholar 

  • Becker, J.C., Domschke, W., and Pohle, T. (2004). Current approaches to prevent Nsaid-Induced gastropathy – Cox selectivity and beyond. Br. J. Clin. Pharmacol. 58, 587–600.

    Article  PubMed  CAS  Google Scholar 

  • Bell, G.I., Burant, C.F., Takeka, J., and Gould, G.W. (1993). Structure and Function of Mammalian Facilitative Sugar Transporters. J. Biol. Chem. 268, 19161–19164.

    PubMed  CAS  Google Scholar 

  • Bennett, A., Tacca, M.D., Stamford, I.F., and Zebro, T. (1977). Prostaglandins from tumours of human large bowel. Br. J. Cancer. 35, 881–884.

    Article  PubMed  CAS  Google Scholar 

  • Bohn, H., Brendel, J., Martorana, P.A., and Schönafinger, K. (1995). Cardiovascular actions of the furoxan cas 1609, a Novel nitric oxide donor. Br. J. Pharmacol. 114, 1605–1612.

    Article  PubMed  CAS  Google Scholar 

  • Boiani, M., Cerecetto, H., González, M., Risso, M., Olea-Azar, C., Piro, O.E., Castellano, E.E., López de Ceráin, A., Ezpeleta, O., and Monge-Vega, A. (2001). 1, 2, 5-Oxadiazole N-oxide derivatives as potential anti-cancer agents: Synthesis and biological evaluation. Part Iv. Eur. J. Med. Chem. 36, 771–782.

    Article  CAS  Google Scholar 

  • Bolla, M., Almirante, N., and Benedini, F. (2005). Therapeutic potential of nitrate esters of commonly used drugs. Curr. Top. Med. Chem. 5, 707–720.

    Article  PubMed  CAS  Google Scholar 

  • Brzozowska, I., Targosz, A., Sliwowski, Z., Drozdowicz, S.K.D., Pajdo, R., Konturek, P.C., Brzozowski, T., Pawlik, M., Konturek, S.J., Pawlik, W.W., and Hahn, E.G. (2004). Healing of chronic gastric ulcers in diabetic rats treated with native aspirin, nitric oxide (No)-derivative of aspirin and cyclooxygenase (Cox)-2 inhibitor. J. Physiol. Pharmacol. 55, 773–790.

    PubMed  CAS  Google Scholar 

  • Buonsanti, M.F., Bertinaria, M., Di Stilo, A., Cena, C., Fruttero, R., and Gasco, A. (2007). Nitric oxide donor B2-agonists: Furoxan derivatives containing the fenoterol moiety and related furazans. J. Med. Chem. 50, 5003–5011.

    Article  PubMed  CAS  Google Scholar 

  • Burgaud, J.L., Ongini, E., and del Soldato, P. (2002a). Nitric oxide-releasing drugs. Ann. N. Y. Acad. Sci. 962, 360–371.

    Article  PubMed  CAS  Google Scholar 

  • Burgaud, J.L., Riffaud, J.P., and Soldato, P. (2002b). Nitric-oxide releasing molecules: A new class of drugs with several major indications. Curr. Pharm. Des. 8, 201–213.

    Article  PubMed  CAS  Google Scholar 

  • Cai, T.B., Tang, X., Nagorski, J., Brauschweiger, P.G., and Wang, P.G. (2003). Synthesis and cytotoxicity of 5-fluorouracil/diazeniumdiolate conjugates. Bioorg. Med. Chem. 11, 4971–4975.

    Article  PubMed  CAS  Google Scholar 

  • Calvino, R., Mortarini, V., Gasco, A., and Sanfilippo, A. (1980). Antimicrobial properties of some furazan and furoxan derivatives. Eur. J. Med. Chem. 15, 485–487.

    CAS  Google Scholar 

  • Cerecetto, H., Di Maio, R., Gonzalez, M., Risso, M., Saenz, P., Seoane, G., Denicola, A., Peluffo, G., Quijano, C. and Olea-Azar, C. (1999). 1, 2, 5-Oxadiazole N-Oxide Derivatives and related compounds as potential antitrypanosomal drugs: structure-activity relationships. J. Med. Chem. 42, 1941–1950.

    Article  PubMed  CAS  Google Scholar 

  • Cerecetto, H. and González, M. (2007). Benzofuroxan and furoxan. chemistry and biology, bioactive heterocycles Iv (ed.) (Vol. 10, pp. 265–308) Springer Berlin/Heidelberg.

    Google Scholar 

  • Cerecetto, H., González, M., Risso, M., Seoane, G., Ceráin, A.L. d., Ezpeleta, O., Monge, A., Suescun, L., Mombrú, A., and Bruno, A.M. (2000). Synthesis and biological evaluation of 1, 2, 5-oxadiazole N-oxide derivatives as potential hypoxic cytotoxins and DNA-binders. Arch. Pharm. (Weinheim) 333, 387–393.

    Article  CAS  Google Scholar 

  • Chaiswing, L., Zhong, W., Cullen, J.J., Oberley, L.W., and Oberley, T.D. (2008). Extracellular redox state regulates features associated with prostate cancer cell invasion. Cancer Research 68, 5820–5826.

    Article  PubMed  CAS  Google Scholar 

  • Chakrapani, H., Bartberger, M.D., and Toone, E.J. (2009). C-nitroso donors of nitric oxide. J. Org. Chem. 74, 1450–1453.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Zhang, Y., Kong, X., Lan, E., Huang, Z., Peng, S., Kaufman, D.L., and Tian, J. (2008). Design, synthesis, and antihepatocellular carcinoma activity of nitric oxide releasing derivatives of oleanolic acid. J. Med. Chem. 51, 4834–4838.

    Article  PubMed  CAS  Google Scholar 

  • Christiaans, J.A.M. and Timmerman, H. (1996). Cardiovascular hybrid drugs: Combination of more than one pharmacological property in one single molecule. Eur. J. Pharm. Sci. 4, 1–22.

    Article  CAS  Google Scholar 

  • Civelli, M., Giossi, M., Caruso, P., Razzetti, R., Bergamaschi, M., Bongrani, S., and Gasco, A. (1996). The involvement of the release of nitric oxide in the pharmacological activity of the new furoxan derivative Chf 2363. Br. J. Pharmacol. 118, 923–928.

    Article  PubMed  CAS  Google Scholar 

  • Davies, N.M., Røseth, A.G., Appleyard, C.B., McKnight, W., Soldato, P.D., Calignano, A., Cirino, G., and Wallace, J.L. (1997). No-naproxen vs. naproxen: Ulcerogenic, analgesic and anti-inflammatory effects. Aliment. Pharmacol. Ther. 11, 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Di Napoli, M. and Papa, F. (2003). Ncx-4016 Nicox. Curr. Opin. Investig. Drugs 4, 1126–1139.

    PubMed  Google Scholar 

  • Dunlap, T., Abdul-Hay, S.O., Chandrasena, R.E.P., Hagos, G.K., Sinha, V., Wang, Z., Wang, H., and Thatcher, G.R.J. (2008). Nitrates and No-nsaids in cancer chemoprevention and therapy: In Vitro evidence querying the no donor functionality. Nitric Oxide 19, 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, T., Chandrasena, R.E.P., Wang, Z., Sinha, V., Wang, Z., and Thatcher, G.R.J. (2007). Quinone formation as a chemoprevention strategy for hybrid drugs: Balancing cytotoxicity and cytoprotection. Chem. Res. Toxicol. 20, 1903–1912.

    Article  PubMed  CAS  Google Scholar 

  • Fabbri, F., Brigliadori, G., Ulivi, P., Tesei, A., Vannini, I., Rosetti, M., Bravaccini, S., Amadori, D., Bolla, M., and Zoli, W. (2005). Pro-apoptotic effect of a nitric oxide-donating Nsaid, Ncx 4040, on bladder carcinoma cells. Apoptosis 10, 1095–1103.

    Article  PubMed  CAS  Google Scholar 

  • Feelisch, M., Schönafingeri, K., and Noack, H. (1992). Thiol-mediated generation of nitric oxide Accounts for the vasodilator action of furoxans. Biochem. Pharmacol. 44, 1149–1157.

    Article  PubMed  CAS  Google Scholar 

  • Ferioli, R., Folco, G.C., Ferretti, C., Gasco, A.M., Medana, C., Fruttero, R., Civelli, M., and Gasco, A. (1995). A new class of furoxan derivatives as no donors: Mechanism of action and biological activity. Br. J. Pharmacol. 114, 816–820.

    Article  PubMed  CAS  Google Scholar 

  • Findlay, V.J., Townsend, D.M., Saavedra, J.E., Buzard, G.S., Citro, M.L., Keefer, L.K., Ji, X., and Tew, K.D. (2004). Tumor cell responses to a novel glutathione S-transferase-activated nitric oxide-releasing prodrug. Mol. Pharmacol. 65, 1070–1079.

    Article  PubMed  CAS  Google Scholar 

  • Fiorucci, S., Santucci, L., Cirino, G., Mencarelli, A., Familiari, L., Soldato, P.D., and Morelli, A. (2000). Il-1b converting enzyme is a target for nitric oxide-releasing aspirin: New insights in the antiinflammatory mechanism of nitric oxide-releasing nonsteroidal antiinflammatory drugs. J. Immunol. 165, 5245–5254.

    PubMed  CAS  Google Scholar 

  • Fruttero, R., Ferrarotti, B., Serafino, A., Di Stilo, A., and Gasco, A. (1989). Unsymmetrically substituted furoxans. Part 11. Methylfuroxancarbaldehydes. J. Het. Chem. 26, 1345–1347.

    Article  CAS  Google Scholar 

  • Furchgott, R.F. (1999). Endothelium-derived relaxing factor: Discovery, early studies, and identification as nitric oxide (Nobel Lecture). Angew. Chem. Intd. Ed. 38, 1870–1880.

    Article  CAS  Google Scholar 

  • Gasco, A., Fruttero, R., Sorba, G., Stilo, A.D., and Calvino, R. (2004). No donors: Focus on furoxan derivatives. Pure Appl. Chem. 76, 973–981.

    Article  CAS  Google Scholar 

  • Ghosh, P., Ternai, B., and Whitehouse, M. (1981). Benzofurazans and Benzofuroxans: biochemical and pharmacological properties. Med. Res. Rev. 1, 159–187.

    Google Scholar 

  • Ghosh, P.B. and Whitehouse, M.W. (1968). Potential antileukemic and immunosuppressive drugs. Preparation and in vitro pharmacological activity of some 2, 1, 3-benzoxadiazoles (benzofurazans) and their N-oxides (benzofuroxans). J. Med. Chem. 11, 305–311.

    Article  PubMed  CAS  Google Scholar 

  • Gooden, D.M., Chakrapani, H., and Toone, E.J. (2005). C-nitroso compounds: synthesis, physicochemical properties and biological activities. Curr. Top. Med. Chem. 5, 687–705.

    Article  PubMed  CAS  Google Scholar 

  • Govoni, M., Casagrande, S., Maucci, R., Chiroli, V., and Tocchetti, P. (2006). In vitro metabolism of (Nitrooxy)butyl ester nitric oxide-releasing compounds: Comparison with glyceryl trinitrate. J. Pharmacol. Exp. Ther. 317, 752–761.

    Article  PubMed  CAS  Google Scholar 

  • Greene, F.D. and Gilbert, K.E. (1975). Cyclic azo dioxides. Preparation, properties, and consideration of azo dioxide-nitrosoalkane equilibriums. J. Org. Chem. 40, 1409–1415.

    Article  CAS  Google Scholar 

  • Guo, Z., Ramirez, J., Li, J., and Wang, P.G. (1998). Peptidyl N-nitrosoanilines: A novel class of cysteine protease inactivators. J. Am. Chem. Soc. 120, 3726–3734.

    Article  CAS  Google Scholar 

  • Guo, Z., Xian, M., Zhang, W., McGill, A., and Wang, P.G. (2001). N-nitrosoanilines: A new class of caspase-3 inhibitors. Bioorg. Med. Chem. 9, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Hagos, G.K., Abdul-Hay, S.O., Sohn, J., Edirisinghe, P.D., Chandrasena, R.E.P., Wang, Z., Li, Q., and Thatcher, G.R.J. (2008). Anti-inflammatory, antiproliferative, and cytoprotective activity of no chimera nitrates of use in cancer chemoprevention. Mol. Pharmacol. 74, 1381–1391.

    Article  PubMed  CAS  Google Scholar 

  • Hou, Y., Wang, J.-Q., Andreana, P.R., Cantaurea, G., Tarasia, S., Sharp, L., Brauschweiger, P.G., and Wang, P.G. (1999a). Targeting nitric oxide to cancer cells: Cytotoxicity studies of glyco-S-nitrosothiols. Bioorg. Med. Chem. Lett. 9, 2255–2258.

    Article  PubMed  CAS  Google Scholar 

  • Hou, Y., Wang, J.-Q., Ramirez, J., Wang, P.G. (1999b). Glyco-S-Nitrosothiols: sugar-snap, a new type of nitric oxide donor, methods in Enzymology: In Packer, L. (ed.), Nitric oxide part C: biological and antioxidant activities. Academic, San Diego, CA. 301, 242–249.

    Google Scholar 

  • Hou, Y., Xie, W., Janczuk, A.J., and Wang, P.G. (2000a). O-alkylation of cupferron:aiming at the design and synthesis of controlled nitric oxide releasing agents. J. Org. Chem. 6, 4333–4337.

    Article  CAS  Google Scholar 

  • Hou, Y., Xie, W., Ramachandran, N., Mutus, B., Janczuk, A.J., and Wang, P.G. (2000b). O-alkylation chemistry of neocupferron. Tet. Lett. 41, 451–456.

    Article  CAS  Google Scholar 

  • Hrabie, J.A. and Keefer, L.K. (1999). Preparation of novel nitric oxide-releasing amidine- and enamine-derived diazeniumdiolates as drugs. USPTO. United States of America: 59.

    Google Scholar 

  • Hrabie, J.A. and Keefer, L.K. (2002). Chemistry of the nitric oxide-releasing diazeniumdiolate (“Nitrosohydroxylamine”) functional group and its oxygen-substituted derivatives. Chem. Rev. 102, 1135–1154.

    Article  PubMed  CAS  Google Scholar 

  • Hulsman, N., Medema, J.P., Bos, C., Jongejan, A., Leurs, R., Smit, M.J., de Esch, I.J.P., Richel, D., and Wijtmans, M. (2007). Chemical insights in the concept of hybrid drugs: The antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin. J. Med. Chem. 50, 2424–2431.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J. (1999). Nitric oxide: A unique endogenous signaling molecule in vascular biology (Nobel Lecture). Angew. Chem. Intd. Ed. 38, 1882–1892.

    Article  CAS  Google Scholar 

  • Ignarro, L.J. and Gruetter, C.A. (1980). Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite: Possible involvement of S-nitrosothiols. Biochim. Biophys. Acta 63, 221–231.

    Article  Google Scholar 

  • Jaffe, B.M. (1974). Prostaglandins and cancer: An update. prostaglandins 6, 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., and Thun, M.J. (2008). Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96.

    Article  PubMed  Google Scholar 

  • Ji, X., Pal, A., Kalathur, R., Hu, X., Gu, Y., Saavedra, J.E., Buzard, G.S., Srinivasan, A., Keefer, L.K., and Singh, S.V. (2008). Structure-based design of anticancer prodrug Paba/No. Drug Des. Dev. Ther. 2, 123–130.

    Article  CAS  Google Scholar 

  • Keefer, L.K. (2003). Progress toward clinical application of the nitric oxide-releasing diazeniumdiolates. Annu. Rev. Pharmacol. Toxicol. 43, 585–607.

    Article  PubMed  CAS  Google Scholar 

  • Keefer, L.K. (2005). Nitric Oxide (No) and Nitroxyl (Hno) generating diazeniumdiolates (Nonoates): Emerging commercial opportunities. Curr. Top. Med. Chem. 5, 625–636.

    Article  PubMed  CAS  Google Scholar 

  • Keefer, L.K., Nims, R.W., Davies, K.M., Wink, D.A., and Lester, P. (1996). “Nonoates” (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: Convenient nitric oxide dosage forms, methods in enzymology (Vol., 268, pp. 281–293). (ed.). Academic Press.

    Google Scholar 

  • King, S.B. (2005). N-hydroxyurea and acyl nitroso compounds as nitroxyl (Hno) and nitric oxide (No) donors. Curr. Top. Med. Chem. 5, 665–673.

    Article  PubMed  CAS  Google Scholar 

  • Kirilyuk, I.A., Utepbergenov, D.I., Mazhukin, D.G., Fechner, K., Mertsch, K., Khramtsov, V.V., Blasig, I.E., and Haseloff, R.F. (1998). Thiol-induced nitric oxide release from 3-halogeno-3,4-dihydrodiazete 1,2-dioxides. J. Med. Chem. 41, 1027–1033.

    Article  PubMed  CAS  Google Scholar 

  • Kitagaki, J., Yang, Y., Saavedra, J.E., Colburn, N.H., Keefer, L.K., and Perantoni, A.O. (2008). Nitric oxide prodrug Js-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type P53. Oncogene 28, 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, H., Takeda, F., and Kohei, H. (1990). Effect of endothelium-derived relaxing factor on the gastric lesion induced by Hcl in rats. J. Pharmacol. Exp. Ther. 253, 1133–1137.

    PubMed  CAS  Google Scholar 

  • Kiziltepe, T., Hideshima, T., Ishitsuka, K., Ocio, E.M., Raje, N., Catley, L., Li, C.-Q., Trudel, L.J., Yasui, H., Vallet, S., Kutok, J.L., Chauhan, D., Mitsiades, C.S., Saavedra, J.E., Wogan, G.N., Keefer, L.K., Shami, P.J., and Anderson, K.C. (2007). Js-K, a Gst-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood 110, 709–718.

    Article  PubMed  CAS  Google Scholar 

  • Kleschyov, A.L., Oelze, M., Daiber, A., Huang, Y., Mollnau, H., Schulz, E., Sydow, K., Fichtlscherer, B., Mulsch, A., and Munzel, T. (2003). Does nitric oxide mediate the vasodilator activity of nitroglycerin? Circ. Res. 93, e104–112.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, J. (2000). Nitric oxide donors – Current trends in therapeutic applications. Expert Opin. Ther. Patents 10, 559–574.

    Article  CAS  Google Scholar 

  • Li, C.-Q., Trudel, L.J., and Wogan, G.N. (2002). Genotoxicity, mitochondrial damage, and apoptosis in human lymphoblastoid cells exposed to peroxynitrite generated from Sin-1. Chem. Res. Toxicol. 15, 527–535.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Belmonte, J., Whittle, B.J., and Moncada, S. (1993). The actions of nitric oxide donors in the prevention or induction of injury to the rat gastric mucosa. Br. J. Pharmacol. 108, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, L.T., Gatehouse, D., Jones, G.D.D., and Shuker, D.E.G. (2001). Characterization of DNA damage at purine residues in oligonucleotides and calf thymus DNA induced by the mutagen 1-nitrosoindole-3-acetonitrile. Chem. Res. Toxicol. 14, 158–164.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, L.T., Gatehouse, D., and Shuker, D.E.G. (1999). Efficient nitroso group transfer from N-nitrosoindoles to nucleotides and 2'-deoxyguanosine at physiological Ph. A new pathway for N-nitrosocompounds to Exert genotoxicity. J. Biol. Chem. 274, 18319–18326.

    Article  PubMed  CAS  Google Scholar 

  • MacNaughton, W.K., Cirino, G., and Wallace, J.L. (1989). Endothelium-derived relaxing factor (Nitric Oxide) has protective actions in the stomach. Life Sci. 45, 1869–1876.

    Article  PubMed  CAS  Google Scholar 

  • Malet-Martino, M., Jolimaitre, P., and Martino, R. (2002). The prodrugs of 5-fluorouracil. Curr. Med. Chem. Anticancer Agents 2, 267–310.

    Article  PubMed  CAS  Google Scholar 

  • Manabe, T., Yamamoto, A., Satoh, K., and Ichihara, K. (2001). Tolerance to nitroglycerin induced by isosorbide-5-mononitrate infusion in vivo. Biol. Pharm. Bull. 24, 1370–1372.

    Article  PubMed  CAS  Google Scholar 

  • Maragos, C.M., Andrews, A.W., Keefer, L.K., and Elespuru, R.K. (1993). Mutagenicity of glyceryl trinitrate (Nitroglycerin) in Salmonella Typhimurium. Mutat. Res. 298, 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Maragos, C.M., Morley, D., Wink, D.A., Dunams, T.M., Saavedra, J.E., Hoffman, A., Bove, A.A., Isaac, L., Hrabie, J.A., and Keefer, L.K. (1991). Complexes of no· with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J. Med. Chem. 34, 3242–3247.

    Article  PubMed  CAS  Google Scholar 

  • Martínez, A., Urios, A., Felipo, V., and Blanco, M. (2001). Mutagenicity of nitric oxide-releasing compounds in Escherichia Coli: Effect of superoxide generation and evidence for two mutagenic mechanisms. Mutat. Res. 49, 159–167.

    Google Scholar 

  • Medana, C., Di Stilo, A., Visentin, S., Fruttero, R., Gasco, A., Ghigo, D., and Bosia, A. (1999). No donor and biological properties of different benzofuroxans. Pharm. Res. 16, 956–960.

    Article  PubMed  CAS  Google Scholar 

  • Medana, C., Ermondi, G., Fruttero, R., Di Stilo, A., Ferretti, C., and Gasco, A. (1994). Furoxans as nitric oxide donors. 4-phenyl-3-furoxan carbonitrile: Thiol-mediated nitric oxide release and biological evaluation. J. Med. Chem. 37, 4412–4416.

    Article  PubMed  CAS  Google Scholar 

  • Mellanen, P., Minn, H., Greman, R., and Harkonen, P. (1994). Expression of glucose transporters in head and neck tumors. Int. J. Cancer 56, 622–629.

    Article  PubMed  CAS  Google Scholar 

  • Mijatovic, S., Maksimovic-Ivanic, D., Mojic, M., Malaponte, G., Libra, M., Cardile, V., Miljkovic, D., Harhaji, L., Dabideen, D., Cheng, K.F., Bevelacqua, Y., Donia, M., Garotta, G., Al-Abed, Y., Stosic-Grujicic, S., and Nicoletti, F. (2008). Novel nitric oxide-donating compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid-nitric oxide (Git-27no) induces P53 mediated apoptosis in human A375 melanoma cells. Nitric Oxide 19, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Miranda, K.M., Nagasawa, H.T., and Toscano, J.P. (2005). Donors of Hno. Curr. Top. Med. Chem. 5, 649–664.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, J.A., Akarasereenont, P., Thiemermann, C., Flower, R.J., and Vane, J.R. (1993). Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl. Acad. Sci. USA 90, 11693–11697.

    Article  PubMed  CAS  Google Scholar 

  • Moharram, S., Zhou, A., Wiebe, L.I., and Knaus, E.E. (2004). Design and synthesis of 3'- and 5'-O-(3-benzenesulfonylfuroxan-4-Yl)-2'-deoxyuridines: Biological evaluation as hybrid nitric oxide donor-nucleoside anticancer agents. J. Med. Chem. 47, 1840–1846.

    Article  PubMed  CAS  Google Scholar 

  • Murad, F. (1999). Discovery of some of the biological effects of nitric oxide and its role in cell signaling (Nobel Lecture). Angew. Chem. Intd. Ed. 38, 1856–1868.

    Article  CAS  Google Scholar 

  • Myers, J.K. and Widlanski, T.S. (1993). Mechanism-based inactivation of prostatic acid phosphatase. Science 262, 1451–1453.

    Article  PubMed  CAS  Google Scholar 

  • Nicolaus, B.J.R. (1983). Symbiotic approach to drug design, decision making in drug research. In Gross, F. (ed.). New York, NY, Raven Press.

    Google Scholar 

  • Nicolescu, A.C., Li, Q., Brown, L., and Thatcher, G.R.J. (2006). Nitroxidation, nitration, and oxidation of a bodipy fluorophore by RNOS and Ros. Nitric Oxide 15, 163–176.

    Article  PubMed  CAS  Google Scholar 

  • Núñez, C., Victor, V.M., Tur, R., Alvarez-Barrientos, A., Moncada, S., Esplugues, J.V., and D’Ocón, P. (2005). Discrepancies between nitroglycerin and No-releasing drugs on mitochondrial oxygen consumption, vasoactivity, and the release of No. Circ. Res. 97, 1063–1069.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, M., Kruh, G.D., and Tew, K.D. (2000). The influence of coordinate overexpression of glutathione phase Ii detoxification gene products on drug resistance. J. Pharmacol. Exp. Ther. 294, 480–487.

    PubMed  Google Scholar 

  • Oh, S.M.N.Y.F. and Williams, D.L.H. (1989). Mechanism of S-nitrosation of cysteine derivatives in the Ph range 6–12 using N-methyl-N-nitrosotoluene-P-sulphonamide. J. Chem. Soc. Perkin Trans. 2, 755–758.

    Google Scholar 

  • Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108.

    Article  PubMed  Google Scholar 

  • Ramirez, J., Yu, L., Li, J., Braunschweiger, P.G., and Wang, P.G. (1996). Glyco-S-nitrosothiols, a novel class of No donor compounds. Bioorg. Med. Chem. Lett. 6, 2575–2580.

    Article  CAS  Google Scholar 

  • Ren, Z., Kar, S., Wang, Z., Wang, M., Saavedra, J.E., and Carr, B.I. (2003). Js-K, a novel non-ionic diazeniumdiolate derivative, Inhibits Hep 3b hepatoma cell growth and induces C-Jun phosphorylation via multiple map kinase pathways. J. Cell Physiol. 197, 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Rigas, B. (2007). Novel agents for cancer prevention based on nitric oxide. Biochem. Soc. Trans. 35, 1364–1368.

    Article  PubMed  CAS  Google Scholar 

  • Rigas, B. and Kozoni, V. (2008). The novel phenylester anticancer compounds: Study of a derivative of aspirin (Phoshoaspirin). Int. J. Oncol. 32, 97–100.

    PubMed  CAS  Google Scholar 

  • Rigas, B. and Williams, J.L. (2008). No-donating nsaids and cancer: An overview with a note on whether No is required for their action. Nitric Oxide 19, 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, L., Louik, C., and Shapiro, S. (1998). Nonsteroidal antiinflammatory drug use and reduced risk of large bowel carcinoma. Cancer 82, 2326–2333.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra, J.E., Dunams, T.M., Flippen-Anderson, J.L., and Keefer, L.K. (1992). Secondary amine/nitric oxide complex ions, R2n[N(O)No]-O-functionalization chemistry. J. Org. Chem. 57, 6134–6138.

    Article  CAS  Google Scholar 

  • Saavedra, J.E., Srinivasan, A., Bonifant, C.L., Chu, J., Shanklin, A.P., Flippen-Anderson, J.L., Rice, W.G., Turpin, J.A., Davies, K.M., and Keefer, L.K. (2001). The secondary amine/nitric oxide complex ion R2n[N(O)No]- as nucleophile and leaving group in Snar reactions. J. Org. Chem. 66, 3090–3098.

    Article  PubMed  CAS  Google Scholar 

  • Sako, M., Oda, S., Ohara, S., Hirota, K., and Maki, Y. (1998). Facile synthesis and NO-generating property of 4H-[1,2,5]Oxadiazolo[3,4-d]pyrimidine-5,7-dione 1-oxides. J. Org. Chem. 63, 6947–6951.

    Article  PubMed  CAS  Google Scholar 

  • Schmutte, C., Rideout, W.M., III, Shen, J.-C., and Jones, P.A. (1994). Mutagenicity of nitric oxide is not caused by deamination of cytosine or 5-methylcytosine in double-stranded DNA. Carcinogenesis 15, 2899–2903.

    Article  PubMed  CAS  Google Scholar 

  • Severina, I.S., Belushkina, N.N., and Grigoryev, N.B. (1994). Inhibition of Adp-induced human platelet aggregation by a new class of soluble guanylate cyclase activators capable of nitric oxide generation. Biochem. Mol. Biol. Int. 33, 957–967.

    PubMed  CAS  Google Scholar 

  • Severina, I.S., Bussygina, O.G., Vinograd, L.H., and Grigoryev, N.B. (1996). Mechanism of activation of soluble guanylate cyclase by guanidine thiols – A new class of enzyme activators. Biochem. Mol. Biol. Int. 38, 509–518.

    PubMed  CAS  Google Scholar 

  • Shami, P.J., Saavedra, J.E., Bonifant, C.L., Chu, J., Udupi, V., Malaviya, S., Carr, B.I., Kar, S., Wang, M., Jia, L., Ji, X., and Keefer, L.K. (2006). Antitumor activity of Js-K [O 2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-Yl]diazen-1-ium-1,2-diolate] and related O 2-aryl diazeniumdiolates in vitro and in vivo. J. Med. Chem. 49, 4356–4366.

    Article  PubMed  CAS  Google Scholar 

  • Shami, P.J., Saavedra, J.E., Wang, L.Y., Bonifant, C.L., Diwan, B.A., Singh, S.V., Gu, Y., Fox, S.D., Buzard, G.S., Citro, M.L., Waterhouse, D.J., Davies, K.M., Ji, X., and Keefer, L.K. (2003). Js-K, a glutathione/glutathione S-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol. Cancer Ther. 2, 409–417.

    PubMed  CAS  Google Scholar 

  • Singh, R.J., Hogg, N., Joseph, J., and Kalyanaraman, B. (1996). Mechanism of nitric oxide release from S-nitrosothiols. J. Biol. Chem. 271, 18596–18603.

    Article  PubMed  CAS  Google Scholar 

  • Sorba, G., Medana, C., Fruttero, R., Cena, C., Di Stilo, A., Galli, U., and Gasco, A. (1997). Water soluble furoxan derivatives as No prodrugs. J. Med. Chem. 40, 463–469.

    Article  PubMed  CAS  Google Scholar 

  • Stauch, M., Grossmann, G., Wanjura, D., and Adam, W.E. (1990). Lack of tolerance after chronic administration of controlled-release isosorbide-5-mononitrate. Eur. J. Clin. Pharmacol. 38, 31–34.

    Article  Google Scholar 

  • Stuart, K.L. (1975). Furazans. Heterocycles 3, 651–690.

    Article  CAS  Google Scholar 

  • Sun, Y., Chen, J., and Rigas, B. (2009). Chemopreventive agents induce oxidative stress in cancer cells leading to cox-2 overexpression and cox-2-independent cell death. Carcinogenesis 30, 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Tew, K.D. and Gate, L. (2001). Glutathione S-transferases as emerging therapeutic targets. Expert Opin. Ther. Targets 5, 477–489.

    Article  PubMed  Google Scholar 

  • Thadani, U., Maranda, C.R., Amsterdam, E., Spaccavento, L., Friedman, R.G., Chernoff, R., Zellner, S., Gorwit, J., and Hinderaker, P.H. (1994). Lack of pharmacologic tolerance and rebound angina pectoris during twice-daily therapy with isosorbide-5-mononitrate. Ann. Intern. Med. 120, 353–359.

    PubMed  CAS  Google Scholar 

  • Thatcher, G.R.J. (2007). Organic nitrates and nitrites as stores of No, radicals for life: The various forms of nitric oxide. In van Fassen, E., and Vanin, A. (ed.). Amsterdam, Elsevier.

    Google Scholar 

  • Thatcher, G.R.J., Nicolescu, A., Reynolds, J.N., Zavorin, S.S., and Toader, V. (2001). Inhibition of lipid peroxidation by nitrates and nitrites. 222nd ACS National Meeting. Chicago, IL, United States, August 26–30, 2001. Abstracts of Papers TOX-022.

    Google Scholar 

  • Thatcher, G.R.J., Nicolescu, A.C., Bennett, B.M., and Toader, V. (2004). Nitrates and No release: Contemporary aspects in biological and medicinal chemistry. Free Radical Biol. Med. 37, 1122–1143.

    Article  CAS  Google Scholar 

  • Townsend, D.M. and Tew, K.D. (2003a). Cancer drugs, genetic variation and the glutathione-S-transferase gene family. Am. J. Pharmacogeno. 3, 157–172.

    Article  CAS  Google Scholar 

  • Townsend, D.M. and Tew, K.D. (2003b). The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22, 7369–7375.

    Article  PubMed  CAS  Google Scholar 

  • Turella, P., Cerella, C., Filomeni, G., Bullo, A., De Maria, F., Ghibelli, L., Ciriolo, M.R., Cianfriglia, M., Mattei, M., Federici, G., Ricci, G., and Caccuri, A.M. (2005). Proapoptotic activity of new glutathione S-transferase inhibitors. Cancer Res. 65, 3751–3761.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull, C., Marcarino, P., Sheldrake, T., Lazzarato, L., Cena, C., Fruttero, R., Gasco, A., Fox, S., Megson, I., and Rossi, A. (2008). A novel hybrid aspirin-No-releasing compound inhibits Tnf-a release from Lps-activated human monocytes and macrophages. J. Inflamm. 5, 12.

    Article  CAS  Google Scholar 

  • Udupi, V., Yu, M., Malaviya, S., Saavedra, J.E., and Shami, P.J. (2006). Js-K, a nitric oxide prodrug, induces cytochrome C release and caspase activation in Hl-60 myeloid leukemia cells. Leuk. Res. 30, 1279–1283.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, J.L., McKnight, W., Soldato, P.D., Baydoun, A.R., and Cirino, G. (1995). Anti-thrombotic effects of a nitric oxide-releasing, gastric-sparing aspirin derivative. J. Clin. Invest. 96, 2711–2718.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T., and Janczuk, A.J. (2002). Nitric oxide donors: Chemical activities and biological applications. Chem. Rev. 102, 1091–1134.

    Article  PubMed  CAS  Google Scholar 

  • Wermuth, C.G. (ed.) (2003). Designing Prodrugs and Bioprecursors. Practice of Medicinal Chemistry. Academic, London.

    Google Scholar 

  • Whitehouse, M.W. and Ghosh, P.B. (1968). 4-nitrobenzofurazans and 4-nitrobenzofuroxans: A new class of thiol-neutralising agents and potent inhibitors of nucleic acid synthesis in leucocytes. Biochem. Pharmacol. 17, 158–161.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D.L.H. (1985). S-nitrosation and the reactions of S-nitroso compounds. Chem. Soc. Rev. 14, 171–196.

    Article  CAS  Google Scholar 

  • Williams, J.L., Borgo, S., Hasan, I., Castillo, E., Traganos, F., and Rigas, B. (2001). Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (Nsaids) alter the kinetics of human colon cancer cell lines more effectively than traditional Nsaids: Implications for colon cancer chemoprevention. Cancer Res. 61, 3285–3289.

    PubMed  CAS  Google Scholar 

  • Wink, D.A. and Mitchell, J.B. (2003). Nitric oxide and cancer: An introduction. Free Radical Biol. Med. 34, 951–954.

    Article  CAS  Google Scholar 

  • Wink, D.A., Vodovotz, Y., Laval, J., Laval, F., Dewhirst, M.W., and Mitchell, J.B. (1998). The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19, 711–721.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, M.M., Lichtenstein, D.R., and Singh, G. (1999). Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 340, 1888–1899.

    Article  PubMed  CAS  Google Scholar 

  • Zavorin, S.I., Artz, J.D., Dumitrascu, A., Nicolescu, A., Scutaru, D., Smith, S.V., and Thatcher, G.R.J. (2001). Nitrate esters as nitric oxide donors: Ss-nitrates. Org. Lett. 3, 1113–1116.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, W., Mackenzie, G.G., Murray, O.T., Zhang, Z., and Rigas, B. (2009). Phosphoaspirin (Mdc-43), a novel benzyl ester of aspirin, inhibits the growth of human cancer cell lines more potently than aspirin: A redox-dependent effect. Carcinogenesis 30, 512–519.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory R. J. Thatcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Anand, S., Thatcher, G.R.J. (2010). Nitric Oxide-Releasing Molecules for Cancer Therapy and Chemoprevention. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics