Skip to main content

Biosensing Systems Based on Genetically Engineered Whole Cells

  • Chapter
  • First Online:
Recognition Receptors in Biosensors

Abstract

Genetically engineered whole cells as biosensing systems in biosensors have been employed, in the past two decades, for the detection of a variety of analytes. In addition to being rapid, specific/selective, and sensitive, these whole-cell-based sensing systems provide information pertaining to the analyte bioavailability. This information is particularly important to study the effect of harmful/toxic chemicals on living systems. The whole cells used for designing and developing cell-based sensing systems can be either prokaryotic or eukaryotic in nature. These intact prokaryotic or eukaryotic cells can be genetically engineered to recognize the analytes of interest and respond with the production of a measurable signal in a dose-dependent manner. Generally, prokaryotic bacterial whole-cell sensing systems are developed by introducing a plasmid construct with a reporter gene fused to a promoter, which is induced by a target analyte through a regulatory protein. Similarly, a receptor, which is activated by a target analyte, is coupled with a reporter gene for the development of genetically modified eukaryotic cell-based biosensing systems. The most commonly used reporter proteins in whole-cell biosensing include luminescent proteins, such as bacterial and firefly luciferases; green fluorescent protein along with its variants; and β-galactosidase. The analytes that can be detected using genetically manipulated whole-cell sensing systems range from general toxicants and cell stress factors to specific analytes, such as metals, metalloids, organic pollutants, sugars, drugs, and bacterial signaling molecules. In order to develop self-contained sensing devices based on recombinant whole-cell sensing systems, preservation, miniaturization, and portability are important issues that need to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Lux:

Bacterial luciferase

FMNH2 :

Reduced flavin mononucleotide

FMN:

Flavin mononucleotide

Luc:

Firefly luciferase

ATP:

Adenosine triphosphate

Ruc:

Renilla luciferase

GFP:

Green fluorescent protein

V. fischeri :

Vibrio fischeri

EDCs:

Endocrine disrupting compounds

RE:

Response element

S. cerevisiae :

Saccharomyces cerevisiae

hAR:

Human androgen receptor

ARE:

Androgen response element

CALUX:

Chemical-activated luciferase expression

AhR:

Aryl hydrocarbon receptor

DRE:

Dioxin-responsive element

CCD:

Charge-coupled device

PDMS:

Poly-(dimethylsiloxane)

BBIC:

Bioluminescent-bioreporter integrated circuit

IC:

Integrated circuit

References

  • Abd-El-Haleem D, Ripp S, Scott C, Sayler GS (2002) A luxCDABE-based bioluminescent bioreporter for the detection of phenol. J Ind Microbiol Biotechnol 29:233

    Google Scholar 

  • Afanassiev V, Sefton M, Anantachaiyong T, Barker G, Walmsley R, Wölfl S (2000) Application of yeast cells transformed with GFP expression constructs containing the RAD54 or RNR2 promoter as a test for the genotoxic potential of chemical substances. Mutat Res/Genet Toxicol Environ Mutagen 464:297–308

    Google Scholar 

  • Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) gfp-Based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585

    Google Scholar 

  • Applegate BM, Kehrmeyer SR, Sayler GS (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64:2730–2735

    Google Scholar 

  • Baldwin TO, Christopher JA, Raushel FM, Sinclair JF, Ziegler MM, Fisher AJ, Rayment I (1995) Structure of bacterial luciferase. Curr Opin Struct Biol 5:798–809

    Google Scholar 

  • Bartolome AJ, Ulber R, Scheper T, Sagi E, Belkin S (2003) Genotoxicity monitoring using a 2D-spectroscopic GFP whole cell biosensing system. Sens Actuators B Chem 89:27–32

    Google Scholar 

  • Baumstark-Khan C, Cioara K, Rettberg P, Horneck G (2005) Determination of geno- and cytotoxicity of groundwater and sediments using the recombinant SWITCH test. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:245–263

    Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    Google Scholar 

  • Billard P, DuBow MS (1998) Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clin Biochem 31:1–14

    Google Scholar 

  • Biran I, Walt DR (2002) Optical imaging fiber-based single live cell arrays: a high-density cell assay platform. Anal Chem 74:3046–3054

    Google Scholar 

  • Biran I, Klimentiy L, Hengge-Aronis R, Ron EZ, Rishpon J (1999) On-line monitoring of gene expression. Microbiology 145:2129–2133

    Google Scholar 

  • Biran I, Rissin DM, Ron EZ, Walt DR (2003) Optical imaging fiber-based live bacterial cell array biosensor. Anal Biochem 315:106–113

    Google Scholar 

  • Birnbaum LS (1995) Developmental effects of dioxins and related endocrine disrupting chemicals. Toxicol Lett 82–83:743–750

    Google Scholar 

  • Bjerketorp J, Hakansson S, Belkin S, Jansson JK (2006) Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr Opin Biotechnol 17:43–49

    Google Scholar 

  • Bronstein I, Martin CS, Fortin JJ, Olesen CE, Voyta JC (1996) Chemiluminescence: sensitive detection technology for reporter gene assays. Clin Chem 42:1542–1546

    Google Scholar 

  • Brown MM, McCready TL, Bunce NJ (1992) Factors affecting the toxicity of dioxin-like toxicants: a molecular approach to risk assessment of dioxins. Toxicol Lett 61:141–147

    Google Scholar 

  • Bulich AA, Isenberg DL (1981) Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. ISA Trans 20:29–33

    Google Scholar 

  • Cebolla A, Sousa C, de Lorenzo V (1997) Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading pseudomonas define protein sites involved in binding of aromatic inducers. J Biol Chem 272:3986–3992

    Google Scholar 

  • Cha HJ, Srivastava R, Vakharia VN, Rao G, Bentley WE (1999) Green fluorescent protein as a noninvasive stress probe in resting Escherichia coli cells. Appl Environ Microbiol 65:409–414

    Google Scholar 

  • Chalova V, Zabala-Díaz I, Woodward C, Ricke S (2008) Development of a whole cell green fluorescent sensor for lysine quantification. World J Microbiol Biotechnol 24:353–359

    Google Scholar 

  • Cho J-C, Park K-J, Ihm H-S, Park J-E, Kim S-Y, Kang I, Lee K-H, Jahng D, Lee D-H, Kim S-J (2004) A novel continuous toxicity test system using a luminously modified freshwater bacterium. Biosens Bioelectron 20:338–344

    Google Scholar 

  • Choi SH, Gu MB (2002) A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosens Bioelectron 17:433–440

    Google Scholar 

  • Choi SH, Gu MB (2003) Toxicity biomonitoring of degradation byproducts using freeze-dried recombinant bioluminescent bacteria. Anal Chim Acta 481:229–238

    Google Scholar 

  • Coldham NG, Dave M, Sivapathasundaram S, McDonnell DP, Connor C, Sauer MJ (1997) Evaluation of a recombinant yeast cell estrogen screening assay. Environ Health Perspect 105:734–742

    Google Scholar 

  • Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csöregi E, Johansson G, Mattiasson B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244

    Google Scholar 

  • Corthier G, Delorme C, Ehrlich SD, Renault P (1998) Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Appl Environ Microbiol 64:2721–2722

    Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    Google Scholar 

  • Date A, Pasini P, Daunert S (2007) Construction of spores for portable bacterial whole-cell biosensing systems. Anal Chem 79:9391–9397

    Google Scholar 

  • Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738

    Google Scholar 

  • Davidov Y, Rozen R, Smulski DR, Van Dyk TK, Vollmer AC, Elsemore DA, LaRossa RA, Belkin S (2000) Improved bacterial SOS promoter: lux fusions for genotoxicity detection. Mutat Res/Genet Toxicol Environ Mutagen 466:97–107

    Google Scholar 

  • Dollard M-A, Billard P (2003) Whole-cell bacterial sensors for the monitoring of phosphate bioavailability. J Microbiol Methods 55:221–229

    Google Scholar 

  • Elasri MO, Miller RV (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65:2025–2031

    Google Scholar 

  • Erbe JL, Adams AC, Taylor KB, Hall LM (1996) Cyanobacteria carrying ansmt-lux transcriptional fusion as biosensors for the detection of heavy metal cations. J Ind Microbiol Biotechnol 17:80–83

    Google Scholar 

  • Fan F, Wood KV (2007) Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol 5:127–136

    Google Scholar 

  • Fang H, Tong W, Perkins R, Soto AM, Prechtl NV, Sheehan DM (2000) Quantitative comparisons of in vitro assays for estrogenic activities. Environ Health Perspect 108:723–729

    Google Scholar 

  • Feliciano J, Pasini P, Deo SK, Daunert S (2006a) Photoproteins as reporters in whole-cell sensing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  • Feliciano J, Shifen X, Xiyuan G, Lehmler H-J, Bachas LG, Daunert S (2006b) ClcR-based biosensing system in the detection of cis-dihydroxylated (chloro-)biphenyls. Anal Bioanal Chem 385:807–813

    Google Scholar 

  • Fuqua C, Winans SC (1996) Conserved cis-acting promoter elements are required for density- dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J Bacteriol 178:435–440

    Google Scholar 

  • Gaido KW, Leonard LS, Lovell S, Gould JC, Babaï D, Portier CJ, McDonnell DP (1997) Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol 143:205–212

    Google Scholar 

  • Galluzzi L, Karp M (2006) Whole cell strategies based on lux genes for high throughput applications toward new antimicrobials. Comb Chem High Throughput Screen 9:501–514

    Google Scholar 

  • Gil GC, Mitchell RJ, Tai Chang S, Bock Gu M (2000) A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens Bioelectron 15:23–30

    Google Scholar 

  • Gil GC, Kim YJ, Gu MB (2002) Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium. Biosens Bioelectron 17:427–432

    Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:563–567 546

    Google Scholar 

  • Gonchar MV, Maidan MM, Moroz OM, Woodward JR, Sibirny AA (1998) Microbial O2- and H2O2-electrode sensors for alcohol assays based on the use of permeabilized mutant yeast cells as the sensitive bioelements. Biosens Bioelectron 13:945–952

    Google Scholar 

  • Gu M (2005) Environmental biosensors using bioluminescent bacteria. In: Environmental chemistry. pp 691–698. http://dx.doi.org/10.1007/3-540-26531-7_63

    Google Scholar 

  • Gu BM, Gil GC (2001) A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity. Biosens Bioelectron 16:661–666

    Google Scholar 

  • Gu MB, Min J, LaRossa RA (2000) Bacterial bioluminescent emission from recombinant Escherichia coli harboring a recA::luxCDABE fusion. J Biochem Biophys Methods 45:45–56

    Google Scholar 

  • Gu MB, Gil GC, Kim JH (2002a) Enhancing the sensitivity of a two-stage continuous toxicity monitoring system through the manipulation of the dilution rate. J Biotechnol 93:283–288

    Google Scholar 

  • Gu MB, Min J, Kim EJ (2002b) Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria. Chemosphere 46:289–294

    Google Scholar 

  • Gu M, Mitchell R, Kim B (2004) Whole-cell-based biosensors for environmental biomonitoring and application. In: Biomanufacturing. pp 269–305. http://dx.doi.org/10.1007/b13533

    Google Scholar 

  • Guan X, Ramanathan S, Garris JP, Shetty RS, Ensor M, Bachas LG, Daunert S (2000) Chlorocatechol detection based on a clc operon/reporter gene system. Anal Chem 72:2423–2427

    Google Scholar 

  • Guan X, D’Angelo E, Luo W, Daunert S (2002) Whole-cell biosensing of 3-chlorocatechol in liquids and soils. Anal Bioanal Chem 374:841–847

    Google Scholar 

  • Gutendorf B, Westendorf J (2001) Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology 166:79–89

    Google Scholar 

  • Hakkila K, Maksimow M, Karp M, Virta M (2002) Reporter Genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal Biochem 301:235–242

    Google Scholar 

  • Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24:333–342

    Google Scholar 

  • Hansen LH, Sørensen SJ (2000) Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol Lett 193:123–127

    Google Scholar 

  • Hansen LH, Sørensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:483–494

    Google Scholar 

  • Harms H, Wells M, van der Meer J (2006) Whole-cell living biosensors – are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280

    Google Scholar 

  • Hastwell PW, Chai L-L, Roberts KJ, Webster TW, Harvey JS, Rees RW, Walmsley RM (2006) High-specificity and high-sensitivity genotoxicity assessment in a human cell line: validation of the GreenScreen HC GADD45a-GFP genotoxicity assay. Mutat Res/Genet Toxicol Environ Mutagen 607:160–175

    Google Scholar 

  • Heitzer A, Malachowsky K, Thonnard JE, Bienkowski PR, White DC, Sayler GS (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Environ Microbiol 60:1487–1494

    Google Scholar 

  • Hever N, Belkin S (2006) A dual-color bacterial reporter strain for the detection of toxic and genotoxic effects. Eng Life Sci 6:319–323

    Google Scholar 

  • Hollis RP, Killham K, Glover LA (2000) Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl Environ Microbiol 66:1676–1679

    Google Scholar 

  • Holmes DS, Dubey SK, Gangolli S (1994) Development of biosensors for the detection of mercury and copper ions. Environ Geochem Health 16:229–233

    Google Scholar 

  • Horsburgh AM, Mardlin DP, Turner NL, Henkler R, Strachan N, Glover LA, Paton GI, Killham K (2002) On-line microbial biosensing and fingerprinting of water pollutants. Biosens Bioelectron 17:495–501

    Google Scholar 

  • Hwang ET, Ahn J-M, Kim BC, Gu MB (2008) Construction of a nrdA::luxCDABE fusion and its use in Escherichia coli as a DNA damage biosensor. Sensors 8:1297–1307

    Google Scholar 

  • Ikariyama Y, Nishiguchi S, Koyama T, Kobatake E, Aizawa M, Tsuda M, Nakazawa T (1997) Fiber-optic-based biomonitoring of benzene derivatives by recombinant E. coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber-optic end. Anal Chem 69:2600–2605

    Google Scholar 

  • Ivask A, Hakkila K, Virta M (2001) Detection of organomercurials with sensor bacteria. Anal Chem 73:5168–5171

    Google Scholar 

  • Joung KE, Chung YH, Sheen YY (2007) DRE-CALUX bioassay in comparison with HRGC/MS for measurement of toxic equivalence in environmental samples. Sci Total Environ 372:657–667

    Google Scholar 

  • Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146:2435–2445

    Google Scholar 

  • Kim BC, Gu MB (2003) A bioluminescent sensor for high throughput toxicity classification. Biosens Bioelectron 18:1015–1021

    Google Scholar 

  • Kim BC, Park KS, Kim SD, Gu MB (2003) Evaluation of a high throughput toxicity biosensor and comparison with a Daphnia magna bioassay. Biosens Bioelectron 18:821–826

    Google Scholar 

  • King JMH, DiGrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781

    Google Scholar 

  • Klein KO, Baron J, Barnes KM, Pescovitz OH, Cutler GB Jr (1998) Use of an ultrasensitive recombinant cell bioassay to determine estrogen levels in girls with precocious puberty treated with a luteinizing hormone-releasing hormone agonist. J Clin Endocrinol Metab 83:2387–2389

    Google Scholar 

  • Knight AW, Keenan PO, Goddard NJ, Fielden PR, Walmsley RM (2004) A yeast-based cytotoxicity and genotoxicity assay for environmental monitoring using novel portable instrumentation. J Environ Monit 6:71–79

    Google Scholar 

  • Kobatake E, Niimi T, Haruyama T, Ikariyama Y, Aizawa M (1995) Biosensing of benzene derivatives in the environment by luminescent Escherichia coli. Biosens Bioelectron 10:601–605

    Google Scholar 

  • Köhler S, Belkin S, Schmid RD (2000) Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366:769–779

    Google Scholar 

  • Korpela MT, Kurittu JS, Karvinen JT, Karp MT (1998) A recombinant escherichia coli sensor strain for the detection of tetracyclines. Anal Chem 70:4457–4462

    Google Scholar 

  • Kostrzynska M, Leung KT, Lee H, Trevors JT (2002) Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds. J Microbiol Methods 48:43–51

    Google Scholar 

  • Kuang Y, Biran I, Walt DR (2004) Living bacterial cell array for genotoxin monitoring. Anal Chem 76:2902–2909

    Google Scholar 

  • Kumari A, Pasini P, Deo SK, Flomenhoft D, Shashidhar H, Daunert S (2006) Biosensing systems for the detection of bacterial quorum signaling molecules. Anal Chem 78:7603–7609

    Google Scholar 

  • Kurittu J, Karp M, Korpela M (2000a) Detection of tetracyclines with luminescent bacterial strains. Luminescence 15:291–297

    Google Scholar 

  • Kurittu J, Lonnberg S, Virta M, Karp M (2000b) A group-specific microbiological test for the detection of tetracycline residues in raw milk. J Agric Food Chem 48:3372–3377

    Google Scholar 

  • Layton AC, Muccini M, Ghosh MM, Sayler GS (1998) Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls. Appl Environ Microbiol 64:5023–5026

    Google Scholar 

  • Lee HJ, Gu MB (2003) Construction of a sodA::luxCDABE fusion Escherichia coli: comparison with a katG fusion strain through their responses to oxidative stresses. Appl Microbiol Biotechnol 60:577–580

    Google Scholar 

  • Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21:500–507

    Google Scholar 

  • Leedjärv A, Ivask A, Virta M, Kahru A (2006) Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. Chemosphere 64:1910–1919

    Google Scholar 

  • Legler J, Dennekamp M, Vethaak AD, Brouwer A, Koeman JH, van der Burg B, Murk AJ (2002) Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays. Sci Total Environ 293:69–83

    Google Scholar 

  • Lehmann M, Riedel K, Adler K, Kunze G (2000) Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosens Bioelectron 15:211–219

    Google Scholar 

  • Leskinen P, Michelini E, Picard D, Karp M, Virta M (2005) Bioluminescent yeast assays for detecting estrogenic and androgenic activity in different matrices. Chemosphere 61:259–266

    Google Scholar 

  • Leskinen P, Hilscherova K, Sidlova T, Kiviranta H, Pessala P, Salo S, Verta M, Virta M (2008) Detecting AhR ligands in sediments using bioluminescent reporter yeast. Biosens Bioelectron 23:1850–1855

    Google Scholar 

  • Leth S, Maltoni S, Simkus R, Mattiasson B, Corbisier P, Klimant I, Wolfbeis OS, Csöregi E (2002) Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis 14:35–42

    Google Scholar 

  • Lorenz WW, McCann RO, Longiaru M, Cormier MJ (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci USA 88:4438–4442

    Google Scholar 

  • Lyngberg OK, Stemke DJ, Schottel JL, Flickinger MC (1999) A single-use luciferase-based mercury biosensor using Escherichia coli HB101 immobilized in a latex copolymer film. J Ind Microbiol Biotechnol 23:668–676

    Google Scholar 

  • Maehana K, Tani H, Kamidate T (2006) On-chip genotoxic bioassay based on bioluminescence reporter system using three-dimensional microfluidic network. Anal Chim Acta 560:24–29

    Google Scholar 

  • Mbeunkui F, Richaud C, Etienne AL, Schmid R, Bachmann T (2002) Bioavailable nitrate detection in water by an immobilized luminescent cyanobacterial reporter strain. Appl Microbiol Biotechnol 60:306–312

    Google Scholar 

  • Meighen EA (1993) Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J 7:1016–1022

    Google Scholar 

  • Michelini E, Leskinen P, Virta M, Karp M, Roda A (2005) A new recombinant cell-based bioluminescent assay for sensitive androgen-like compound detection. Biosens Bioelectron 20:2261–2267

    Google Scholar 

  • Min J, Kim EJ, LaRossa RA, Gu MB (1999) Distinct responses of a recA::luxCDABE Escherichia coli strain to direct and indirect DNA damaging agents. Mutat Res/Genet Toxicol Environ Mutagen 442:61–68

    Google Scholar 

  • Minic J, Persuy M-A, Godel E, Aioun J, Connerton I, Salesse R, Pajot-Augy E (2005) Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS J 272:524–537

    Google Scholar 

  • Mirasoli M, Feliciano J, Michelini E, Daunert S, Roda A (2002) Internal response correction for fluorescent whole-cell biosensors. Anal Chem 74:5948–5953

    Google Scholar 

  • Mitchell RJ, Gu MB (2004a) Construction and characterization of novel dual stress-responsive bacterial biosensors. Biosens Bioelectron 19:977–985

    Google Scholar 

  • Mitchell RJ, Gu MB (2004b) An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl Microbiol Biotechnol 64:46–52

    Google Scholar 

  • Mitchell RJ, Gu MB (2006) Characterization and optimization of two methods in the immobilization of 12 bioluminescent strains. Biosens Bioelectron 22:192–199

    Google Scholar 

  • Miyawaki A (2002) Green fluorescent protein-like proteins in reef Anthozoa animals. Cell Struct Funct 27:343–347

    Google Scholar 

  • Molina A, Carpeaux R, Martial JA, Muller M (2002) A transformed fish cell line expressing a green fluorescent protein–luciferase fusion gene responding to cellular stress. Toxicol In Vitro 16:201–207

    Google Scholar 

  • Müller-Taubenberger A, Anderson K (2007) Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 77:1–12

    Google Scholar 

  • Murk AJ, Legler J, Denison MS, Giesy JP, van de Guchte C, Brouwer A (1996) Chemical-activated luciferase gene expression (CALUX): a novelin vitrobioassay for ah receptor active compounds in sediments and pore water. Fundam Appl Toxicol 33:149–160

    Google Scholar 

  • Nakama A, Funasaka K, Shimizu M (2007) Evaluation of estrogenic activity of organic biocides using ER-binding and YES assay. Food Chem Toxicol 45:1558–1564

    Google Scholar 

  • Naylor LH (1999) Reporter gene technology: the future looks bright. Biochem Pharmacol 58:749–757

    Google Scholar 

  • Nivens DE, McKnight TE, Moser SA, Osbourn SJ, Simpson ML, Sayler GS (2004) Bioluminescent bioreporter integrated circuits: potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J Appl Microbiol 96:33–46

    Google Scholar 

  • Norman A, Hansen LH, Sørensen SJ (2005) Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Appl Environ Microbiol 71:2338–2346

    Google Scholar 

  • Norman A, Hansen LH, Sørensen SJ (2006) A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell biosensor for the detection of genotoxins in complex environments. Mutat Res/Genet Toxicol Environ Mutagen 603:164–172

    Google Scholar 

  • Nunoshiba T, Nishioka H (1991) ‘Rec-lac test’ for detecting SOS-inducing activity of environmental genotoxic substances. Mutat Res/DNA Repair 254:71–77

    Google Scholar 

  • Ohmiya Y, Hirano T (1996) Shining the light: the mechanism of the bioluminescence reaction of calcium-binding photoproteins. Chem Biol 3:337–347

    Google Scholar 

  • Omura T, Kiyono M, Pan-Hou H (2004) Development of a specific and sensitive bacteria sensor for detection of mercury at picomolar levels in environment. J Health Sci 50:379–383

    Google Scholar 

  • Østergaard TG, Hansen LH, Binderup M-L, Norman A, Sørensen SJ (2007) The cda GenoTox assay: a new and sensitive method for detection of environmental genotoxins, including nitroarenes and aromatic amines. Mutat Res/Genet Toxicol Environ Mutagen 631:77–84

    Google Scholar 

  • Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA (1999) Development and application of cell-based biosensors. Ann Biomed Eng 27:697–711

    Google Scholar 

  • Parry JM (1999) Use of tests in yeasts and fungi in the detection and evaluation of carcinogens. IARC Sci Publ (146):471–485

    Google Scholar 

  • Pedahzur R, Polyak B, Marks RS, Belkin S (2004) Water toxicity detection by a panel of stress-responsive luminescent bacteria. J Appl Toxicol 24:343–348

    Google Scholar 

  • Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458

    Google Scholar 

  • Phoenix P, Keane A, Patel A, Bergeron H, Ghoshal S, Lau PCK (2003) Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ Microbiol 5:1309–1327

    Google Scholar 

  • Pillon A, Servant N, Vignon F, Balaguer P, Nicolas J-C (2005) In vivo bioluminescence imaging to evaluate estrogenic activities of endocrine disrupters. Anal Biochem 340:295–302

    Google Scholar 

  • Polyak B, Bassis E, Novodvorets A, Belkin S, Marks RS (2001) Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization. Sens Actuators B Chem 74:18–26

    Google Scholar 

  • Premkumar JR, Lev O, Marks RS, Polyak B, Rosen R, Belkin S (2001) Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta 55:1029–1038

    Google Scholar 

  • Premkumar JR, Sagi E, Rozen R, Belkin S, Modestov AD, Lev O (2002a) Fluorescent bacteria encapsulated in sol–gel derived silicate films. Chem Mater 14:2676–2686

    Google Scholar 

  • Premkumar RJ, Rosen R, Belkin S, Lev O (2002b) Sol–gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films. Anal Chim Acta 462:11–23

    Google Scholar 

  • Prest AG, Winson MK, Hammond JRM, Stewart GSAB (1997) The construction and application of a lux-based nitrate biosensor. Lett Appl Microbiol 24:355–360

    Google Scholar 

  • Ptitsyn LR, Horneck G, Komova O, Kozubek S, Krasavin EA, Bonev M, Rettberg P (1997) A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl Environ Microbiol 63:4377–4384

    Google Scholar 

  • Qureshi AA, Bulich AA, Isenberg DL (1998) Microtox toxicity test systems – where they stand today. CRC Press, Washington, DC

    Google Scholar 

  • Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha JH, Dhanasekaran DN (2007) Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol 3:325–330

    Google Scholar 

  • Ramanathan S, Ensor M, Daunert S (1997a) Bacterial biosensors for monitoring toxic metals. Trends Biotechnol 15:500–506

    Google Scholar 

  • Ramanathan S, Shi W, Rosen BP, Daunert S (1997b) Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 69:3380–3384

    Google Scholar 

  • Rasmussen LD, Sørensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32:639–646

    Google Scholar 

  • Riether K, Dollard MA, Billard P (2001) Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Appl Microbiol Biotechnol 57:712–716

    Google Scholar 

  • Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell IJ, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853

    Google Scholar 

  • Ripp SA, Daumer KA, Garland JL, Simpson ML, Sayler GS (2004) Remote sensing of microbial volatile organic compounds with a bioluminescent bioreporter integrated circuit. Environ Monit Remediation III 5270:208–213

    Google Scholar 

  • Roberto FF, Barnes JM, Bruhn DF (2002) Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 58:181–188

    Google Scholar 

  • Roda A, Mirasoli M, Michelini E, Magliulo M, Simoni P, Guardigli M, Curini R, Sergi M, Marino A (2006) Analytical approach for monitoring endocrine-disrupting compounds in urban waste water treatment plants. Anal Bioanal Chem 385:742–752

    Google Scholar 

  • Rothert A, Deo SK, Millner L, Puckett LG, Madou MJ, Daunert S (2005) Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform. Anal Biochem 342:11–19

    Google Scholar 

  • Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248

    Google Scholar 

  • Rozen Y, Nejidatl A, Gartemann K-H, Belkin S (1999) Specific detection of p-chlorobenzoic acid by Escherichia coli bearing a plasmid-borne fcbA’::lux fusion. Chemosphere 38:633–641

    Google Scholar 

  • Satoh K, Nonaka R, Ohyama K-, Nagai F (2005) Androgenic and antiandrogenic effects of alkylphenols and parabens assessed using the reporter gene assay with stably transfected CHO-K1 cells (AR-EcoScreen System). J Health Sci 51:557–568

    Google Scholar 

  • Satoh K, Nonaka R, Ohyama KI, Nagai F, Ogata A, Iida M (2008) Endocrine disruptive effects of chemicals eluted from nitrile-butadiene rubber gloves using reporter gene assay systems. Biol Pharm Bull 31:375–379

    Google Scholar 

  • Selifonova O, Burlage R, Barkay T (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090

    Google Scholar 

  • Shao CY, Howe CJ, Porter AJR, Glover LA (2002) Novel cyanobacterial biosensor for detection of herbicides. Appl Environ Microbiol 68:5026–5033

    Google Scholar 

  • Shapiro E, Baneyx F (2002) Stress-based identification and classification of antibacterial agents: second-generation Escherichia coli reporter strains and optimization of detection. Antimicrob Agents Chemother 46:2490–2497

    Google Scholar 

  • Shapiro E, Baneyx F (2007) Stress-activated bioluminescent Escherichia coli sensors for antimicrobial agents detection. J Biotechnol 132:487–493

    Google Scholar 

  • Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 94:6036–6041

    Google Scholar 

  • Shetty RS, Ramanathan S, Badr IHA, Wolford JL, Daunert S (1999) Green fluorescent protein in the design of a living biosensing system for l-arabinose. Anal Chem 71:763–768

    Google Scholar 

  • Shetty RS, Deo SK, Shah P, Sun Y, Rosen BP, Daunert S (2003) Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 376:11–17

    Google Scholar 

  • Shetty RS, Deo SK, Yue L, Daunert S (2004) Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol Bioeng 88:664–670

    Google Scholar 

  • Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc 217:3–15

    MathSciNet  Google Scholar 

  • Shingler V, Moore T (1994) Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600. J Bacteriol 176:1555–1560

    Google Scholar 

  • Shrestha S, Shetty RS, Ramanathan S, Daunert S (2001) Simultaneous detection of analytes based on genetically engineered whole cell sensing systems. Anal Chim Acta 444:251–260

    Google Scholar 

  • Simpson ML, Sayler GS, Applegate BM, Ripp S, Nivens DE, Paulus MJ, Jellison GE (1998) Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends Biotechnol 16:332–338

    Google Scholar 

  • Smutok O, Dmytruk K, Gonchar M, Sibirny A, Schuhmann W (2007) Permeabilized cells of flavocytochrome b2 over-producing recombinant yeast Hansenula polymorpha as biological recognition element in amperometric lactate biosensors. Biosens Bioelectron 23:599–605

    Google Scholar 

  • Sonneveld E, Jansen HJ, Riteco JAC, Brouwer A, van der Burg B (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83:136–148

    Google Scholar 

  • Sonneveld E, Riteco JAC, Jansen HJ, Pieterse B, Brouwer A, Schoonen WG, van der Burg B (2006) Comparison of in vitro and in vivo screening models for androgenic and estrogenic activities. Toxicol Sci 89:173–187

    Google Scholar 

  • Sørensen SJ, Burmølle M, Hansen LH (2006) Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr Opin Biotechnol 17:11–16

    Google Scholar 

  • Sticher P, Jaspers MC, Stemmler K, Harms H, Zehnder AJ, van der Meer JR (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63:4053–4060

    Google Scholar 

  • Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68:1962–1971

    Google Scholar 

  • Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, Van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750

    Google Scholar 

  • Stoyanov JV, Magnani D, Solioz M (2003) Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett 546:391–394

    Google Scholar 

  • Takeyoshi M, Kuga N, Yamasaki K (2003) Development of a high-performance reporter plasmid for detection of chemicals with androgenic activity. Arch Toxicol 77:274–279

    Google Scholar 

  • Tani H, Maehana K, Kamidate T (2004) Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal Chem 76:6693–6697

    Google Scholar 

  • Tauriainen S, Karp M, Chang W, Virta M (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461

    Google Scholar 

  • Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13:931–938

    Google Scholar 

  • Tauriainen S, Virta M, Chang W, Karp M (1999) Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Anal Biochem 272:191–198

    Google Scholar 

  • Taylor LC, Walt DR (2000) Application of high-density optical microwell arrays in a live-cell biosensing system. Anal Biochem 278:132–142

    Google Scholar 

  • Taylor CJ, Bain LA, Richardson DJ, Spiro S, Russell DA (2004) Construction of a whole-cell gene reporter for the fluorescent bioassay of nitrate. Anal Biochem 328:60–66

    Google Scholar 

  • Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26

    Google Scholar 

  • Tiensing T, Strachan N, Paton GI (2002) Evaluation of interactive toxicity of chlorophenols in water and soil using lux-marked biosensors. J Environ Monit 4:482–489

    Google Scholar 

  • Turner K, Xu S, Pasini P, Deo S, Bachas L, Daunert S (2007) Hydroxylated polychlorinated biphenyl detection based on a genetically engineered bioluminescent whole-cell sensing system. Anal Chem 79:5740–5745

    Google Scholar 

  • Ulitzur S, Lahav T, Ulitzur N (2002) A novel and sensitive test for rapid determination of water toxicity. Environ Toxicol 17:291–296

    Google Scholar 

  • Van Dyk TK, Rosson R (1998) Photorhabdus luminescens luxCDABE promoter probe vectors. Methods Mol Biol 102:985–996

    Google Scholar 

  • Van Dyk TK, Smulski DR, Reed TR, Belkin S, Vollmer AC, LaRossa RA (1995) Responses to toxicants of an Escherichia coli strain carrying a uspA’::lux genetic fusion and an E. coli strain carrying a grpE'::lux fusion are similar. Appl Environ Microbiol 61:4124–4127

    Google Scholar 

  • Van Dyk TK, Ayers BL, Morgan RW, Larossa RA (1998) Constricted flux through the branched-chain amino acid biosynthetic enzyme acetolactate synthase triggers elevated expression of genes regulated by rpos and internal acidification. J Bacteriol 180:785–792

    Google Scholar 

  • Van Dyk TK, DeRose EJ, Gonye GE (2001) LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. J Bacteriol 183:5496–5505

    Google Scholar 

  • Vasina JA, Peterson MS, Baneyx F (1998) Scale-up and optimization of the low-temperature inducible cspA promoter system. Biotechnol Prog 14:714–721

    Google Scholar 

  • Villeneuve DL, Khim JS, Kannan K, Giesy JP (2002) Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxinlike and estrogenic responses in three cell lines. Environ Toxicol 17:128–137

    Google Scholar 

  • Virta M, Lampinen J, Karp M (1995) A luminescence-based mercury biosensor. Anal Chem 67:667–669

    Google Scholar 

  • Vollmer AC, Van Dyk TK (2004) Stress responsive bacteria: biosensors as environmental monitors. In: Poole RK (ed) Advances in microbial physiology. Academic, London, pp 131–174

    Google Scholar 

  • Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA (1997) Detection of DNA damage by use of Escherichia coli carrying recA’::lux, uvrA’::lux, or alkA’::lux reporter plasmids. Appl Environ Microbiol 63:2566–2571

    Google Scholar 

  • Vulkan R, Zhao FJ, Barbosa-Jefferson V, Preston S, Paton GI, Tipping E, McGrath SP (2000) Copper speciation and impacts on bacterial biosensors in the pore water of copper-contaminated soils. Environ Sci Technol 34:5115–5121

    Google Scholar 

  • Walmsley RM, Keenan P (2000) The eukaryote alternative: advantages of using yeasts in place of bacteria in microbial biosensor development. Biotechnol Bioprocess Eng 5:387–394

    Google Scholar 

  • Walmsley RM, Billinton N, Heyer WD (1997) Green fluorescent protein as a reporter for the DNA damage-induced gene RAD54 in Saccharomyces cerevisiae. Yeast 13:1535–1545

    Google Scholar 

  • Weitz HJ, Campbell CD, Killham K (2002) Development of a novel, bioluminescence-based, fungal bioassay for toxicity testing. Environ Microbiol 4:422–429

    Google Scholar 

  • Willardson BM, Wilkins JF, Rand TA, Schupp JM, Hill KK, Keim P, Jackson PJ (1998) Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol 64:1006–1012

    Google Scholar 

  • Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GSAB (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192

    Google Scholar 

  • Wise AA, Kuske CR (2000) Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Appl Environ Microbiol 66:163–169

    Google Scholar 

  • Xu S, D’Angelo E, Ghosh D, Feliciano J, Deo SK, Daunert S (2005) Detection of polychlorinated biphenyls employing chemical dechlorination followed by biphenyl whole cell sensing system. Toxicol Environ Chem 87:287–298

    Google Scholar 

  • Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258

    Google Scholar 

  • Yan L, Allen MS, Simpson ML, Sayler GS, Cox CD (2007) Direct quantification of N-(3-oxo-hexanoyl)-l-homoserine lactone in culture supernatant using a whole-cell bioreporter. J Microbiol Methods 68:40–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Daunert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Struss, A.K., Pasini, P., Daunert, S. (2010). Biosensing Systems Based on Genetically Engineered Whole Cells. In: Zourob, M. (eds) Recognition Receptors in Biosensors. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0919-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0919-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0918-3

  • Online ISBN: 978-1-4419-0919-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics