Skip to main content

Acentrosomal Spindle Formation Through the Heroic Age of Microscopy: Past Techniques, Present Thoughts, and Future Directions

  • Chapter
  • First Online:
The Plant Cytoskeleton

Part of the book series: Advances in Plant Biology ((AIPB,volume 2))

  • 1070 Accesses

Abstract

Spindle bipolarity occurs in plant cells without the presence of animal-like centrosomes. A question still unanswered is what structures contribute to acentrosomal spindle formation in the absence of these organizing centers. Past and present research techniques have highlighted several mitotic structures (i.e., the preprophase band, perinuclear microtubules, and bridge microtubules) and interactions between these structures that appear to be involved in a plant-specific mechanism of establishing spindle bipolarity and organization. In this review, we explore how the discoveries of different microscopy techniques combine to form an emerging hypothesis in plant acentrosomal spindle formation and how this mechanism reflects the importance of organizing cell divisions in a tissue-specific context, based on proper cell wall placement, a hallmark of proper plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrose JC, Cyr R (2007) The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19(1):226–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ambrose JC, Cyr RJ (2008) Mitotic spindle organization by the preprophase band. Mol Plant 1:950–960

    Article  CAS  PubMed  Google Scholar 

  3. Ambrose JC, Li W et al (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16(4):1584–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ambrose JC, Shoji T et al (2007) The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19(9):2763–2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ambrose JC, Wasteneys GO (2008) CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19(11):4730–4737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bajer A (1955) Living smears from endosperm. Experientia 11:221–222

    Article  CAS  PubMed  Google Scholar 

  7. Bajer A (1957) Cine-micrographic studies on mitosis in endosperm. III. The origin of the mitotic spindle. Exp Cell Res 13(3):493–502

    Article  CAS  PubMed  Google Scholar 

  8. Bajer A, Mole-Bajer J (1969) Formation of spindle fibers, kinetochore orientation, and behavior of nuclear envelope during mitosis in endosperm – fine structural and in vitro studies. Chromosoma 27(4):448–484

    Article  Google Scholar 

  9. Bannigan A, Lizotte-Waniewski M et al (2007) Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants. Cell Motil Cytoskeleton 65(1):1–11

    Article  CAS  Google Scholar 

  10. Becker W (1938) Recent investigations in vivo on the division of plant cells. Bot Rev 4(8):446–472

    Article  CAS  Google Scholar 

  11. Burgess J (1970) Interactions between microtubules and the nuclear envelope during mitosis in a fern. Protoplasma 71:77–89

    Article  Google Scholar 

  12. Burgess J, Northcote DH (1967) A function of the preprophase band of microtubules in Phleum pratense. Planta 75:319–326

    Article  CAS  PubMed  Google Scholar 

  13. Chan J, Calder G et al (2005) Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17(6):1737–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cleary AL, Gunning BES et al (1992) Microtubule and F-Actin dynamics at the division site in living Tradescantia stamen hair cells. J Cell Sci 103:977–988

    Article  CAS  Google Scholar 

  15. Cronshaw J, Esau K (1968) Cell division in leaves of Nicotiana. Protoplasma 65(1):1–24

    Article  CAS  PubMed  Google Scholar 

  16. De Mey J, Lambert AM et al (1982) Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proc Natl Acad Sci USA 79:1898–1902

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eleftheriou E, Palevitz B (1992) The effect of cytochalasin D on preprophase band organization in root tip cells of Allium. J Cell Sci 103:989–998

    Article  CAS  Google Scholar 

  18. Franke WW, Seib E et al (1977) Tubulin-containing structures in anastral mitotic apparatus of endosperm cells of plant Leucojum aestivum as revealed by immunofluorescence microscopy. Cytobiologie 15(1):24–48

    Google Scholar 

  19. Galatis B (1980) Microtubules and guard-cell morphogenesis in Zea mays L. J Cell Sci 45:211–244

    Article  CAS  PubMed  Google Scholar 

  20. Granger CL (2000) Development and use of a GFP-labeled reporter protein for observing microtubule behavior in living cells. Doctoral Disseration, Pennsylvania State University, University Park, PA. 240pgs.

    Google Scholar 

  21. Granger CL, Cyr RJ (2000) Use of abnormal preprophase bands to decipher division plane determination. J Cell Sci 114:599–607

    Article  Google Scholar 

  22. Guignard L (1989) Centrosomes in plants. Bot Gaz 25(3):158–164

    Article  Google Scholar 

  23. Gunning BES, Harding AR et al (1978) Pre-prophase bands of microtubules in all categories of formative and proliferative cell division in Azolla roots. Planta 143:145–160

    Article  CAS  PubMed  Google Scholar 

  24. Hardham AR, Gunning BES (1978) Structure of cortical microtubule arrays in plant cells. J Cell Biol 77:14–34

    Article  CAS  PubMed  Google Scholar 

  25. Harris P, Bajer A (1965) Fine structure studies on mitosis in endosperm metaphase of Haemanthus Katherinae Bak. Chromosoma 16:624–636

    Article  Google Scholar 

  26. Hepler P, Palevitz B (1974) Microtubules and microfilaments. Annu Rev Plant Physiol 25:309–362

    Article  CAS  Google Scholar 

  27. Humphrey J (1895) Some recent cell literature. Bot Gaz 20(5):222–228

    Article  Google Scholar 

  28. Inoue S (1953) Polarization optical studies of the mitotic spindle. 1. The demonstration of spindle fibers in living cells. Chromosoma 5:487–500

    Article  CAS  PubMed  Google Scholar 

  29. Inoue S, Bajer A (1961) Birefringence in endosperm mitosis. Chromosoma 12:48–63

    Article  CAS  PubMed  Google Scholar 

  30. Inoue S, Dan K (1951) Birefringence of the dividing cell. J Morphol 89(3):423–455

    Article  Google Scholar 

  31. Joshi HC, Palacios MJ et al (1992) Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 356:80–83

    Article  CAS  PubMed  Google Scholar 

  32. Kawamura E, Himmelspach R et al (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140(1):102–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawamura E, Wasteneys GO (2008) MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J Cell Sci 121(pt 24):4114–4123

    Article  CAS  PubMed  Google Scholar 

  34. Kubiak J, Debrabander M et al (1986) Origin of the mitotic spindle in onion root-cells. Protoplasma 130(1):51–56

    Article  Google Scholar 

  35. Lambert AM (1980) Role of chromosomes in anaphase trigger and nuclear-envelope activity in spindle formation. Chromosoma 76(3):295–308

    Article  CAS  Google Scholar 

  36. Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lepper R (1956) The plant centrosome and the centrosome-blepharoplast homology. Bot Rev 22(6):375–417

    Article  Google Scholar 

  38. Liu B, Cyr RJ et al (1996) A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants. Plant Cell 8:119–132

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu B, Marc J et al (1993) A γ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104:1217–1228

    Article  CAS  PubMed  Google Scholar 

  40. Lloyd C, Chan J (2006) Not so divided: the common basis of plant and animal mitosis. Nat Rev Mol Cell Biol 7:147–152

    Article  CAS  PubMed  Google Scholar 

  41. Lloyd C, Slabas A et al (1980) Microtubules, protoplasts, and plant cell shape: an immunofluorescent study. Planta 147:500–506

    Article  CAS  PubMed  Google Scholar 

  42. Lloyd C, Slabas A et al (1982) Novel features of the plant cytoskeleton. Cell Biol Int Rep 6:171–175

    Article  CAS  PubMed  Google Scholar 

  43. Lloyd CW, Slabas AR et al (1979) Cytoplasmic microtubules of higher-plant cells visualized with anti-tubulin antibodies. Nature 279(5710):239–241

    Article  Google Scholar 

  44. Marc J, Granger CL et al (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10:1927–1939

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Marcus AI, Li W et al (2003) A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Mol Biol Cell 14(4):1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marquette W (1907) Manifestations of polarity in plant cells which are apparently without centrosomes. Bot Zentralbl 21(1):281–303

    Google Scholar 

  47. Martens P (1929) New experimental studies on mitosis in the living cell. Cellule 39:167–216

    Google Scholar 

  48. Mazia D (1984) Centrosomes and mitotic poles. Exp Cell Res 153(1):1–15

    Article  CAS  PubMed  Google Scholar 

  49. McComb A (1900) The development of the karyokinetic spindle in vegetative cells of higher plants. Bull Torrey Bot Club 27(8):451–459

    Article  Google Scholar 

  50. Merdes A, Cleveland DW (1997) Pathways of spindle pole formation: different mechanisms; conserved components. J Cell Biol 138(5):953–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mineyuki Y, Marc J et al (1991) Relationship between the preprophase band, nucleus and spindle in dividing Allium cotyledon cells. J Plant Physiol 138:640–649

    Article  Google Scholar 

  52. Mineyuki Y, Palevitz BA (1990) Relationship between preprophase band organization, F-actin and the division site in Allium. Fluorescence and morphometric studies on cytochalasin treated cells. J Cell Sci 97:283–295

    Article  CAS  Google Scholar 

  53. Newcomb EH (1969) Plant microtubules. Annu Rev Plant Physiol 20:253–288

    Article  CAS  Google Scholar 

  54. Nogami A, Suzaki T et al (1996) Effects of cycloheximide on preprophase bands and prophase spindles in onion (Allium cepa L.) root tip cells. Protoplasma 192:109–121

    Article  CAS  Google Scholar 

  55. Palevitz BA, Hepler PK (1974) The control of the plane of division during stomatal differentiation in Allium. I. Spindle reorientation. Chromosoma 46:297–326

    Article  Google Scholar 

  56. Pearson CG, Bloom K (2004) Dynamic microtubules lead the way for spindle positioning. Nat Rev Mol Cell Biol 5(6):481–492

    Article  CAS  PubMed  Google Scholar 

  57. Pickett-Heaps JD (1969) Preprophase microtubules and stomatal differentiation; some effects of centrifugation on symmetrical and asymmetrical cell division. J Ultrastruct Res 27:24–44

    Article  PubMed  Google Scholar 

  58. Pickett-Heaps JD, Northcote DH (1966) Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J Cell Sci 1:109–120

    Article  CAS  PubMed  Google Scholar 

  59. Pickett-Heaps JD, Northcote DH (1966) Cell division in the formation of the stomatal complex of the young leaves of wheat. J Cell Sci 1(1):121–128

    Article  CAS  PubMed  Google Scholar 

  60. Powell AJ, Lloyd CW et al (1980) Demonstration of the microtubular cytoskeleton of the moss, Physcomitrella patens, using antibodies against mammalian brain tubulin. Plant Sci Lett 18(4):401–404

    Article  CAS  Google Scholar 

  61. Rosza G, Wyckoff R (1950) The electron microscopy of dividing cells. Biochim Biophys Acta 6:334–339

    Article  Google Scholar 

  62. Sabatini DD, Miller F et al (1964) Aldehyde fixation for morphological and enzyme histochemical studies with the electron microscope. J Histochem Cytochem 12:57–71

    Article  CAS  PubMed  Google Scholar 

  63. Schaffner J (1898) Karyokinesis in the root tips of Allium cepa. Bot Gaz 26(4):225–238

    Article  Google Scholar 

  64. Schrader F (1934) On the reality of spindle fibers. Biol Bull 67(3):519–533

    Article  Google Scholar 

  65. Sedar AW, Wilson DF (1950) An electron microscope study of mitosis in the onion root tip. Anat Rec 108(3):531–532

    Google Scholar 

  66. Siller HK, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11:365–374

    Article  CAS  PubMed  Google Scholar 

  67. Smirnova EA, Bajer AS (1994) Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil Cytoskeleton 27(3):219–233

    Article  CAS  PubMed  Google Scholar 

  68. Srivasta LM, Singh AP (1972) Certain aspects of xylem differentiation in corn. Can J Bot 50(9):1795–1804

    Article  Google Scholar 

  69. Ueda K, Matsuyama T et al (1999) Visualization of microtubules in living cells of transgenic Arabidopsis thaliana. Protoplasma 206:201–206

    Article  Google Scholar 

  70. Uppalapati M, Huang YM et al (2008) Microtubule alignment and manipulation using AC electrokinetics. Small 4(9):1371–1381

    Article  CAS  PubMed  Google Scholar 

  71. Van der Valk P, Rennie PJ et al (1980) Distribution of cortical microtubules in tobacco protoplasts – an immunofluorescence microscopic and ultrastructural study. Protoplasma 105(1–2):27–43

    Article  Google Scholar 

  72. Wick S, Duniec J (1983) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Pre-prophase band development and concomitant appearance of nuclear envelope-associated tubulin. J Cell Biol 97:235–243

    Article  CAS  PubMed  Google Scholar 

  73. Wick S, Duniec J (1984) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. II. Transition between the pre-prophase band and the mitotic spindle. Protoplasma 122:45–55

    Article  Google Scholar 

  74. Wick SM, Seagull RW et al (1981) Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J Cell Biol 89:685–690

    Article  CAS  PubMed  Google Scholar 

  75. Zhang DH, Wadsworth P et al (1990) Microtubule dynamics in living dividing plant-cells – confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87(22):8820–8824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Cyr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Malcos, J.L., Cyr, R. (2011). Acentrosomal Spindle Formation Through the Heroic Age of Microscopy: Past Techniques, Present Thoughts, and Future Directions. In: Liu, B. (eds) The Plant Cytoskeleton. Advances in Plant Biology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0987-9_8

Download citation

Publish with us

Policies and ethics