Skip to main content

Microfluidic Platforms for Nanoparticle Delivery and Nanomanufacturing in Biology and Medicine

  • Chapter
  • First Online:
Nanodiamonds

Abstract

Nanoparticles are rapidly emerging as promising vehicles for next-generation therapeutic delivery. These highly mobile nanomaterials exhibit large carrier capacity and excellent stability which, when combined with innate biocompatibility, have captured the focus of numerous research efforts. As such, the ability to deliver well-controlled subcellular doses of these functional nanoparticles, both for fundamental research at the single cell level and in related device manufacturing, remains a challenge. Patterning these nanomaterials on biologically compatible substrates enables both novel biological studies and nanomanufacturing avenues through precise spatial control of dosing. Delivering them directly to live cells enables further studies where transfection remains a challenge. This chapter describes a unique tool for functional nanoparticle delivery, called the Nanofountain Probe. The Nanofountain Probe is capable of both direct-write nanopatterning of these materials with sub-100-nm resolution and targeted in vitro injection to individual cells. To motivate the discussion, a brief overview of microfluidic tools developed to deliver nanoparticles is presented. We then focus on the function of the Nanofountain Probe and its application to functional nanodiamond-based biological studies and nanomanufacturing. Development and application of the Nanofountain Probe and other nanomaterial delivery systems will be critical in developing future nanoscale devices and arrays that harness these nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O (2008) Clin Pharmacol Ther 83:761–769

    Article  Google Scholar 

  2. Schrand AM, Huang H, Carlson C, Schlager JJ, Osawa E, Hussain SM, Dai L (2007) J Phys Chem B 111:2–7

    Article  Google Scholar 

  3. Bakowicz K, Mitura S (2002) J Wide Bandgap Mater 9:12

    Article  Google Scholar 

  4. Liu KK, Cheng CL, Chang CC, Chao JI (2007) Nanotechnology 18:10

    Google Scholar 

  5. Huang H, Pierstorff E, Osawa E, Ho D (2007) Nano Lett 7:3305–3314

    Article  Google Scholar 

  6. Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E (2007) Diam Relat Mater 16:2118–2123

    Article  Google Scholar 

  7. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde R, Sastry M (2005) Langmuir 21:10644–10654

    Article  Google Scholar 

  8. Tshikhudo T, Wang Z, Brust M (2004) Mater Sci Technol 20:980–984

    Article  Google Scholar 

  9. Patel P, Giljohann D, Seferos D, Mirkin C (2008) Proc Natl Acad Sci USA 105:17222–17226

    Article  Google Scholar 

  10. Rosi N, Giljohann D, Thaxton C, Lytton-Jean A, Han M, Mirkin C (2006) Science 312:1027–1030

    Article  Google Scholar 

  11. Gelperina S, Kisich K, Iseman M, Heifets L (2005) Am J Respir Crit Care Med 172:1487–1490

    Article  Google Scholar 

  12. Morgan T, Muddana H, Altinoglu E, Rouse S, Tabakovic A, Tabouillot T, Russin T, Shanmugavelandy S, Butler P, Eklund P, Yun J, Kester M, Adair J (2008) Nano Lett 8:4108–4115

    Article  Google Scholar 

  13. Farokhzad O, Cheng J, Teply B, Sherifi I, Jon S, Kantoff P, Richie J, Langer R (2006) Proc Natl Acad Sci U S A 103:6315–6320

    Article  Google Scholar 

  14. Murphy E, Majeti B, Barnes L, Makale M, Weis S, Lutu-Fuga K, Wrasidlo W, Cheresh D (2008) Proc Natl Acad Sci USA 105:9343–9348

    Article  Google Scholar 

  15. Lam R, Chen M, Pierstorff E, Huang H, Osawa E, Ho D (2008) ACS Nano 2:2095–2102

    Article  Google Scholar 

  16. Ozawa M, Inaguma M, Takahashi M, Kataoka F, Kruger A, Osawa E (2007) Adv Mater 19:1201

    Article  Google Scholar 

  17. Dolmatov VY (2001) Usp Khim 70:687–708

    Google Scholar 

  18. Kruger A (2006) Angew Chem Int Ed Engl 45:6426–6427

    Article  Google Scholar 

  19. Yeap WS, Tan YY, Loh KP (2008) Anal Chem 80:4659–4665

    Article  Google Scholar 

  20. Kruger A, Liang YJ, Jarre G, Stegk J (2006) J Mater Chem 16:2322–2328

    Article  Google Scholar 

  21. Huang H, Pierstorff E, Osawa E, Ho D (2008) ACS Nano 2:203–212

    Article  Google Scholar 

  22. Huang LC, Chang HC (2004) Langmuir 20:5879–5884

    Article  Google Scholar 

  23. Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T (2002) Chem Phys Lett 351:105–108

    Article  Google Scholar 

  24. Kossovsky N, Gelman A, Hnatyszyn HJ, Rajguru S, Garrell RL, Torbati S, Freitas SSF, Chow GM (1995) Bioconjug Chem 6:507–511

    Article  Google Scholar 

  25. Krueger A, Stegk J, Liang Y, Lu L, Jarre G (2008) Langmuir 24:4200–4204

    Article  Google Scholar 

  26. Murphy C, Gole A, Stone J, Sisco P, Alkilany A, Goldsmith E, Baxter S (2008) Acc Chem Res 41:1721–1730

    Article  Google Scholar 

  27. Salata O (2004) J Nanobiotechnology 2:3

    Article  Google Scholar 

  28. Jang K-J, Nam J-M (2008) Small 4:1930–1935

    Article  Google Scholar 

  29. Vega R, Shen C, Maspoch D, Robach J, Lamb R, Mirkin R (2007) Small 3:1482–1485

    Article  Google Scholar 

  30. Kim KH, Moldovan N, Espinosa HD (2005) Small 1:632–635

    Article  Google Scholar 

  31. Moldovan N, Kim KH, Espinosa HD (2006) J Microelectromech Syst 15:204–213

    Article  Google Scholar 

  32. Moldovan N, Kim K-H, Espinosa HD (2006) J Micromech Microeng 16:1935–1942

    Article  Google Scholar 

  33. Loh O, Ho A, Rim J, Kohli P, Patankar N, Espinosa H (2008) Proc Natl Acad Sci USA 105:16438–16443

    Article  Google Scholar 

  34. Kim K-H, Sanedrin RG, Ho AM, Lee SW, Moldovan N, Mirkin CA, Espinosa HD (2008) Adv Mater 20:330–334

    Article  Google Scholar 

  35. Wu B, Ho A, Moldovan N, Espinosa HD (2007) Langmuir 23:9120–9123

    Article  Google Scholar 

  36. Loh O, Lam R, Chen M, Moldovan N, Huang H, Ho D, Espinosa H (2009) Small 5:1667–1674

    Article  Google Scholar 

  37. Ho A, Espinosa H (2008) Scanning probes for the life sciences. In: Bhushan B, Fuchs H, Masahiko T (eds) Applied scanning probe methods 8: scanning probe microscopy techniques. Springer-Verlag, Heidelberg

    Google Scholar 

  38. Mendes P, Jacke S, Critchley K, Plaza J, Chen Y, Nikitin K, Palmer R, Preece J, Evans S, Fitzmaurice D (2004) Langmuir 20:3766–3768

    Article  Google Scholar 

  39. Liu X, Fu L, Hong S, Dravid V, Mirkin C (2002) Adv Mater 14:231–234

    Article  Google Scholar 

  40. Demers L, Park S-J, Taton T, Li Z, Mirkin C (2001) Angew Chem Int Ed Engl 40:3071–3073

    Article  Google Scholar 

  41. Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) Science 283:661–663

    Article  Google Scholar 

  42. Salaita K, Wang Y, Mirkin C (2007) Nat Nanotechnol 2:145–155

    Article  Google Scholar 

  43. Bae S-S, Lim D, Park J-I, Lee W-R, Cheon J, Kim S (2004) J Phys Chem B 108:2575–2579

    Article  Google Scholar 

  44. Zin M, Ma H, Sarikaya M, Jen A (2005) Small 1:698–702

    Article  Google Scholar 

  45. Langmuir I, Blodgett K (1935) Kolloid-Zeitschrift 73:258–263

    Article  Google Scholar 

  46. Huang J, Kim F, Tao A, Connor S, Yang P (2005) Nat Mater 4:896–900

    Article  Google Scholar 

  47. Prime D, Paul S, Pearson C, Green M, Petty M (2004) Mater Sci Eng Biomim Mater Sens Syst 25:33–38

    Google Scholar 

  48. Roy D, Munz M, Colombi P, Bhattacharyya S, Salvetat J-P, Cumpson P, Saboungi M-L (2007) Appl Surf Sci 254:1394–1398

    Article  Google Scholar 

  49. Wang W, Stoltenberg R, Liu S, Bao Z (2008) ACS Nano 2:2135–2142

    Article  Google Scholar 

  50. Santhanam V, Andres R (2004) Nano Lett 4:41–44

    Article  Google Scholar 

  51. Wu X, Chi L, Fuchs H (2005) Eur J Inorg Chem 18:3729–3733

    Article  Google Scholar 

  52. Kraus T, Malaquin L, Schmid H, Riess W, Spencer N, Wolf H (2007) Nat Nanotechnol 2:570–576

    Article  Google Scholar 

  53. Park J-U, Hardy M, Kang S, Barton K, Adair K, Mukhopadhyay D, Lee C, Strano M, Alleyne A, Georgiadis J, Ferreira P, Rogers J (2007) Nature 6:782–789

    Article  Google Scholar 

  54. Murata K, Matsumoto J, Tezuka A, Matsuba Y, Yokoyama H (2005) Microsyst Technol 12:2–7

    Article  Google Scholar 

  55. Iwata F, Nagami S, Sumiya Y, Sasaki A (2007) Nanotechnology 18:105301

    Article  Google Scholar 

  56. Duoss E, Twardowski M, Lewis J (2007) Adv Mater 19:3485–3489

    Article  Google Scholar 

  57. Vengasandra S, Lynch M, Xu J, Henderson E (2005) Nanotechnology 16:2052–2055

    Article  Google Scholar 

  58. Harris D, Hu H, Conrad J, Lewis J (2007) Phys Rev Lett 98:148301

    Article  Google Scholar 

  59. Shepherd R, Panda P, Bao Z, Sandhage K, Hatton T, Lewis J, Doyle P (2008) Adv Mater 20:1–6

    Article  Google Scholar 

  60. Chen Y-C, Tzeng Y, Davray A, Cheng A-J, Ramadoss R, Park M (2008) Diam Relat Mater 17:722–727

    Article  Google Scholar 

  61. Chen Y-C, Tzeng Y, Cheng A-J, Dean R, Park M, Wilamowski B (2009) Diam Relat Mater 18:146–150

    Article  Google Scholar 

  62. Gregoriadis G, Buckland RA (1973) Nature 244:170–172

    Article  Google Scholar 

  63. Schwarze SR, Hruska KA, Dowdy SF (2000) Trends Cell Biol 10:290–295

    Article  Google Scholar 

  64. Uchida T, Yamaizumi M, Okada Y (1977) Nature 266:839–840

    Article  Google Scholar 

  65. Graham FL, van der Eb AJ (1973) Virology 52:456–467

    Article  Google Scholar 

  66. Chu G, Sharp PA (1981) Gene 13:197–202

    Article  Google Scholar 

  67. Knight DE, Scrutton MC (1986) Biochem J 234:497–506

    Google Scholar 

  68. Eul J, Graessmann M, Graessmann A (1996) FEBS Lett 394:227–232

    Article  Google Scholar 

  69. Celis JE (1984) Biochem J 223:281–291

    Google Scholar 

  70. Pepperkok R, Scheel J, Horstmann H, Hauri HP, Griffiths G, Kreis TE (1993) Cell 74:71–82

    Article  Google Scholar 

  71. Stephens DJ, Pepperkok R (2001) Proc Natl Acad Sci U S A 98:4295–4298

    Article  Google Scholar 

  72. Yum K, Na S, Xiang Y, Wang N, Yu MF (2009) Nano Lett 9:2193–2198

    Article  Google Scholar 

  73. Han S, Nakamura C, Obataya I, Nakamura N, Miyake J (2005) Biochem Biophy Res Commun 332:633–639

    Article  Google Scholar 

  74. Han S-W, Nakamura C, Kotobuki N, Obataya I, Ohgushi H, Nagamune T, Miyake J (2008) Nanomedicine 4:215–225

    Google Scholar 

  75. Obataya I, Nakamura C, Han SW, Nakamura N, Miyake J (2005) Nano Lett 5:27–30

    Article  Google Scholar 

  76. Chen X, Kis A, Zettl A, Bertozzi CR (2007) Proc Natl Acad Sci U S A 104:8218–8222

    Article  Google Scholar 

  77. Knoblauch M, Hibberd JM, Gray JC, van Bel AJE (1999) Nat Biotechnol 17:906–909

    Article  Google Scholar 

  78. Tsulaia T, Prokopishyn N, Yao A, Victor Carsrud N, Clara Carou M, Brown D, Davis B, Yannariello-Brown J (2003) J Biomed Sci 10:328–336

    Article  Google Scholar 

  79. Cuerrier CM, Lebel R, Grandbois M (2007) Biochem Biophys Res Commun 355:632–636

    Article  Google Scholar 

  80. Belaubre P, Guirardel M, Garcia G, Pourciel JB, Leberre V, Dagkessamanskaia A, Trevisiol E, Francois JM, Bergaud C (2003) Appl Phys Lett 82:3122–3124

    Article  Google Scholar 

  81. Stracke F, Rieman I, König K (2005) J Photochem Photobiol B 81:136–142

    Article  Google Scholar 

  82. Laforge FO, Carpino J, Rotenberg SA, Mirkin MV (2007) Proc Natl Acad Sci USA 104:11895–11900

    Article  Google Scholar 

  83. Park S, Kim Y-S, Kim W-S, Jon S (2009) Nano Lett 9:1325–1329

    Article  Google Scholar 

  84. Guerin D, Ismat Shah S (1997) J Mater Sci Lett 16:476–478

    Article  Google Scholar 

  85. Lifshitz Y, Lee CH, Wu Y, Zhang WJ, Bello I, Lee ST (2006) Appl Phys Lett 88:243114-1–243114-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dean Ho or Horacio Espinosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Loh, O., Lam, R., Chen, M., Ho, D., Espinosa, H. (2010). Microfluidic Platforms for Nanoparticle Delivery and Nanomanufacturing in Biology and Medicine. In: Ho, D. (eds) Nanodiamonds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0531-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0531-4_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0530-7

  • Online ISBN: 978-1-4419-0531-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics