Skip to main content

Preclinical Development for Suspensions

  • Chapter
  • First Online:
Pharmaceutical Suspensions

Abstract

This chapter summarizes the significance of suspension in preclinical development. Majority of the preclinical studies are carried out using suspension. Therefore, it is important to know the physical form change, particle size distribution, ease of manufacturability and physico-chemical stability for the molecules used in preclinical studies. Here, the impact of physicochemical properties and formulation on the oral exposure in vivo and toxicity of drug candidates were reviewed in line with other ADME parameters (absorption, distribution, metabolism and elimination). From drug discovery perspective, the latest development of in vitro and in vivo approaches and the opportunity/limitation to assess the potential risks of drug candidates are summarized. Strategy to apply multiple ADME and formulation tools in lead optimization and candidate selection in drug discovery were also demonstrated. Authors focused more on oral suspension, however, there are a number of other dosage forms where suspension can be applied such as topical, parenteral, and inhalation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsenz J, Haenel E: Development of a 7-day, 96-well Caco-2 permeability assay with high-throughput direct UV compound analysis. Pharm. Res. (2003) 20(12):1961–1969.

    Article  PubMed  CAS  Google Scholar 

  • Amidon GL, Lennernas H, Shah VP, Crison JR: A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. (1995) 12:413–420.

    Article  PubMed  CAS  Google Scholar 

  • Artursson P, Tavelin S: Caco-2 and emerging alternatives for prediction of intestinal drug transport: a general overview. In: van de Waterbeemd H, Lennernas H, Artursson P (eds.) Drug Bioavailability. Wiley-VCH, Germany (2003):72–89.

    Chapter  Google Scholar 

  • Atkinson A, Kenny JR, Grime K: Automated assessment of the time-dependent inhibition of human cytochrome P450 enzymes using liquid chromatography-tandem mass spectrometry analysis. Drug Metab. Dispos. (2005) 33(11):1637–1647.

    Article  PubMed  CAS  Google Scholar 

  • Avdeef A, Berger CM, Brownell C: pH-Metric solubility. 2: Correlation between the acid–base titration and the saturation shake-flask solubility pH methods. Pharm. Res. (2000) 17(1):85–89.

    Article  PubMed  CAS  Google Scholar 

  • Avdeef A, Strafford M, Block E, Balogh MP, Chambliss W, Khan I: Drug absorption in vitro model: filter-immobilized artificial membranes. 2. Studies of the permeability properties of lactones in piper methysticum forst. Eur. J. Pharm. Sci. (2001) 14:271–280.

    Article  PubMed  CAS  Google Scholar 

  • Avdeef A: In: Absorption and Drug Development, Solubility, Permeability and Charge State. Wiley-Interscience, Hoboken, NJ, USA (2003).

    Google Scholar 

  • Avdeef A, Voloboy D, Foreman A: Dissolution and solubility. In: Testa B, van de Waterbeemd H (eds.) Comprehensive Medicinal Chemistry, Volume 5, second edition. ADME-Tox Approaches. Elsevier Ltd, Oxford, UK (2007):399–423.

    Google Scholar 

  • Balakin KV: DMSO solubility and bioscreening. Curr. Drug Discov. (2003) Aug:27–30.

    Google Scholar 

  • Balimane PV, Chong S, Morrison RA: Current methodologies used for evaluation of intestinal permeability and absorption. J. Pharmacol. Toxicol. (2000) 44:301–312.

    Article  CAS  Google Scholar 

  • Balimane PV, Patel K, Marino A, Chong S: Utility of 96 well Caco-2 cell system for increasing throughput of P-gp screening in drug discovery. Eur. J. Pharm. Biopharm. (2004) 58:99–105.

    Article  PubMed  CAS  Google Scholar 

  • Balimane PV, Pace E, Chong S, Zhu M, Jemal M, Van Pelt CK: A novel high-throughput automated chip-based nanoelectrospray tandem mass spectrometric method for PAMPA sample analysis. J. Pharm. Biomed. Anal. (2005) 39(1–2):8–16.

    Article  PubMed  CAS  Google Scholar 

  • Balimane PV, Han YH, Chong S: Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J. (2006) 8(1):E1–E13.

    Article  PubMed  CAS  Google Scholar 

  • Bary AR, Tucker IG, Davies NM: Considerations in the use of hydroxypropyl-b-cyclodextrin in the formulation of aqueous ophthalmic solutions of hydrocortisone. Eur. J. Pharm. Biopharm. (2000) 50:237–244.

    Article  PubMed  CAS  Google Scholar 

  • Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J: Ritonavir: an extraordinary example of conformational polymorphism. Pharmaceut. Res. (2001) 18(6):859–866.

    Article  CAS  Google Scholar 

  • Bendels S, Tsinman O, Wagner B, Lipp D, Parrilla I, Kansy M, Avdeef A: PAMPA – excipient classification gradient map. Pharm. Res. (2006) 23(11):2525–2535.

    Article  PubMed  CAS  Google Scholar 

  • Berge SM, Bighley LD, Monkhouse DC: Pharmceutials salts. J. Pharmaceut. Sci. (1977) 66(1):1–19.

    Article  CAS  Google Scholar 

  • Bergström CAS, Norinder U, Luthman K, Artursson P: Experimental and computational screening models for prediction of aqueous drug solubility. Pharm. Res. (2002) 19(2):182–188.

    Article  PubMed  Google Scholar 

  • Bergström CAS, Luthman K, Artursson P: Accuracy of calculated pH-dependent aqueous drug solubility. Eur. J. Pharm. Sci. (2004) 22(5):387–398.

    Article  PubMed  CAS  Google Scholar 

  • Bevan CD, Lloyd RS: A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal. Chem. (2000) 72:1781–1787.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard N, Alexandre E, Abadie C, Lave T, Heyd B, Mantion G, Jaeck D, Richert L, Coassolo P: Comparison of clearance predictions using primary cultures and suspensions of human hepatocytes. Xenobiotica (2005) 35(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard N, Hewitt NJ, Silber P, Jones H, Coassolo P, Lave T: Prediction of hepatic clearance using cryopreserved human hepatocytes: a comparison of serum and serumfree incubations. J. Pharm. Pharmacol. (2006) 58(5):633–641.

    Article  PubMed  CAS  Google Scholar 

  • Bohets H, Annaert P, Mannens G, Beijsterveldt VL, Anciaux K, Verboven P, Meuldermans W, Lavrijsen K: Strategies for absorption screening in drug discovery and development. Curr. Top. Med. Chem. (2001) 1:367–383.

    Article  PubMed  CAS  Google Scholar 

  • Bourdet DL, Thakker DR: Saturable absorptive transport of the hydrophilic organic cation Ranitidine in Caco-2 cells: role of pH-dependent organic cation uptake system and P-glycoprotein. Pharm. Res. (2006) 23(6):1165–1177.

    Article  PubMed  CAS  Google Scholar 

  • Box K, Bevan C, Comer J, Hill A, Allen R, Reynolds D: High-throughput measurement of pKa values in a mixed-buffer linear pH gradient system. Anal. Chem. (2003) 75:883–892.

    Article  PubMed  CAS  Google Scholar 

  • Brittain HG: Methods for characterization of polymorphs and solvates. In: Brittain HG (ed.) Polymorphism in Pharmaceutical Solids, Volume 95. Marcel Dekker, New York (1999a):240.

    Google Scholar 

  • Brittain HG: Methods for characterization of polymorphs and solvates. In: Brittain HG (ed.) Polymorphism in Pharmaceutical Solids, Volume 95. Marcel Dekker, New York (1999b):264.

    Google Scholar 

  • Bucolo C, Maltese A, Puglisi G, Pignatello R: Enhanced ocular anti-inflammatory activity of ibuprofen carried by an Eudragit RS 100 nanoparticle suspension. Ophthalmic Res. (2002) 34:319–323.

    Article  PubMed  CAS  Google Scholar 

  • Bugay DE: Characterization of the solid state: spectroscopic techniques. Adv. Drug. Delivery Rev. (2001) 48(1): 43–65.

    Article  CAS  Google Scholar 

  • Bugay DE, Findlay WP: Pharmaceutical Excipients Characterized by IR, Raman and NMR Spectroscopy, Marcel Dekker, New York (1999): 94:669.

    Google Scholar 

  • Caldwell GW, Masucci JA, Chacon E: High throughput liquid chromatography-mass spectrometry assessment of the metabolic activity of commercially available hepatocytes from 96-well plates. Comb. Chem. High Throughput Screen. (1999) 2:39–51.

    PubMed  CAS  Google Scholar 

  • Chan KLA, Kazarian SG: Fourier transform infrared imaging for high-throughput analysis of pharmaceutical formulations. J. Comb. Chem. (2005) 7(2):185–189.

    Article  PubMed  CAS  Google Scholar 

  • Chan KLA, Kazarian SG: ATR-FTIR spectroscopic imaging with expanded field of view to study formulations and dissolution. Lab Chip (2006) 6(7):864–870.

    Article  PubMed  CAS  Google Scholar 

  • Chaubal MV: Application of drug delivery technologies in lead candidate selection and optimization. Drug Discov. Today (2004) 9(14):603–609.

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Zhang Z, McNulty C, Olbert C, Yoon HJ, Lee JW, Kim SC, Seo MH, Oh HS, Lemmo AV, Ellis SJ, Heimlich K: A high-throughput combinatorial approach for the discovery of a cremophor EL-free paclitaxel formulation. Pharm. Res. (2003) 20:1302–1308.

    Article  PubMed  CAS  Google Scholar 

  • Chen XQ, Cho SJ, Li Y, Venkatesh S: Prediction of aqueous solubility of organic compounds using a quantitative structure-property relationship. J. Pharm. Sci. (2002) 91(8):1838–1852.

    Article  PubMed  CAS  Google Scholar 

  • Chen XQ, Venkatesh S: Miniature device for aqueous and non-aqueous solubility measurements during drug discovery. Pharm. Res. (2004) 21(10):1758–1761.

    Article  PubMed  CAS  Google Scholar 

  • Chang FH, Smith DK (eds.): Industrial application of X-ray diffraction in pharmaceuticals, by Joel Bernstein and Jan-Olav Henck “ development and formulation”, CRS Press (2000) 527.

    Google Scholar 

  • Cleveland Jr JA, Benko MH, Gluck SJ, Walbroehl YM: Automated pKa determination at low solute concentrations by capillary electrophoresis. J. Chromatogr. A (1993) 652:301–308.

    Article  CAS  Google Scholar 

  • Colin J, Paquette B: Comparison of the analgesic efficacy and safety of nepafenac ophthalmic suspension compared with diclofenac ophthalmic solution for ocular pain and photophobia after excimer laser surgery: a phase II, randomized, double-masked trial. Clin. Ther. (2006) 28(4):527–536.

    Article  PubMed  CAS  Google Scholar 

  • de Lange ECM: Potential role of ABC transporters as a detoxification system at the blood–CSF barrier. Adv. Drug Deliv. Rev. (2004) 56:1793–1809).

    Article  PubMed  CAS  Google Scholar 

  • DeWitte RS: Avoiding physicochemical artefacts in early ADME-Tox experiments. Drug Discov. Today (2006) 11:855–859.

    Article  PubMed  CAS  Google Scholar 

  • Di L, Kerns EH: Biological assay challenges from compound solubility: strategies for bioassay optimization. Drug Discov. Today (2006) 11:446–451.

    Article  PubMed  CAS  Google Scholar 

  • Di L, Kerns EH, Fan K, Mcconnell OJ, Carter GT: High throughput artificial membrane permeability assay for blood–brain barrier. Eur. J. Med. Chem. (2003) 38:223–232.

    Article  PubMed  CAS  Google Scholar 

  • Di L, Kerns EH, Gao N, Li SQ, Huang Y, Bourassa JL, Huryn DM: Experimental design on single-time-point high-throughput microsomal stability assay. J. Pharm. Sci. (2004) 93(6):1537–1544.

    Article  PubMed  CAS  Google Scholar 

  • Di L, Kerns EH, Li SQ, Petusky SL: High throughput microsomal stability assay for insoluble compounds. Int. J. Pharm. (2006) 317:54–60.

    Article  PubMed  CAS  Google Scholar 

  • Dressman JB, Reppas C: In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci. (2000) 11(Suppl. 2):S73–S80.

    Article  PubMed  CAS  Google Scholar 

  • Dubey R: Impact of nanosuspension technology on drug discovery and development. Drug Deliv. Technol. (2006) 6(5):67–71.

    Google Scholar 

  • Ecanow B, Gold B, Ecanow C: Am Cosmet. Perfumer (1969) 84:27

    Google Scholar 

  • Egan WJ, Merz KM, Baldwin JJ: J. Med. Chem. (2000) 43:3867–3877.

    Google Scholar 

  • Englund G, Rorsman F, Roennblom A, Karlbom U, Lazorova L, Grasjoe J, Kindmark A, Artursson P: Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur. J. Pharm. Sci. (2006) 29(3–4):269–277.

    Article  PubMed  CAS  Google Scholar 

  • Faller B: Artificial membrane assays to assess permeability. Curr. Drug Metab. (2008) 9:886–92.

    Article  PubMed  CAS  Google Scholar 

  • Fernando GC, Jaun de DG, Lopes Duran, suspension formulation. In: Nielloud F, Marti-Mestres G (eds.) Pharmaceutical Emulsions and Suspensions, Volume 105. Marcel Dekker, New York (2000):165.

    Google Scholar 

  • Gad SC, Cassidy CD, Aubert N, Spainhour B, Robbe H: Nonclinical vehicle use in studies by multiple routes in multiple species. Int. J. Toxicol. (2006) 25:499–521.

    Article  PubMed  CAS  Google Scholar 

  • Galia E, Nicolaides E, Horter D, LoÈ benberg R, Reppas C, Dressman JB: Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm. Res. (1998) 15:698–705.

    Google Scholar 

  • Gallardo V, Ruiz MA, Delgado AV: Pharmaceutical suspension and their application. In: Nielloud F, Marti-Mestres G (eds.) Pharmaceutical Emulsion and Suspension, Volume 105. Marcel Dekker, New York (2000):444–445.

    Google Scholar 

  • Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo A, Nilsson JE, Raub TJ, Stanimirovic D, Terasaki T, Öberg JO, Österberg T: In vitro models for the blood–brain barrier. Toxicol. In Vitro (2005) 19:299–334.

    Google Scholar 

  • Gardner CR, Almarsson O, Chen H, Morissette S, Peterson M, Zhang Z, Wang S, Lemmo A, Gonzalez-Zugasti J, Monagle J, Marchionna J, Ellis S, McNulty C, Johnson A, Levinson D, Cima M: Application of high throughput technologies to drug substance and drug product development. Comput. Chem. Eng. (2004) 28(6–7):943–953.

    CAS  Google Scholar 

  • Glomme A, Marz J, Dressman JB: Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J. Pharm. Sci. (2005) 94(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  • Gould PL: Salt Selection for basic drugs. International J. Pharmaceut. (1986) 33(1–3):201–217.

    Article  CAS  Google Scholar 

  • Grant DJW, Brittain HG: Solubility of pharmaceutical solids. In: Brittain HB (ed.) Drugs and the Pharmaceutical Sciences, Volume 70. Physical Characterization of Pharmaceutical Solids. Marcel Dekker Inc., New York, USA (1995):321–386.

    Google Scholar 

  • Hallifax D, Rawden HC, Hazook N, Houston JB: Prediction of metabolic clearance using cryopreserved human hepatocytes: kinetic characteristics for five benzodiazepines. Drug Metab. Dispos. (2005) 33:1852–1858.

    PubMed  CAS  Google Scholar 

  • Hämäläinen MD, Frostell-Karlsson A: Predicting the intestinal absorption potential of hits and leads. Drug Discov. Today Technol. (2004) 1:397–406.

    Google Scholar 

  • Hansen DK, Scott DO, Otis KW, Lunte SM: Comparison of in vitro BBMEC permeability and in vivo CNS uptake by microdialysis sampling. J. Pharm. Biomed. Anal. (2002) 27:945–958.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt NJ, Lechón MJ, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis GM, Hengstler JG: Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab. Rev. (2007) 39(1):159–234.

    Google Scholar 

  • Hitchingham L, Thomas VH: Development of a semi-automated chemical stability system to analyze solution based formulations in support of discovery candidate selection. J. Pharm. Biomed. Anal. (2007) 43(2):522–526.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock SA, Pennington LD: Structure–brain exposure relationships. J. Med. Chem. (2006) 49(26):7559–7583.

    Article  PubMed  CAS  Google Scholar 

  • Hochman JH, Yamazaki M, Ohe T, Lin JH: Evaluation of drug interactions with P-glycoprotein in drug discovery: in vitro assessment of the potential for drug-drug interactions with P-glycoprotein. Curr. Drug Metab. (2002) 3(3):257–273.

    Article  PubMed  CAS  Google Scholar 

  • Hughes MF, Shrivastava SP, Sumler MR, Edwards BC, Goodwin JH, Shah PV, Fisher HL, Hall LL: Dermal absorption of chemicals: effect of application of chemicals as a solid, aqueous paste, suspension, or in volatile vehicle. J. Toxicol. Environ. Health (1992) 37(1):57–71.

    Google Scholar 

  • Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR: MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J. Pharm. Sci. (1999) 88:28–33.

    Article  PubMed  CAS  Google Scholar 

  • Ishihama Y, Nakamura M, Miwa T, Kajima T, Asakawa N: A rapid method for pKa determination of drugs using pressure-assisted capillary electrophoresis with photodiode array detection in drug discovery. J. Pharm. Sci. (2002) 91:933–942.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson L, Middleton B, Holmgren J, Eirefelt S, Fröjd M, Blomgren A, Gustavsson L: An optimized automated assay for determination of metabolic stability using hepatocytes: assay validation, variance component analysis, and in vivo relevance. Assay Drug Dev. Technol. (2007) 5(3):403–415.

    Article  PubMed  CAS  Google Scholar 

  • James KC: Solubility and related properties. In: Drugs and the Pharmaceutical Sciences, Volume 28. Marcel Dekker Inc., New York, USA (1986):36–52.

    Google Scholar 

  • Kalantzi L, Persson E, Polentarutti B, Abrahamsson B, Goumas K, Dressman JB, Reppas C: Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm. Res. (2006) 23(6):1373–1381.

    Google Scholar 

  • Kansy M, Senner F, Gubernator K: Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem. (1998) 41:1007–1010.

    Article  PubMed  CAS  Google Scholar 

  • Kansy M, Fischer H, Kratzat K, Senner F, Wagner B, Parrilla I: High-throughput artificial membrane permeability studies in early lead discovery and development. In: Testa B, van de Waterbeemd H, Folkers G, Guy R (eds.) Pharmacokinetic Optimization in Drug Research. Verlag Helvetica Chimica Acta (2001):447–464.

    Google Scholar 

  • Kariv I, Rourick RA, Kassel DB, Chung TDY: Improvement of “hit-to-lead” optimization by integration of in vitro HTS experimental models for early determination of pharmacokinetic properties. Comb. Chem. High Throughput Screen. (2002) 5:459–472.

    PubMed  CAS  Google Scholar 

  • Kerns EH: High throughput physicochemical profiling for drug discovery. J Pharm. Sci. (2001) 90:1838–1858.

    Article  PubMed  CAS  Google Scholar 

  • Kerns EH, Di L: Physicochemical profiling: overview of the screens. Drug Discov. Today Technol. (2004) 1(4):343–348.

    Article  CAS  Google Scholar 

  • Kerns EH, Di L, Petusky S, Farris M, Ley R, Jupp P: Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J. Pharm. Sci. (2004) 93(6):1440–1453.

    Article  PubMed  CAS  Google Scholar 

  • Kerns EH, Di L: Chemical stability. In: Testa B, van de Waterbeemd H (eds.) Comprehensive Medicinal Chemistry, Volume 5, second edition. ADME-Tox Approaches. Elsevier Ltd, Oxford, UK (2007):489–507.

    Google Scholar 

  • Kibbey CE, Poole SK, Robinson B, Jackson JD, Durham D: An integrated process for measuring the physicochemical properties of drug candidates in a preclinical discovery environment. J. Pharm. Sci. (2001) 90:1164–1175.

    Article  PubMed  CAS  Google Scholar 

  • Kocbek P, Baumgartner S, Kristl J: Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm. (2006) 312(1–2):179–186.

    Article  PubMed  CAS  Google Scholar 

  • Korfmacher WA, Palmer CA, Nardo C, Dunn-Meynell K, Grotz D, Cox K, Lin CC, Elicone C, Liu C, Duchoslav E: Development of an automated mass spectrometry system for the quantitative analysis of liver microsomal incubation samples: a tool for rapid screening of new compounds for metabolic stability. Rapid Commun. Mass Spectrom. (1999) 13:901–907.

    Article  PubMed  CAS  Google Scholar 

  • Kostewicz ES, Brauns U, Becker R, Dressman JB: Forecasting the oral absorption behavior of poorly soluble weak bases using solubility and dissolution studies in biorelevant media. Pharm. Res. (2002) 19:345–349.

    Article  PubMed  CAS  Google Scholar 

  • Kostewicz ES, Wunderlich M, Brauns U, Becker R, Bock T, Dressman JB: Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J. Pharm. Pharmacol. (2004) 56(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  • Kuppens IELM, Breedveld P, Beijnen JH, Schellens JHM: Modulation of oral drug bioavailability: from preclinical mechanism to therapeutic application. Cancer Invest. (2005) 23(5):443–464.

    PubMed  CAS  Google Scholar 

  • Kibbe AH: Handbook of Pharmaceutical Excipients. American Pharmaceutical Association, Pharmaceutical Press (2000).

    Google Scholar 

  • Lachman L, Lieberman H, Kanig J: The Theory and Practice of Industrial Pharmacy. Lea & Febiger, Philadelphia (1970).

    Google Scholar 

  • Lakeram M, Lockley DJ, Sanders DJ, Pendlington R, Forbes B: Paraben transport and metabolism in the bio-mimetic artificial membrane permeability assay (BAMPA) and 3-day and 21-day Caco-2 cell systems. J. Biomol. Screen. (2007) 12(1):84–91.

    Article  PubMed  CAS  Google Scholar 

  • Lau YY, Krishna G, Yumibe NP, Grotz DE, Sapidou E, Norton L, Chu I, Chen C, Soares AD, Lin CC: The use of in vitro metabolic stability for rapid selection of compounds in early discovery based on their expected hepatic extraction ratios. Pharm. Res. (2002a) 19:1606–1610.

    Article  CAS  Google Scholar 

  • Lau YY, Sapidou E, Cui X, White RE, Cheng K-C: Development of a novel in vitro model to predict hepatic clearance using fresh, cryopreserved and sandwich-cultured hepatocytes. Drug Metab. Dispos. (2002b) 30:1446–1454.

    Article  CAS  Google Scholar 

  • Lennernas H, Lundgren E: Intestinal and blood–brain drug transport: beyond involvement of a single transport function. Drug Discov. Today Technol. (2004) 1:417–422.

    Article  CAS  Google Scholar 

  • Levis KA, Lane ME, Corrigan OI: Effect of buffer media composition on the solubility and effective permeability coefficient of ibuprofen. Int. J. Pharm. (2003) 253(1–2):49–59.

    Article  PubMed  CAS  Google Scholar 

  • Li AP: Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem. Biol. Interact. (2007) 168(1):16–29.

    Article  PubMed  CAS  Google Scholar 

  • Li N, Degennaro MD, Liebenber W, Tied LR, Zahr AS, Pishko MV, de Villires MM: Increased dissolution and physical stability of micronized nifedipine particles encapsulated with a biocompatible polymer and surfactants in a wet ball milling process. Pharmazie (2006) 61(8):659

    CAS  Google Scholar 

  • Liang E, Chessic K, Yazdanian M: Evaluation of an accelerated Caco-2 cell permeability model. J. Pharm. Sci. (2000) 89(3):336–345.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman HA, Rieger MM, Banker GS: Pharmaceutical Dosage Forms: Disperse Systems, Volume 3, revised and expanded. Marcel Dekker, New York/Basel (1998):488.

    Google Scholar 

  • Lindfors L, Skantze P, Skantze U, Rasmusson M, Zackrisson A, Olsson U: Amorphous drug nanosuspensions. Inhibition of Ostwald ripening. Langmuir (2006) 22(3):906–910.

    Google Scholar 

  • Lin JH, Wong BK: Complexities of glucuronidation affecting in vitro in vivo extrapolation. Curr. Drug Metab. (2002) 3:623–646.

    Google Scholar 

  • Linget JM, du Vignaud P: Automation of metabolic stability studies in microsomes, cytosol and plasma using a 215 Gilson liquid handler. J. Pharm. Biomed. Anal. (1999) 19:893–901.

    Article  PubMed  CAS  Google Scholar 

  • Lipinski CA, Lombardo L, Dominy BW, Feeney PJ: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. (1997) 23:3–25.

    Article  CAS  Google Scholar 

  • Liu H, Sabus C, Carter GT, Du C, Avdeef A, Tischler M: In vitro permeability of poorly aqueous soluble compounds using different solubilizers in the PAMPA assay with liquid chromatography/mass spectrometry detection. Pharm. Res. (2003) 20(11):1820–1826.

    Article  PubMed  CAS  Google Scholar 

  • Liu R, So SS: Development of quantitative structure-property relationship models for early ADME evaluation in drug discovery 1 aqueous solubility. J. Chem. Inf. Comput. Sci. (2001) 41:1633–1639.

    PubMed  CAS  Google Scholar 

  • Lombardo F, Shalaeva M, Tupper KA, Gao F, Abraham MJ: ElogPoct: a tool for lipophilicity determination in drug discovery. J. Med. Chem. (2000) 43:2922–2928.

    Article  PubMed  CAS  Google Scholar 

  • Lundquist S, Renftel M: The use of in vitro cell culture models for mechanistic studies and as permeability screens for the blood–brain barrier in the pharmaceutical industry – background and current status in the drug discovery process. Vascul. Pharmacol. (2002) 38:355–364.

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Kato H, Ikeda S: Effect of cationic surfactants on the conformation and aggregation of poly(l-glutamic acid). Biopolymers (1984) 23(7):1333.

    Article  CAS  Google Scholar 

  • Marino AM, Yarde M, Patel H, Chong S, Balimane PV: Validation of the 96 well Caco-2 cell culture model for high throughput permeability assessment of discovery compounds. Int. J. Pharm. (2005) 297(1–2):235–241.

    PubMed  CAS  Google Scholar 

  • Matteucci ME, Brettmann BK, Rogers TL, Elder EJ, Williams RO III, Johnston KP: Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media. Mol. Pharm. (2007) 4(5):782–793.

    Article  PubMed  CAS  Google Scholar 

  • McGinnity DF, Soars MG, Urbanowicz RA, Riley RJ: Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. Drug Metab. Dispos. (2004) 32:1247–1253.

    Article  PubMed  CAS  Google Scholar 

  • Mensch J, Noppe M, Adriaensen J, Melis A, Mackie C, Augustijns P, Brewster ME: Novel generic UPLC/MS/MS method for high throughput analysis applied to permeability assessment in early drug discovery. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (2007) 847(2):182–187.

    Article  PubMed  CAS  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER: Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. (2003) 18(2):113–120.

    Article  PubMed  CAS  Google Scholar 

  • Miret S, Abrahamse L, de Groene EM: Comparison of in vitro models for the prediction of compound absorption across the human intestinal mucosa. J. Biomol. Screen. (2004) 9(7):598–606.

    Article  PubMed  CAS  Google Scholar 

  • Morris KR, Fakes MG, Thakur AB, Newman AW, Singh AK, Venit JJ, Spangnulo CJ, Serajuddin ATM: An integrated approach to the selection of optimal salt form for a new drug candidate. International J. Phamaceut. (1994) 105(3):209–217.

    Article  CAS  Google Scholar 

  • Morissette SL, Read MJ, Soukasene S, Tauber MK, Scoppettuolo LA, Apgar JR, Guzman HR, Sauer J-M, Collins DS, Jadhav PK, Engler T, Gardner CG: High throughput crystallization of polymorphs and salts: Applications in early lead optimization: 225th ACS National Meeting, New Orleans, LA, United States, March 23–27, (2003).

    Google Scholar 

  • Mountfield RJ, Senepin S, Schleimer M, Walter I, Bittner B: Potential inhibitory effects of formulation ingredients on intestinal cytochrome P450. Int. J. Pharm. (2000) 211(1–2):89–92.

    Article  PubMed  CAS  Google Scholar 

  • Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, Sugiyama Y: Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab. Dispos. (2001) 29:1316–1324.

    PubMed  CAS  Google Scholar 

  • Nash RA: Pharmaceutical suspensions. In: Lieberman HA, Rieger MM, Banker GS (eds.) Pharmaceutical Dosage Form. Dispersed System, Volume 1. Marcel Dekker, New York (1988):151.

    Google Scholar 

  • Neervannan S: Preclinical formulations for discovery and toxicology: physicochemical challenges. Expert Opin. Drug Metab. Toxicol. (2006) 2(5):715–731.

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff S, Artursson P, Zamora I, Ungell A-L: Impact of extracellular protein binding on passive and active drug transport across Caco-2 cells. Pharm. Res. (2006) 23(2):350–359.

    Article  PubMed  CAS  Google Scholar 

  • Niazi S: Handbook of Pharmaceutical Manufacturing Formulations Uncompressed Solid Products, Volume 2. CRC Press, Boca Raton (2004):41.

    Google Scholar 

  • Nicolaides E, Galia E, Efthymiopoulos C, Dressman JB, Reppas C: Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharm. Res. (1999) 16:1876–1882.

    Article  PubMed  CAS  Google Scholar 

  • Nicolazzo JA, Charman SA, Charman WN: Methods to assess drug permeability across the blood–brain barrier. J. Pharm. Pharmacol. (2006) 58:281–293.

    Article  PubMed  CAS  Google Scholar 

  • Nobili S, Landini I, Giglioni B, Mini E: Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets (2006) 7(7):861–879.

    Article  PubMed  CAS  Google Scholar 

  • Obach RS: Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro halflife approach and nonspecific binding to microsomes. Drug Metab. Dispos. (1999) 27:1350–1359.

    PubMed  CAS  Google Scholar 

  • Obach RS: The prediction of human clearance from hepatic microsomal metabolism data. Curr. Opin. Drug Discov. Dev. (2001) 4:36–44.

    CAS  Google Scholar 

  • Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, Rance DJ, Wastall P: The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. (1997) 283:46–58.

    PubMed  CAS  Google Scholar 

  • Obata K, Sugano K, Machida M, Aso Y: Biopharmaceutics classification by high throughput solubility assay and PAMPA. Drug Dev. Ind. Pharm. (2004) 30(2):181–185.

    Article  PubMed  CAS  Google Scholar 

  • Offener III CM, Schmaare RL, Schwartz JB: Reconstitutable suspensions. In : Lieberman HA, Rieger MM, Banker GS (eds.) Pharmaceutical Dosage Form. Dispersed System, Volume 2. Marcel Dekker, New York (1989):317–334.

    Google Scholar 

  • Pan L, Ho Q, Tsutsui K, Takahashi L: Comparison of chromatographic and spectroscopic methods used to rank compounds for aqueous solubility. J. Pharm. Sci. (2001) 90:521–529.

    Article  PubMed  CAS  Google Scholar 

  • Patel NK, Kennon L, Levison RS: Pharmaceutical suspension. In: Lachman L, Lieberman HA, Kanig JL (eds.) The Theory and Practice of Industrial Pharmacy, Volume 3. Lea and Febiger, Philadelphia (1976):484.

    Google Scholar 

  • Persson EM, Gustafsson A-S, Carlsson AS, Nilsson RG, Knutson L, Forsell P, Hanisch G, Lennernaes H, Abrahamsson B: The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm. Res. (2005) 22(12):2141–2151.

    Article  PubMed  CAS  Google Scholar 

  • Pignatello R, Bucolo C, Puglisi G: Ocular tolerability of Eudragit RS100 and RL100 nanosuspensions as carriers for ophthalmic controlled drug delivery. J. Pharm. Sci. (2002) 91(12).

    Google Scholar 

  • Pignatello R, Ricupero N, Bucolo C, Maugeri F, Maltese A, Puglisi1 G: Preparation and characterization of Eudragit retard nanosuspensions for the ocular delivery of cloricromene. Pharm. Sci. Technol. (2006) 7(1):E27.

    Google Scholar 

  • Pouton CW: Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. (2006) 29(3–4):278–287.

    Article  PubMed  CAS  Google Scholar 

  • Reddy A, Heimbach T, Freiwald S, Smith D, Winters R, Michael S, Surendran N, Cai H: Validation of a semi-automated human hepatocyte assay for the determination and prediction of intrinsic clearance in discovery. J. Pharm. Biomed. Anal. (2005) 37:319

    Article  PubMed  CAS  Google Scholar 

  • Reichel A, Begley DJ: Potential of immobilized artificial membranes for predicting drug penetration across the blood–brain Barrier. Pharm. Res. (1998) 15:1270–1274.

    Article  PubMed  CAS  Google Scholar 

  • Ruell JA, Tsinman O, Avdeef A: PAMPA – a drug absorption in vitro model. 12. Cosolvent method for permeability assays of amiodarone, itraconazole, tamoxifen, terfenadine, and other very insoluble molecules. Chem. Pharm. Bull. (2004) 52:561–565.

    Google Scholar 

  • Saha P, Kou JH: Effect of bovine serum albumin on drug permeability estimation across Caco-2 monolayers. Eur. J. Pharm. Biopharm. (2002) 54(3):319–324.

    Article  PubMed  CAS  Google Scholar 

  • Saunders KC: Automation and robotics in ADME screening. Drug Discov. Today Technol. (2004) 1:373–380.

    Article  CAS  Google Scholar 

  • Sciarra JJ, Cutie AJ: Aerosol suspension and emulsion. In: Lieberman HA, Rieger MM, Banker GS (eds.) Pharmaceutical Dosage Form. Dispersed System, Volume 2. Marcel Dekker, New York (1989):417–460.

    Google Scholar 

  • Shibata Y, Takahashi H, Chiba M, Ishii Y: Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an application of serum incubation method. Drug Metab. Dispos. (2002) 30:892–896.

    Article  PubMed  CAS  Google Scholar 

  • Smith QR: A review of blood–brain barrier transport techniques. In: Nag S (ed.) The Blood–Brain Barrier: Biology and Research Protocols. Humana Press Inc., Totowa (2003):193–208.

    Google Scholar 

  • Soars MG, Burchell B, Riley RJ: In vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance. J. Pharm. Exp. Ther. (2002) 301:382–390.

    Article  CAS  Google Scholar 

  • Soars MG, McGinnity DF, Grime K, Riley RJ: The pivotal role of hepatocytes in drug discovery. Chem. Biol. Interact. (2007a) 168(1):2–15.

    Article  CAS  Google Scholar 

  • Soars MG, Grime K, Sproston JL, Webborn PJ, Riley RJ: Use of hepatocytes to assess the contribution of hepatic uptake to clearance in vivo. Drug Metab. Dispos. (2007b) 35(6):859–865.

    Article  CAS  Google Scholar 

  • Suryanarayanan R: X-ray powder diffractometry. Drugs Pharmaceut. Sci. (1995) 70:187–221.

    CAS  Google Scholar 

  • Steffansen B, Nielsen CU, Brodin B, Eriksson AH, Andersen R, Frokjaer S: Intestinal solute carriers: an overview of trends and strategies for improving oral drug absorption. Eur. J. Pharm. Sci. (2004) 21(1):3–16.

    Article  PubMed  CAS  Google Scholar 

  • Stella VJ, Yoshioka S: Physical stability of drug substances. In: Stella VJ, Yoshioka S (eds.) Stability of Drugs and Dosage Forms. Springer Publisher (2002):139.

    Google Scholar 

  • Stephenson GA: Structure determination from convetional powder diffraction data: application to hydrates, hydrochloride salts, and metastable polymorphs. J. Pharmaceut. Sci (2000) 89(7):958–966.

    Article  CAS  Google Scholar 

  • Stresser DM, Broudy MI, Ho T, Cargill CE, Blanchard AP, Sharma R, Dandeneau AA, Goodwin JJ, Turner SD, Erve JCL, Patten CJ, Dehal SS, Crespi CL: Highly selective inhibition of human CYP3A in vitro by azamulin and evidence that inhibition is irreversible. Drug Metab. Dispos. (2004) 32:105–112.

    Article  PubMed  CAS  Google Scholar 

  • Stuart M, Box K: Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases. Anal. Chem. (2005) 77(4):983–990.

    Article  PubMed  CAS  Google Scholar 

  • Sugano K, Hamada H, Machida M, Ushio H, Saitoh K, Terada K: Optimized conditions of bio-mimetic artificial membrane permeability assay. Int. J. Pharm. (2001) 228:181–188.

    Article  PubMed  CAS  Google Scholar 

  • Tan H, Semin D, Wacker M, Cheetham J: An automated screening assay for determination of aqueous equilibrium solubility enabling SPR study during drug lead optimization. JALA (2005) 10(6):364–373.

    CAS  Google Scholar 

  • Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya K: New approaches to in vitro models of blood–brain barrier drug transport. Drug Discov. Today (2003) 8:944–954.

    Article  PubMed  CAS  Google Scholar 

  • Tong W-Q, Whitesel G: In situ salt screening-a useful techique for discovery support and performulation studies; Pharmaceut. Dev. Tech. (1993) 3(2):215–223.

    Article  Google Scholar 

  • Troutman MD, Thakker DR: Efflux ratio cannot assess P-glycoprotein-mediated attenuation of absorptive transport: asymmetric effect of P-glycoprotein on absorptive and secretory transport across caco-2 cell monolayers. Pharm. Res. (2003a) 20:1200–1209.

    Article  CAS  Google Scholar 

  • Troutman MD, Thakker DR: Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm. Res. (2003b) 20:1210–1224.

    Article  CAS  Google Scholar 

  • Ungell AL, Karlsson J: Cell culture in drug discovery: an industrial perspective. In: van de Waterbeemd H, Lennernas H, Artursson P (eds.) Drug Bioavailability. Wiley-VCH, New York (2003):90–131.

    Google Scholar 

  • Ungell A-LB: Caco-2 replace or refine? Drug Discov. Today Technol. (2004) 1:423–430.

    Google Scholar 

  • Van de Waterbeemd H: Physicochemistry, in pharmacokinetics and metabolism in drug design, 2nd edn (eds D.A. Smith, H. van de Waterbeemd and D.K Walker), Wiley-VCH, Verlag GmbH, Winheinm, (2006), 1–18

    Google Scholar 

  • Varma MVS, Ashokraj Y, Chinmoy SD, Panchagnula R: P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol. Res. (2003) 48(4):347–359.

    Article  PubMed  CAS  Google Scholar 

  • Varma MVS, Sateesh K, Panchagnula R: Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol. Pharm. (2005) 2(1):12–21.

    Article  PubMed  CAS  Google Scholar 

  • Varma MVS, Perumal OP, Panchagnula R: Functional role of P-glycoprotein in limiting peroral drug absorption: optimizing drug delivery. Curr. Opin. Chem. Biol. (2006) 10(4):367–373.

    Article  PubMed  CAS  Google Scholar 

  • Vertzoni M, Fotaki N, Kostewicz E, Stippler E, Leuner C, Nicolaides E, Dressman JB, Reppas C: Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J. Pharm. Pharmacol. (2004) 56(4):453–462.

    Article  PubMed  CAS  Google Scholar 

  • Vertzoni M, Pastelli E, Psachoulias D, Kalantzi L, Reppas C: Estimation of intragastric solubility of drugs. Pharm. Res. (2007) 24(5):909–917.

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh S, Lipper RA. Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci. (2000) 89:145–154.

    Article  PubMed  CAS  Google Scholar 

  • Vandervoort J, Ludwig A. Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use, Eur J Pharm Biopharm. (2004) Mar; 57(2):251–61.

    Google Scholar 

  • Vippagunta SR, Brittain HG, Grant DJW: Crystalline solids. Adv. Drug Delivery Rev. (2001) 48(1):3–26.

    Article  CAS  Google Scholar 

  • Wagner D, Spahn-Langguth H, Hanafy A, Koggel A, Langguth P: Intestinal drug efflux: formulation and food effects. Adv. Drug Deliv. Rev. (2001) 50(Suppl. 1):S13–S31.

    Article  PubMed  CAS  Google Scholar 

  • Wan H, Ulander J: High-throughput pKa screening and prediction amenable for ADME profiling. Expert Opin. Drug Metab. Toxicol. (2006) 2(1):139–155.

    Article  PubMed  CAS  Google Scholar 

  • Wang J: Comprehensive Assessment of ADMET Risks in Drug Discovery. Curr. Pharmaceut. Design (2009) 15:2195–2219.

    Article  CAS  Google Scholar 

  • Wang J, Urban L: The impact of early ADME profiling on drug discovery and development strategy. Drug Discov. World (2004) 5:73–86.

    Google Scholar 

  • Wang J, Faller B: Progress in bioanalytics and automation robotics for ADME screening. In: Testa B, van de Waterbeemd H (eds.) Comprehensive Medicinal Chemistry, Volume 5, second edition. ADME-Tox Approaches. Elsevier Ltd, Oxford, UK (2007):341–356.

    Google Scholar 

  • Wang J, Urban L, Bojanic D: Maximising use of in vitro ADMET tools to predict in vivo bioavailability and safety. Expert Opin. Drug Metab. Toxicol. (2007b) 3(5):641–665.

    Article  CAS  Google Scholar 

  • Wei H, Loebenberg R: Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur. J. Pharm. Sci. (2006) 29(1):45–52.

    Article  PubMed  CAS  Google Scholar 

  • Wienkers LC, Heath TG: Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov. (2005) 4:825–833.

    Article  PubMed  CAS  Google Scholar 

  • Wohnsland F, Faller B: High-throughput permeability pH profile and high-throughput alkane/water Log P with artificial membranes. J. Med. Chem. (2001) 44:923–930.

    Article  PubMed  CAS  Google Scholar 

  • Yalkowsky SH, Banerjee S: Aqueous Solubility Methods of Estimation for Organic Compounds. Marcel Dekker Inc., New York, USA (1992):149–154.

    Google Scholar 

  • Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H: Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci. (2000) 10(3):195–204.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita S, Konishi K, Yamazaki Y, Taki Y, Sakane T, Sezaki H, Furuyama Y: New and better protocols for a short-term Caco-2 cell culture system. J. Pharm. Sci. (2002) 91(3):669–679.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Yasueda S, Isowaki A, Yamamoto M, Kimura M, Inada K, Ohtori A: Formulation of an ophthalmic lipid emulsion containing an anti-inflammatory steroidal drug, difluprednate. Int. J. Pharm. (2005) 301:121–128.

    Article  PubMed  CAS  Google Scholar 

  • Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, Shah VP, Lesko LJ, Chen ML, Lee VHL, Hussain AS: Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm. Res. (2002) 19(7)

    Google Scholar 

  • Zheng W, Kim H, Garad S: Effect of Polymeric Excipients on the Solid Phase Transformation in Aqueous Suspensions. APPS, 2005, Annual Meeting Poster Presentation.

    Google Scholar 

  • Zhou L, Yang L, Tilton S, Wang J: Development of high throughput equilibrium solubility assay using miniaturized shake-flask method in early drug discovery. J. Pharm. Sci. (2007) 98(11):3052–3071.

    Article  CAS  Google Scholar 

  • Zietsman S, Kilian G, Worthington M, Stubbs C: Formulation development and stability studies of aqueous metronidazole benzoate suspensions containing various suspending agents. Drug Dev. Ind. Pharm. (2007) 33(2):191–197.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Garad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 AAPS

About this chapter

Cite this chapter

Garad, S., Wang, J., Joshi, Y., Panicucci, R. (2010). Preclinical Development for Suspensions. In: Kulshreshtha, A., Singh, O., Wall, G. (eds) Pharmaceutical Suspensions. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1087-5_5

Download citation

Publish with us

Policies and ethics