Skip to main content

White Matter: Functional Anatomy of Key Tracts

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Functions of the different cortical parts of the brain are mediated by the widespread white matter networks that connect the different parts of the brain. With the advent of diffusion tensor imaging (DTI), it is now possible to visualize the larger of these white matter tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nieuwenhuys R, Voogd J, Van Huijzen C. The human central ­nervous system, 3rd rev ed. Berlin: Springer; 1988.

    Google Scholar 

  2. Tamraz JC, Comair YG. Atlas of regional anatomy of the brain using MRI. Berlin: Springer; 2000.

    Google Scholar 

  3. Catani M, Howard RJ, Pajevic S, et al. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17:77–94.

    Article  PubMed  Google Scholar 

  4. Duffau H, Leroy M, Gatignol P. Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers. Neuropsychologia. 2008;46:3197–209.

    Article  PubMed  Google Scholar 

  5. Makris N, Kennedy DN, McInerney S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex. 2005;15:854–69.

    Article  PubMed  Google Scholar 

  6. Schmahmann JD, Pandya DN. Fiber pathways of brain. 1st ed. New York: Oxford University Press; 2006.

    Book  Google Scholar 

  7. Petrides M. Motor conditional associative-learning after selective prefrontal lesions in the monkey. Behav Brain Res. 1982;5:407–13.

    Article  PubMed  CAS  Google Scholar 

  8. Petrides M. Conditional learning and the primate frontal cortex. In: The frontal lobes revisited. New York; 1987. p. 91–08.

    Google Scholar 

  9. Halsband U, Passingham R. The role of premotor and parietal cortex in the direction of action. Brain Res. 1982;240:368–72.

    Article  PubMed  CAS  Google Scholar 

  10. Petrides M, Pandya DN. Association pathways of the prefrontal cortex and functional observations. In: Struss DT, Knight RT, editors. Principles of frontal lobe function. Oxford: Oxford University Press; 2002. p. 31–50.

    Chapter  Google Scholar 

  11. Bisley JW, Goldberg ME. Neuronal activity in the lateral intraparietal area and spatial attention. Science. 2003;299:81–6.

    Article  PubMed  CAS  Google Scholar 

  12. Mesulam MM. A cortical network for directed attention and unilateral neglect. Ann Neurol. 1981;10:309–25.

    Article  PubMed  CAS  Google Scholar 

  13. Goldberg ME, Segraves MA. The visual and frontal cortices. Rev Oculomot Res. 1989;3:283–313.

    PubMed  CAS  Google Scholar 

  14. Posner MI, Walker JA, Friedrich FJ, Rafal RD. Effects of parietal injury on covert orienting of attention. J Neurosci. 1984;4:1863–74.

    PubMed  CAS  Google Scholar 

  15. Daffau H, Gatignol P, Mandonnet E, et al. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain. 2005;128:797–810.

    Article  Google Scholar 

  16. Morosan P, Rademacher J, Schleicher A, et al. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage. 2001;13:684–701.

    Article  PubMed  CAS  Google Scholar 

  17. Hackett TA, Preuss TM, Kaas JH. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol. 2001;441:197–222.

    Article  PubMed  CAS  Google Scholar 

  18. Rauschecker JP, Tian B. Mechanisms and streams for processing of ‘what’ and ‘where’ in auditory cortex. Proc Natl Acad Sci. 2000;97:11800–6.

    Article  PubMed  CAS  Google Scholar 

  19. Gross CG, Weiskrantz L. Evidence for dissociation of impairment on auditory discrimination and delayed response following lateral frontal lesions in monkeys. Exp Neurol. 1962;5:453–76.

    Article  PubMed  CAS  Google Scholar 

  20. Kier EL, Staib LH, Davis LM, et al. MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. AJNR Am J Neuroradiol. 2004;25:677–91.

    PubMed  Google Scholar 

  21. Curran EJ. A new association fiber tract in the cerebrum. With remarks on the fiber tract dissection method of studying the brain. J Comp Neurol. 1909;19:645–56.

    Article  Google Scholar 

  22. Dutton GN. Cognitive vision, its disorders and differential diagnosis in adults and children: knowing where and what things are. Eye. 2003;17:289–304.

    Article  PubMed  CAS  Google Scholar 

  23. Pierrot-Deseilligny C, Gray F, Brunet P. Infarcts of both inferior parietal lobules with impairment of visually guided eye movements, peripheral visual inattention and optic ataxia. Brain. 1986;109:81–97.

    Article  PubMed  Google Scholar 

  24. Ghika J, Ghika-Schmid F, Bogousslasvky J. Parietal motor syndrome: a clinical description in 32 patients in the acute phase of pure parietal strokes studied prospectively. Clin Neurol Neurosurg. 1998;100:271–82.

    Article  PubMed  CAS  Google Scholar 

  25. Stasheff SF, Barton JJ. Deficits in cortical visual function. Ophthalmol Clin North Am. 2001;14:217–42.

    PubMed  CAS  Google Scholar 

  26. Battelli L, Cavanagh P, Martini P, et al. Bilateral deficits of transient visual attention in right parietal patients. Brain. 2003;126:2164–74.

    Article  PubMed  Google Scholar 

  27. Rizzo M, Vecera SP. Psychoanatomical substrates of Balint’s syndrome. J Neurol Neurosurg Psychiatry. 2002;72:162–78.

    Article  PubMed  CAS  Google Scholar 

  28. Driver J, Vuilleumier P. Perceptual awareness and its loss in unilateral neglect and extinction. Cognition. 2001;79:39–88.

    Article  PubMed  CAS  Google Scholar 

  29. Losier BJ, Klein RM. A review of the evidence for a disengage deficit following parietal lobe damage. Neurosci Biobehav Rev. 2001;25:1–13.

    Article  PubMed  CAS  Google Scholar 

  30. Haaxma R, Kuypers HG. Intrahemispheric cortical connexions and visual guidance of hand and finger movements in the rhesus monkey. Brain. 1975;98:239–60.

    Article  PubMed  CAS  Google Scholar 

  31. Martino J, Brogna C, Robles SG, et al. Anatomic dissection of the inferior fronto-occipitalfasiculus revisited in the lights of the brain stimulation data. Cortex. 2010;46:691–9.

    Article  PubMed  Google Scholar 

  32. Burgel U, Schormann T, Schleicher A, et al. Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. Neuroimage. 1999;10:489–99.

    Article  PubMed  CAS  Google Scholar 

  33. Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci. 1992;15:20–5.

    Article  PubMed  CAS  Google Scholar 

  34. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science. 2001;293:2425–30.

    Article  PubMed  CAS  Google Scholar 

  35. Ishai A, Ungerleider LG, Martin A, Haxby JV. The representation of objects in the human occipital and temporal cortex. J Cogn Neurosci. 2000;12 Suppl 2:35–51.

    Article  PubMed  Google Scholar 

  36. Murray EA, Bussey TJ, Hampton RR, Saksida LM. The ­parahippocampal region and object identification. Ann NY Acad Sci. 2000;911:166–74.

    Article  PubMed  CAS  Google Scholar 

  37. Malkova L, Mishkin M. One- trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey. J Neurosci. 2003;23:1956–65.

    PubMed  CAS  Google Scholar 

  38. Geesaman BJ, Born RT, Andersen RA, Tootell RB. Maps of complex motion selectivity in the superior temporal cortex of the alert macaque monkey: a double-label 2-deoxyglucose study. Cereb Cortex. 1997;7:749–57.

    Article  PubMed  CAS  Google Scholar 

  39. Logothetis NK, Schall JD. Neuronal correlates of subjective visual perception. Science. 1989;245:761–3.

    Article  PubMed  CAS  Google Scholar 

  40. Goldberg ME, Bisley J, Powell KD, Gottlieb J, Kusunoki M. The role of the lateral intraparietal area of the monkey in the generation of saccades and visuospatial attention. Ann NY Acad Sci. 2002;956:5–15.

    Article  Google Scholar 

  41. Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol. 1975;38:871–908.

    PubMed  CAS  Google Scholar 

  42. Mandonnet E, Nouet A, Gatignol P, et al. Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain. 2007;130:623–9.

    Article  PubMed  Google Scholar 

  43. Tusa RJ, Ungerleider LG. The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Ann Neurol. 1985;18:583–91.

    Article  PubMed  CAS  Google Scholar 

  44. Michel F, Poncet M, Signoret JL. Are the lesions responsible for prosopagnosia always bilateral? Rev Neurol. 1989;145:764–70.

    PubMed  CAS  Google Scholar 

  45. Salvan CV, Ulmer JL, DeYoe EA, et al. Visual object agnosia and pure word alexia: correlation of functional magnetic resonance imaging and lesion localization. J Comput Assist Tomogr. 2004;28:63–7.

    Article  PubMed  Google Scholar 

  46. Bauer RM. Visual hypoemotionality as a symptom of visual-limbic disconnection in man. Arch Neurol. 1982;39:702–8.

    PubMed  CAS  Google Scholar 

  47. Habib M. Visual hypo-emotionality and prosopagnosia associated with right temporal lobe isolation. Neuropsychologia. 1986;24:577–82.

    Article  PubMed  CAS  Google Scholar 

  48. Ture U, Yasargil G, Glenn Pait T. It there a Superior Occipitofrontal Fasciculus? A microsurgical anatomic study. Neurosurgery. 1997;40(6):1226–32.

    Article  PubMed  CAS  Google Scholar 

  49. Ungerleider LG, Mishkin M. Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW, editors. Analysis of visual behavior. Cambridge, MA: MIT Press; 1982. p. 549–86.

    Google Scholar 

  50. Rizzolatti G, Matelli M. Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res. 2003;153:146–57.

    Article  PubMed  Google Scholar 

  51. Aralasmak A, Ulmer JL, Kocak M. Association, commissural, and projection pathways and their functional deficit reported in literature. J Comput Assist Tomogr. 2006;30:695–715.

    Article  PubMed  Google Scholar 

  52. Kubicki M, Westin CF, Nestor PG, et al. Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biol Psychiatry. 2003;54:1171–80.

    Article  PubMed  Google Scholar 

  53. Schnitzler A, Ploner M. Neurophysiology and functional neuroanatomy of pain perception. J Clin Neurophysiol. 2000;17:592–603.

    Article  PubMed  CAS  Google Scholar 

  54. Richter EO, Davis KD, Hamani C, et al. Cingulotomy for psychiatric disease: microelectrode guidance, a callosal reference system for documenting lesion location, and clinical results. Neurosurgery. 2004;54:622–30.

    Article  PubMed  Google Scholar 

  55. Allman JM, Hakeem A, Erwin JM, et al. The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci. 2001;935:107–17.

    Article  PubMed  CAS  Google Scholar 

  56. Vogt BA, Vogt LJ, Vrana KE, et al. Multivariate analysis of laminar patterns of neurodegeneration in posterior cingulate cortex in Alzheimer’s disease. Exp Neurol. 1998;153:8–22.

    Article  PubMed  CAS  Google Scholar 

  57. Valenstein E, Bowers D, Verfaellie M, et al. Retrosplenial amnesia. Brain. 1987;110:1631–46.

    Article  PubMed  Google Scholar 

  58. Bromm B. The involvement of the posterior cingulate gyrus in phasic pain processing of humans. Neurosci Lett. 2004;361:245–9.

    Article  PubMed  CAS  Google Scholar 

  59. Pierrot-Deseilligny C, Milea D, Muri RM. Eye movement control by the cerebral cortex. Curr Opin Neurol. 2004;17:17–25.

    Article  PubMed  Google Scholar 

  60. Erdem S, Saygi S, Ciger A, et al. Seizures with negative phenomena. Clin Neurol Neurosurg. 1995;97:36–8.

    Article  PubMed  CAS  Google Scholar 

  61. Katayama K, Takahashi N, Ogawara K, et al. Pure topographical disorientation due to right posterior cingulate lesion. Cortex. 1999;35:279–82.

    Article  PubMed  CAS  Google Scholar 

  62. Maddock RJ, Garrett AS, Buonocore MH. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience. 2001;104:667–76.

    Article  PubMed  CAS  Google Scholar 

  63. Imai N, Nohira O, Miyata K, et al. A case of metamorphopsia caused by a very localized spotty infarct. Rinsho Shinkeigaku. 1995;35:302–5.

    PubMed  CAS  Google Scholar 

  64. Colombo M, Rodman HR, Gross CG. The effects of superior temporal cortex lesions on the processing and retention of auditory information in monkeys (Cebus apella). J Neurosci. 1996;16:4501–17.

    PubMed  CAS  Google Scholar 

  65. Angrilli A, Palombo D, Cantagallo A, Maietti A, Stegagno L. Emotional impairment after right orbitofrontal lesion in a patient without cognitive deficits. Neuroreport. 1999;10:1741–6.

    Article  PubMed  CAS  Google Scholar 

  66. Frey S, Kostopoulos P, Petrides M. Orbitofrontal involvement in the processing of unpleasant auditory information. Eur J Neurosci. 2000;12:3709–12.

    Article  PubMed  CAS  Google Scholar 

  67. Mishkin M. A memory system in the monkey. Phil Trans R Soc Lond B. 1982;298:85–95.

    Article  Google Scholar 

  68. Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science. 1991;253:1380–6.

    Article  PubMed  CAS  Google Scholar 

  69. Suzuki W, Zola-Morgan S, Squire LR, Amaral DG. Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairments in the visual and tactual modalities. J Neurosci. 1993;13:2430–51.

    PubMed  CAS  Google Scholar 

  70. Barbas H, De Olmos J. Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol. 1990;300:549–71.

    Article  PubMed  CAS  Google Scholar 

  71. Ghashghaei HT, Barbas H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdale of the rhesus monkey. Neuroscience. 2002;115:1261–79.

    Article  PubMed  CAS  Google Scholar 

  72. Butter CM, Snyder DR, McDonald JA. Effects of orbital frontal lesions on aversive and aggressive behaviors in rhesus monkeys. J Comp Physiol Psychol. 1970;72:132–44.

    Article  PubMed  CAS  Google Scholar 

  73. Levine B, Katz DI, Dade L, Black SE. Novel approaches to the assessment of frontal damage and executive deficits in traumatic brain injury. In: Stuss DT, Knight RT, editors. Principles of frontal lobe function. Oxford: Oxford University Press; 2002. p. 448–65.

    Chapter  Google Scholar 

  74. Bachevalier J, Mishkin M. Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav Brain Res. 1986;20:249–61.

    Article  PubMed  CAS  Google Scholar 

  75. Levine B, Black SE, Cabeza R, et al. Episodic memory and the self in a case of isolated retrograde amnesia. Brain. 1998;121:1951–73.

    Article  PubMed  Google Scholar 

  76. Rosenbaum RS, Winocur G, Moscovitch M. New views on old memories: re-evaluating the role of the hippocampal complex. Behav Brain Res. 2001;127:183–97.

    Article  PubMed  CAS  Google Scholar 

  77. Deweer B, Pillon B, Pochon JB, et al. Is the HM story only a remote memory? Some facts about hippocampus and memory in humans. Behav Brain Res. 2001;127:209–24.

    Article  PubMed  CAS  Google Scholar 

  78. Kopelman MD. Disorders of memory. Brain. 2002;125:2152–90.

    Article  PubMed  Google Scholar 

  79. Devinsky O, Laff R. Callosal lesions and behavior: history and modern concepts. Epilepsy Behav. 2003;4:607–17.

    Article  PubMed  Google Scholar 

  80. Clarke JM, Zaidel E. Anatomical-behavioral relationships: corpus callosum morphometry and hemispheric specialization. Behav Brain Res. 1994;64:185–202.

    Article  PubMed  CAS  Google Scholar 

  81. Feinberg TE, Schindler RJ, Flanagan NG, et al. Two alien hand syndromes. Neurology. 1992;42:19–24.

    PubMed  CAS  Google Scholar 

  82. Westmacott R, Leach L, Freedman M, et al. Different patterns of autobiographical memory loss in semantic dementia and medial temporal lobe amnesia: a challenge to consolidation theory. Neurocase. 2001;7:37–55.

    Article  PubMed  CAS  Google Scholar 

  83. Lavados M, Carrasco X, Pena M, et al. A new sign of callosal ­disconnection syndrome: agonistic dyspraxia. A case study. Neurocase. 2002;8:480–3.

    Article  PubMed  Google Scholar 

  84. Sidtis JJ, Volpe BT, Holtzman JD, et al. Cognitive interaction after staged callosal section: evidence for transfer of semantic activation. Science. 1981;212:344–6.

    Article  PubMed  CAS  Google Scholar 

  85. Peru A, Beltramello A, Moro V, et al. Temporary and permanent signs of interhemispheric disconnection after traumatic brain injury. Neuropsychologia. 2003;41:634–43.

    Article  PubMed  Google Scholar 

  86. Tanaka Y, Yoshida A, Kawahata N, et al. Diagonistic dyspraxia. Clinical characteristics, responsible lesion and possible underlying mechanism. Brain. 1996;119:859–73.

    Article  PubMed  Google Scholar 

  87. Alsaadi T, Binder JR, Lazar RM, et al. Pure topographic disorientation: a distinctive syndrome with varied localization. Neurology. 2000;54:1864–6.

    PubMed  CAS  Google Scholar 

  88. Gaymard B, Rivaud S, Rigolet MH, et al. Bilateral crossed optic ataxia in a corpus callosum lesion. J Neurol Neurosurg Psychiatry. 1993;56:323–4.

    Article  PubMed  CAS  Google Scholar 

  89. Nishikawa T, Okuda J, Mizuta I, et al. Conflict of intentions due to callosal disconnection. J Neurol Neurosurg Psychiatry. 2001;71:462–71.

    Article  PubMed  CAS  Google Scholar 

  90. Lausberg H, Kita S, Zaidel E, et al. Split-brain patients neglect left personal space during right-handed gestures. Neuropsychologia. 2003;41:1317–29.

    Article  PubMed  Google Scholar 

  91. Heilman KM, Adams DJ. Callosal neglect. Arch Neurol. 2003;60:276–9.

    Article  PubMed  Google Scholar 

  92. Barr MS, Corballis MC. The role of the anterior commissure in callosal agenesis. Neuropsychology. 2002;16:59–71.

    Article  Google Scholar 

  93. Di Virgilio G, Clarke S, Pizzolato G, et al. Cortical regions contributing to the anterior commissure in man. Exp Brain Res. 1999;124:1–7.

    Article  PubMed  Google Scholar 

  94. Wada JA. Transhemispheric horizontal channels for transmission of epileptic information. Jpn J Psychiatry Neurol. 1991;45:235–42.

    PubMed  CAS  Google Scholar 

  95. Morris JS, Smith KA, Cowen PJ, et al. Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage. 1999;10:163–72.

    Article  PubMed  CAS  Google Scholar 

  96. Pierrot-Deseilligny C, Milea D, Muri RM. Eye movement control by the cerebral cortex. Curr Opin Neurol. 2004;17:17–25.

    Article  PubMed  Google Scholar 

  97. Tardif E, Clarke S. Commissural connections of human superior colliculus. Neuroscience. 2002;111:363–72.

    Article  PubMed  CAS  Google Scholar 

  98. Gloor P, Salanova V, Olivier A, et al. The human dorsal hippocampal commissure. An anatomically identifiable and functional pathway. Brain. 1993;116:1249–73.

    Article  PubMed  Google Scholar 

  99. Kuker W, Mayrhofer H, Mader I, et al. Malformations of the midline commissures: MRI findings in different forms of callosal dysgenesis. Eur Radiol. 2003;13:598–604.

    PubMed  CAS  Google Scholar 

  100. Phelps EA, Hirst W, Gazzaniga MS. Deficits in recall following partial and complete commissurotomy. Cereb Cortex. 1991;1:492–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Maheshwari MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maheshwari, M., Klein, A., Ulmer, J.L. (2011). White Matter: Functional Anatomy of Key Tracts. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_37

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics