Skip to main content

Metal-Insulator Transition in Thin Film Vanadium Dioxide

  • Chapter
  • First Online:
Book cover Thin Film Metal-Oxides

Abstract

Recent advances in thin film growth of transition metal oxides coupled with the discovery of fascinating phenomena such as superconductivity and colossal magneto-resistance has caused an enormous interest in correlated electron effects from technological and fundamental science perspectives. Vanadium dioxide (VO2) is one of the most studied correlated electron systems that exhibits a dramatic metal–insulator transition (MIT) near room temperature. The study of this unique material offers prospects of developing a novel kind of electronics with advanced functionality and advancing fundamental science of correlated electron effects. A review of the properties of VO2 is given with special attention to the MIT. Growth conditions for synthesis of high quality VO2 are described, the crystal structure of the material is elucidated, and the relationships between electrical parameters and material morphology are defined. X-ray absorption and photoemission experiments revealed the changes in the energy band structure upon the crossing of the MIT. The analysis of near-Fermi level density of states, the correlation between the band structure and electron transport parameters, and the dispersion of the infrared reflectance of VO2 thin films help understanding the physics behind the MIT. Hall effect experiments provide the data on the carrier density and electron mobility across the MIT – important parameters in the Mott theory of MIT. VO2 devices and possible applications in electronics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70(4): 1039–1263

    Article  CAS  Google Scholar 

  2. Chudnovskiy F, Luryi S, Spivak B (2002) Switching device based on first-order metal-insulator transition induced by external electric field. Future Trends in Microelectronics: The Nano Millennium, In: Luryi S, Xu JM, Zaslavsky A (Eds) Wiley Interscience, New York, pp 148–155

    Google Scholar 

  3. Newns DM, Misewich JA, Tsuei CC, Gupta A, Scott BA, Schrott A (1998) Mott transition field effect transistor. Appl Phys Lett 73(6):780

    Article  CAS  Google Scholar 

  4. Wang H, Yi X, Chen S, Fu X (2005) Fabrication of vanadium oxide micro-optical switches. Sens Actuators A Phys 122(1):108–112

    Article  Google Scholar 

  5. Lee MJ, Park Y, Suh DS, Lee EH, Seo S, Kim DC, Jung R, Kang BS, Ahn SE, Lee CB, Seo DH, Cha YK, Yoo IK, Kim JS, Park BH (2007) Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv Mater 19(22):3919

    Article  CAS  Google Scholar 

  6. Cavalleri A, Dekorsy T, Chong HHW, Kieffer JC, Schoenlein RW (2004) Evidence for a structurally-driven insulator-to-metal transition in VO2: a view from the ultrafast timescale. Phys Rev B 70(16):161102(R)-4

    Google Scholar 

  7. Ladd LA, Paul W (1969) Optical and transport properties of high quality crystals of v2o4 near metallic transition temperature. Solid State Commun 7(4):425–428

    Article  CAS  Google Scholar 

  8. Hood PJ, Denatale JF (1991) Millimeter-wave dielectric-properties of epitaxial vanadium dioxide thin-films. J Appl Phys 70(1):376–381

    Article  CAS  Google Scholar 

  9. Jin P, Yoshimura K, Tanemura S (1997) Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO2 epitaxial films. J Vac Sci Technol A 15: 1113–1117

    Article  CAS  Google Scholar 

  10. Okimura K, Kubo N (2005) Preparation of VO/sub 2/films with metal-insulator transition on sapphire and silicon substrates by inductively coupled plasma-assisted sputtering. Jpn J Appl Phys 2 44(33–36):L1150–L1153

    Google Scholar 

  11. Gan FY, Laou P (2004) Optical and electrical properties of sputtered vanadium oxide films. J Vac Sci Technol A 22(3):879–882

    Article  CAS  Google Scholar 

  12. Berglund CN, Jayaraman A (1969) Hydrostatic-pressure dependence of the electronic properties of VO/sub 2/near the semiconductor-metal transition temperature. Phys Rev 185(3): 1034–1039

    Article  CAS  Google Scholar 

  13. Minomura S, Nagasaki H (1964) Effect of pressure on metal-to-insulator transition in v2o4 + v2o3. J Phys Soc Jpn 19(1):131–132

    Article  CAS  Google Scholar 

  14. Muraoka Y, Hiroi Z (2002) Metal-insulator transition of VO2 thin films grown on tio2 (001) and (110) substrates. Appl Phys Lett 80(4):583–585

    Article  CAS  Google Scholar 

  15. Ruzmetov D, Ramanathan S (2008) (unpublished)

    Google Scholar 

  16. Ruzmetov D, Zawilski KT, Senanayake SD, Narayanamurti V, Ramanathan S (2008) Infrared reflectance and photoemission spectroscopy studies across the phase transition boundary in thin film vanadium dioxide. J Phys Condens Mat 20(46):465204–5

    Article  Google Scholar 

  17. Nagashima K, Yanagida T, Tanaka H, Kawai T (2006) Stress relaxation effect on transport properties of strained vanadium dioxide epitaxial thin films. Phys Rev B 74(17):172106–4

    Article  Google Scholar 

  18. Chae BG, Kim HT, Yun SJ, Kim BJ, Lee YW, Youn DH, Kang KY (2006) Highly oriented VO2 thin films prepared by sol-gel deposition. Electrochem Solid State Lett 9(1):C12–C14

    Article  CAS  Google Scholar 

  19. Sahana MB, Subbanna GN, Shivashankar SA (2002) Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition. J Appl Phys 92(11):6495–6504

    Article  CAS  Google Scholar 

  20. Kitchen WJ, Proto GR (1971) Properties of vanadium dioxide thermal filaments. J Appl Phys 42(5):2140–2142

    Article  CAS  Google Scholar 

  21. Case FC (1988) Simple resistance model fit to the oxidation of a vanadium film into vo2. J Vac Sci Technol A 6(1):123–127

    Article  CAS  Google Scholar 

  22. Griffiths CH, Eastwood HK (1974) Influence of stoichiometry on metal-semiconductor transition in vanadium dioxide. J Appl Phys 45(5):2201–2206

    Article  CAS  Google Scholar 

  23. Kusano E, Theil JA (1989) Effects of microstructure and nonstoichiometry on electrical-properties of vanadium dioxide films. J Vac Sci Technol A 7(3):1314–1317

    Article  CAS  Google Scholar 

  24. Ruzmetov D, Zawilski KT, Narayanamurti V, Ramanathan S (2007) Structure-functional property relationships in rf-sputtered vanadium dioxide thin films. J Appl Phys 102(11):113715–7

    Article  Google Scholar 

  25. Narayan J, Bhosle VM (2006) Phase transition and critical issues in structure-property correlations of vanadium oxide. J Appl Phys 100(10):103524–6

    Article  Google Scholar 

  26. Mlyuka NR, Kivaisi RT (2006) Correlation between optical, electrical and structural properties of vanadium dioxide thin films. J Mater Sci 41(17):5619–5624

    Article  CAS  Google Scholar 

  27. Ruzmetov D, Senanayake SD, Narayanamurti V, Ramanathan S (2008) Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films. Phys Rev B 77(19):195442-1951

    Article  Google Scholar 

  28. McWhan DB, Marezio M, Remeika JP, Dernier PD (1974) X-ray-diffraction study of metallic vo2. Phys Rev B 10(2):490–495

    Article  CAS  Google Scholar 

  29. Eyert V (2002) The metal-insulator transitions of VO2: a band theoretical approach. Annalen Der Physik 11(9):650–702

    Article  CAS  Google Scholar 

  30. Longo JM, Kierkegaard P (1970) A refinement of structure of vo2. Acta Chem Scand 24(2):420

    Article  CAS  Google Scholar 

  31. Zylbersztejn A, Mott NF (1975) Metal-insulator transition in vanadium dioxide. Phys Rev B 11(11):4383–4395

    Article  CAS  Google Scholar 

  32. Pouget JP, Launois H, Dhaenens JP, Merenda P, Rice TM (1975) Electron localization induced by uniaxial stress in pure vo2. Phys Rev Lett 35(13):873–875

    Article  CAS  Google Scholar 

  33. Galy J, Miehe G (1999) Ab initio structures of (M2) and (M3) VO2 high pressure phases. Solid State Sci 1(6):433–448

    Article  CAS  Google Scholar 

  34. Andersson G (1956) Studies on vanadium oxides.2. The crystal structure of vanadium dioxide. Acta Chem Scand 10(4):623–628

    Google Scholar 

  35. Wentzcovitch RM, Schulz WW, Allen PB (1994) vo2 - peierls or mott-hubbard - a view from band theory. Phys Rev Lett 72(21):3389–3392

    Article  CAS  Google Scholar 

  36. Goodenough JB (1971) 2 components of crystallographic transition in vo2. J Solid State Chem 3(4):490

    Article  CAS  Google Scholar 

  37. Kim HT, Lee YW, Kim BJ, Chae BG, Yun SJ, Kang KY, Han KJ, Yee KJ, Lim YS (2006) Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis. Phys Rev Lett 97(26):266401–266404

    Article  Google Scholar 

  38. Suh JY, Lopez R, Feldman LC, Haglund RF (2004) Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. J Appl Phys 96(2):1209–1213

    Article  CAS  Google Scholar 

  39. Ruzmetov D, Senanayake SD, Ramanathan S (2007) X-ray absorption spectroscopy of vanadium dioxide thin films across the phase-transition boundary. Phys Rev B 75(19):195102-1951

    Article  Google Scholar 

  40. Brassard D, Fourmaux S, Jean-Jacques M, Kieffer JC, El Khakani MA (2005) Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films. Appl Phys Lett 87(5):051910-3

    Article  Google Scholar 

  41. Chang HLM, You H, Guo J, Lam DJ (1991) Epitaxial tio2 and vo2 films prepared by mocvd. Appl Surf Sci 48/49:12–18

    Article  CAS  Google Scholar 

  42. Lopez R, Haynes TE, Boatner LA, Feldman LC, Haglund RF (2002) Size effects in the structural phase transition of VO2 nanoparticles. Phys Rev B 65(22):224113-5

    Article  Google Scholar 

  43. Allen PB, Wentzcovitch RM, Schulz WW, Canfield PC (1993) Resistivity of the high-temperature metallic phase of vo2. Phys Rev B 48(7):4359–4363

    Article  CAS  Google Scholar 

  44. Mani RG, Ramanathan S (2007) Observation of a uniform temperature dependence in the electrical resistance across the structural phase transition in thin film vanadium oxide (VO2). Appl Phys Lett 91(6):062104-3

    Article  Google Scholar 

  45. Ramanathan S, Wilk GD, Muller DA, Park CM, McIntyre PC (2001) Growth and characterization of ultrathin zirconia dielectrics grown by ultraviolet ozone oxidation. Appl Phys Lett 79(16):2621–2623

    Article  CAS  Google Scholar 

  46. Chang CL, Ramanathan S (2007) A theoretical approach to investigate low-temperature nanoscale oxidation of metals under UV radiation. J Electrochem Soc 154(7):G160–G164

    Article  CAS  Google Scholar 

  47. Ko C, Ramanathan S (2008) Effect of ultraviolet irradiation on electrical resistance and phase transition characteristics of thin film vanadium oxide. J Appl Phys 103(10):106104-3

    Article  Google Scholar 

  48. Pouget JP, Launois H, Rice TM, Dernier P, Gossard A, Villeneuve G, Hagenmuller P (1974) Dimerization of a linear heisenberg chain in insulating phases of v1-xcrxo2. Phys Rev B 10(5):1801–1815

    Article  CAS  Google Scholar 

  49. Haverkort MW, Hu Z, Tanaka A, Reichelt W, Streltsov SV, Korotin MA, Anisimov VI, Hsieh HH, Lin HJ, Chen CT, Khomskii DI, Tjeng LH (2005) Orbital-assisted metal-insulator transition in VO2. Phys Rev Lett 95(19):196404-4

    Article  CAS  Google Scholar 

  50. Koethe TC, Hu Z, Haverkort MW, Schussler-Langeheine C, Venturini F, Brookes NB, Tjernberg O, Reichelt W, Hsieh HH, Lin HJ, Chen CT, Tjeng LH (2006) Transfer of spectral weight and symmetry across the metal-insulator transition in VO2. Phys Rev Lett 97(11):116402-4

    Article  CAS  Google Scholar 

  51. Biermann S, Poteryaev A, Lichtenstein AI, Georges A (2005) Dynamical singlets and correlation-assisted peierls transition in VO2. Phys Rev Lett 94(2):026404-4

    Article  CAS  Google Scholar 

  52. Liebsch A, Ishida H, Bihlmayer G (2005) Coulomb correlations and orbital polarization in the metal-insulator transition Of VO2. Phys Rev B 71(8):085109-5

    Article  Google Scholar 

  53. Laad MS, Craco L, Muller-Hartmann E (2006) Metal-insulator transition in rutile-based VO2. Phys Rev B 73(19):195120-7

    Article  Google Scholar 

  54. Sakuma R, Miyake T, Aryasetiawan F (2008) First-principles study of correlation effects in VO2. Physical Review B 78(7):075106-9

    Article  Google Scholar 

  55. Gatti M, Bruneval F, Olevano V, Reining L (2007) Understanding correlations in vanadium dioxide from first principles. Phys Rev Lett 99(26):266402-4

    Article  Google Scholar 

  56. Kim HT (2000) Extension of the Brinkman-Rice picture and the Mott transition. Physica C 341–348:259–260

    Article  Google Scholar 

  57. Kim HT, Chae BG, Youn DH, Maeng SL, Kim G, Kang KY, Lim YS (2004) Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices. New J Phys 6:52–19

    Article  Google Scholar 

  58. Qazilbash MM, Brehm M, Chae BG, Ho PC, Andreev GO, Kim BJ, Yun SJ, Balatsky AV, Maple MB, Keilmann F, Kim HT, Basov DN (2007) Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318(5857):1750–1753

    Article  CAS  Google Scholar 

  59. Cavalleri A, Rini M, Chong HHW, Fourmaux S, Glover TE, Heimann PA, Kieffer JC, Schoenlein RW (2005) Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge x-ray absorption. Phys Rev Lett 95(6):067405-4

    Article  CAS  Google Scholar 

  60. Shin S, Suga S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K, Kachi S (1990) Vacuum-ultraviolet reflectance and photoemission-study of the metal-insulator phase-transitions in vo2, v6o13, and v2o3. Phys Rev B 41(8):4993–5009

    Article  CAS  Google Scholar 

  61. Abbate M, Degroot FMF, Fuggle JC, Ma YJ, Chen CT, Sette F, Fujimori A, Ueda Y, Kosuge K (1991) Soft-x-ray-absorption studies of the electronic-structure changes through the vo2 phase-transition. Phys Rev B 43(9):7263–7267

    Article  CAS  Google Scholar 

  62. Goering E, Muller O, Denboer ML, Horn S (1994) Angular dependent soft-x-ray absorption-spectroscopy of vanadium-oxides. Physica B 194–196:1217–1218

    Article  Google Scholar 

  63. de Groot FMF, Grioni M, Fuggle JC, Ghijsen J, Sawatzky GA, Petersen H (1989) Oxygen 1s x-ray-absorption edges of transition-metal oxides. Phys Rev B 40(8):5715–5723

    Article  Google Scholar 

  64. Qazilbash MM, Burch KS, Whisler D, Shrekenhamer D, Chae BG, Kim HT, Basov DN (2006) Correlated metallic state of vanadium dioxide. Phys Rev B 74(20):205118-5

    Article  Google Scholar 

  65. Zimmermann R, Claessen R, Reinert F, Steiner P, Hufner S (1998) Strong hybridization in vanadium oxides: evidence from photoemission and absorption spectroscopy. J Phys Condens Mat 10(25):5697–5716

    Article  CAS  Google Scholar 

  66. Rosevear WH, Paul W (1973) Hall-effect in vo2 near semiconductor-to-metal transition. Phys Rev B 7(5):2109–2111

    Article  CAS  Google Scholar 

  67. Sawatzky GA, Post D (1979) X-ray photoelectron and auger-spectroscopy study of some vanadium-oxides. Phys Rev B 20(4):1546–1555

    Article  CAS  Google Scholar 

  68. Okazaki K, Wadati H, Fujimori A, Onoda M, Muraoka Y, Hiroi Z (2004) Photoemission study of the metal-insulator transition in VO2/tio2(001): Evidence for strong electron-electron and electron-phonon interaction. Phys Rev B 69(16):165104-7

    Article  Google Scholar 

  69. Eguchi R, Taguchi M, Matsunami M, Horiba K, Yamamoto K, Chainani A, Takata Y, Yabashi M, Miwa D, Nishino Y, Tamasaku K, Ishikawa T, Senba Y, Ohashi H, Inoue IH, Muraoka Y, Hiroi Z, Shin S (2007) Electronic structure of 3d(1) configuration vanadium oxides studied by soft X-ray and hard X-ray photoemission spectroscopy. J Electron Spectrosc Relat Phenom 156–158:421–425

    Article  Google Scholar 

  70. Choi HS, Ahn JS, Jung JH, Noh TW, Kim DH (1996) Mid-infrared properties of a VO2 film near the metal-insulator transition. Phys Rev B 54(7):4621–4628

    Article  CAS  Google Scholar 

  71. Okazaki K, Sugai S, Muraoka Y, Hiroi Z (2006) Role of electron-electron and electron-phonon interaction effects in the optical conductivity of VO2. Phys Rev B 73(16):165116-5

    Article  Google Scholar 

  72. Soltani M, Chaker M, Haddad E, Kruzelesky R (2006) 1 ×2 optical switch devices based on semiconductor-to-metallic phase transition characteristics of VO2 smart coatings. Meas Sci Technol 17:1052–1056

    Article  CAS  Google Scholar 

  73. Barker AS, Verleur HW, Guggenheim HJ (1966) Infrared optical properties of vanadium dioxide above and below transition temperature. Phys Rev Lett 17(26):1286

    Article  CAS  Google Scholar 

  74. Kitahiro I, Ohashi T, Watanabe A (1966) Hall effect of vanadium dioxide powder. Journal of the Physical Society of Japan 21(11):2422

    Article  Google Scholar 

  75. Hensler DH (1968) Transport properties of sputtered vanadium dioxide thin films. J Appl Phys 39(5):2354

    Article  CAS  Google Scholar 

  76. Kwan CCY, Griffiths CH, Eastwood HK (1972) Transport and structural properties of vo2 films. Appl Phys Lett 20(2):93

    Article  CAS  Google Scholar 

  77. Ruzmetov D, Heiman D, Claflin BB, Narayanamurti V, Ramanathan S (2009) Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition. Phys Rev B 79:153107-4

    Article  Google Scholar 

  78. Newns DM, Misewich JA, Tsuei CC, Gupta A, Scott BA, Schrott A (1998) Mott transition field effect transistor. Appl Phys Lett 73(6):780–782

    Article  CAS  Google Scholar 

  79. van der Pauw LJ (1958) A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res Rep 13(1):1–9

    Google Scholar 

  80. Mott NF (1961) The transition to the metallic state. Philos Mag 6(62):287–309

    Article  CAS  Google Scholar 

  81. Duchene J, Terraillon M, Pailly P, Adam G (1971) Filamentary conduction in vo2 coplanar thin-film devices. Appl Phys Lett 19(4):115

    Article  CAS  Google Scholar 

  82. Fisher B (1975) Moving boundaries and traveling domains during switching of vo2 single-crystals. J Phys C Solid State 8(13):2072

    Article  CAS  Google Scholar 

  83. Kim HT, Kim BJ, Lee YW, Chae BG, Yun SJ (2008) Switching of the Mott transition based on hole-driven MIT theory. Physica B 403:1434–1436

    Article  CAS  Google Scholar 

  84. Kim BJ, Lee YW, Chae BG, Yun SJ, Oh SY, Kim HT, Lim YS (2007) Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor. Appl Phys Lett 90(2):023515-3

    Article  Google Scholar 

  85. Stefanovich G, Pergament A, Stefanovich D (2000) Electrical switching and Mott transition in VO2. J Phys Conden Mat 12(41):8837–8845

    Article  CAS  Google Scholar 

  86. Chae BG, Kim HT, Youn DH, Kang KY (2005) Abrupt metal-insulator transition observed in VO2 thin films induced by a switching voltage pulse. Phys B Condens Mat 369(1–4):76–80

    Article  CAS  Google Scholar 

  87. Ko C, Ramanathan S (2008) Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry. Appl Phys Lett 93(25):252101-3

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge NSF supplement PHY-0601184 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Ruzmetov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ruzmetov, D., Ramanathan, S. (2010). Metal-Insulator Transition in Thin Film Vanadium Dioxide. In: Ramanathan, S. (eds) Thin Film Metal-Oxides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0664-9_2

Download citation

Publish with us

Policies and ethics