Skip to main content

Pediatric Applications of fMRI

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Functional MRI has become an important pillar in the evaluation of children’s brain function. Its relevance in pediatric clinical and research is evident by the hundreds of articles published in peer-reviewed journals. We review the differences between fMRI in adults and children, with an emphasis on the technical challenges that the technique poses in noncooperative children. We also review the state of the art of fMR clinical applications with special attention to its role in surgical planning, and relevant cognitive pediatric conditions. A review of pharmacology-fMR and rest-state fMRI in children is presented as the authors stress the importance of these two new branches of fMRI. We share as well our experience based on more than 300 cases and 1,000 procedures of pediatric fMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medina LS, Aguirre E, Bernal B, Altman NR. Functional MR imaging versus Wada test for evaluation of language lateralization: cost analysis. Radiology. 2004;230(1):49–54.

    Article  PubMed  Google Scholar 

  2. Barkovich AJ, Kjos BO, Jackson Jr DE, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology. 1988;166(1 Pt 1):173–80.

    PubMed  CAS  Google Scholar 

  3. Staudt M, Krageloh-Mann I, Grodd W. Normal myelination in childhood brains using MRI – a meta analysis. Rofo. 2000;172(10):802–11.

    PubMed  CAS  Google Scholar 

  4. Huttenlocher PR. Synaptic density in human frontal cortex – developmental changes and effects of aging. Brain Res. 1979;163(2):195–205.

    Article  PubMed  CAS  Google Scholar 

  5. Huttenlocher PR. Morphometric study of human cerebral cortex development. Neuropsychologia. 1990;28(6):517–27.

    Article  PubMed  CAS  Google Scholar 

  6. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22(4):487–97.

    Article  PubMed  CAS  Google Scholar 

  7. D’Esposito M, Zarahn E, Aguirre GK, Rypma B. The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage. 1999;10(1):6–14.

    Article  PubMed  Google Scholar 

  8. Gaillard WD, Hertz-Pannier L, Mott SH, Barnett AS, LeBihan D, Theodore WH. Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology. 2000;54(1):180–5.

    PubMed  CAS  Google Scholar 

  9. Huettel SA, Singerman JD, McCarthy G. The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage. 2001;13(1):161–75.

    Article  PubMed  CAS  Google Scholar 

  10. Casey BJ, Cohen JD, Jezzard P, et al. Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. Neuroimage. 1995;2(3):221–9.

    Article  PubMed  CAS  Google Scholar 

  11. Zarahn E, Aguirre GK, D’Esposito M. Temporal isolation of the neural correlates of spatial mnemonic processing with fMRI. Brain Res Cogn Brain Res. 1999;7(3):255–68.

    Article  PubMed  CAS  Google Scholar 

  12. Volpe JJ. Neurology of the newborn. 5th ed. Philadelphia, PA: WB Saunders/Elsevier; 2008;97–8.

    Google Scholar 

  13. Rubia K, Overmeyer S, Taylor E, et al. Functional frontalisation with age: mapping neurodevelopmental trajectories with fMRI. Neurosci Biobehav Rev. 2000;24(1):13–9.

    Article  PubMed  CAS  Google Scholar 

  14. Klingberg T, Vaidya CJ, Gabrieli JD, Moseley ME, Hedehus M. Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport. 1999;10(13):2817–21.

    Article  PubMed  CAS  Google Scholar 

  15. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(2):167–78.

    Article  PubMed  CAS  Google Scholar 

  16. Mall V, Linder M, Herpers M, et al. Recruitment of the sensorimotor cortex – a developmental FMRI study. Neuropediatrics. 2005;36(6):373–9.

    Article  PubMed  CAS  Google Scholar 

  17. Rotte M. Age-related differences in the areas of Broca and Wernicke using functional magnetic resonance imaging. Age Ageing. 2005;34(6):609–13.

    Article  PubMed  Google Scholar 

  18. Bookheimer SY. Functional MRI applications in clinical epilepsy. Neuroimage. 1996;4(3 Pt 3):S139–46.

    Article  PubMed  CAS  Google Scholar 

  19. Nagel BJ, Barlett VC, Schweinsburg AD, Tapert SF. Neuropsychological predictors of BOLD response during a spatial working memory task in adolescents: what can performance tell us about fMRI response patterns? J Clin Exp Neuropsychol. 2005;27(7):823–39.

    Article  PubMed  Google Scholar 

  20. Kastrup A, Krüger G, Neumann-Haefelin T, Glover GH, Moseley ME. Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. Neuroimage. 2002;15(1):74–82.

    Article  PubMed  Google Scholar 

  21. Price C, Wise R, Ramsay S, et al. Regional response differences within the human auditory cortex when listening to words. Neurosci Lett. 1992;146(2):179.

    Article  PubMed  CAS  Google Scholar 

  22. Bookheimer S. Functional MRI of the hippocampus during short term memory tasks: parametric responses to task difficulty and stimulus novelty. Neuroimage. 1996;3(3):531.

    Article  Google Scholar 

  23. Raichle ME, Fiez JA, Videen TO, et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex. 1994;4(1):8–26.

    Article  PubMed  CAS  Google Scholar 

  24. Bookheimer SY, Dapretto M, Karmarkar U. Functional MRI in children with epilepsy. Dev Neurosci. 1999;21(3–5):191–9.

    Article  PubMed  CAS  Google Scholar 

  25. Rosenberg DR, Sweeney JA, Gillen JS, et al. Magnetic resonance imaging of children without sedation: preparation with simulation. J Amer Acad Child Adolesc Psychiatry. 1997;36(6):853.

    Article  CAS  Google Scholar 

  26. Yamada H, Sadato N, Konishi Y, et al. A rapid brain metabolic change in infants detected by fMRI. Neuroreport. 1997;8(17):3775–8.

    Article  PubMed  CAS  Google Scholar 

  27. Born P, Leth H, Miranda MJ, et al. Visual activation in infants and young children studied by functional magnetic resonance imaging. Pediatr Res. 1998;44(4):578–83.

    Article  PubMed  CAS  Google Scholar 

  28. Martin E, Joeri P, Loenneker T, et al. Visual processing in infants and children studied using functional MRI. Pediatr Res. 1999;46(2):135–40.

    Article  PubMed  CAS  Google Scholar 

  29. Souweidane MM, Kim KH, McDowall R, et al. Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging. Pediatr Neurosurg. 1999;30(2):86–92.

    Article  PubMed  CAS  Google Scholar 

  30. Born AP, Miranda MJ, Rostrup E, et al. Functional magnetic resonance imaging of the normal and abnormal visual system in early life. Neuropediatrics. 2000;31(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  31. Morita T, Kochiyama T, Yamada H, et al. Difference in the metabolic response to photic stimulation of the lateral geniculate nucleus and the primary visual cortex of infants: a fMRI study. Neurosci Res. 2000;38(1):63–70.

    Article  PubMed  CAS  Google Scholar 

  32. Yamada H, Sadato N, Konishi Y, et al. A milestone for normal development of the infantile brain detected by functional MRI. Neurology. 2000;55(2):218–23.

    PubMed  CAS  Google Scholar 

  33. Altman NR, Bernal B. Brain activation in sedated children: auditory and visual functional MR imaging. Radiology. 2001;221(1):56–63.

    Article  PubMed  CAS  Google Scholar 

  34. Carmody DP, Moreno R, Mars AE, Seshadri K, Lambert GH, Lewis M. Brief report: brain activation to social words in a sedated child with autism. J Autism Dev Disord. 2007;37(7):1381–5.

    Article  PubMed  Google Scholar 

  35. Gemma M, de Vitis A, Baldoli C, et al. Functional magnetic resonance imaging (fMRI) in children sedated with propofol or midazolam. J Neurosurg Anesthesiol. 2009;21(3):253–8.

    Article  PubMed  Google Scholar 

  36. Marcar VL, Schwarz U, Martin E, Loenneker T. How depth of anesthesia influences the blood oxygenation level-dependent signal from the visual cortex of children. AJNR Am J Neuroradiol. 2006;27(4):799–805.

    PubMed  CAS  Google Scholar 

  37. Poldrack RA, Pare-Blagoev EJ, Grant PE. Pediatric functional magnetic resonance imaging: progress and challenges. Top Magn Reson Imaging. 2002;13(1):61–70.

    Article  PubMed  Google Scholar 

  38. Yuan W, Altaye M, Ret J, et al. Quantification of head motion in children during various fMRI language tasks. Hum Brain Mapp. 2009;30(5):1481–9.

    Article  PubMed  Google Scholar 

  39. Slifer KJ, Cataldo MF, Cataldo MD, Llorente AM, Gerson AC. Behavior analysis of motion control for pediatric neuroimaging. J Appl Behav Anal. 1993;26:469–70.

    Article  PubMed  CAS  Google Scholar 

  40. Yerys BE, Jankowski KF, Shook D, et al. The fMRI success rate of children and adolescents: typical development, epilepsy, attention deficit/hyperactivity disorder, and autism spectrum disorders. Hum Brain Mapp. 2009;30(10):3426–35.

    Google Scholar 

  41. Freire L, Mangin JF. Motion correction algorithms may create spurious brain activations in the absence of subject motion. Neuroimage. 2001;14(3):709–22.

    Article  PubMed  CAS  Google Scholar 

  42. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme. 1988.

    Google Scholar 

  43. Burgund ED, Kang HC, Kelly JE, et al. The feasibility of a common stereotactic space for children and adults in fMRI studies of development. Neuroimage. 2002;17(1):184–200.

    Article  PubMed  Google Scholar 

  44. Jacobs J, Hawco C, Kobayashi E, et al. Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy. Neuroimage. 2008;40(2):601–14.

    Article  PubMed  Google Scholar 

  45. Richter W, Richter M. The shape of the fMRI BOLD response in children and adults changes systematically with age. Neuroimage. 2003;20(2):1122–31.

    Article  PubMed  Google Scholar 

  46. Cohen MS, DuBois RM. Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. J Magn Reson Imaging. 1999;10(1):33–40.

    Article  PubMed  CAS  Google Scholar 

  47. Gaillard WD, Grandin CB, Xu B. Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage. 2001;13(2):239–49.

    Article  PubMed  CAS  Google Scholar 

  48. Binder JR, Swanson SJ, Hammeke TA, et al. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996;46(4):978–84.

    PubMed  CAS  Google Scholar 

  49. Hertz-Pannier L, Gaillard WD, Mott SH, et al. Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology. 1997;48(4):1003.

    PubMed  CAS  Google Scholar 

  50. Stapleton SR, Kiriakopoulos E, Mikulis D, et al. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997;26(2):68–82.

    Article  PubMed  CAS  Google Scholar 

  51. Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L. Functional neuroimaging of speech perception in infants. Science. 2002;298(5600):2013–5.

    Article  PubMed  CAS  Google Scholar 

  52. Wilke M, Holland SK, Ball Jr WS. Language processing during natural sleep in a 6-year-old boy, as assessed with functional MR imaging. AJNR Am J Neuroradiol. 2003;24(1):42–4.

    PubMed  Google Scholar 

  53. Georgiewa P, Rzanny R, Hopf JM, et al. fMRI during word processing in dyslexic and normal reading children. Neuroreport. 1999;10(16):3459–65.

    Article  PubMed  CAS  Google Scholar 

  54. Cravo I, Palma T, Conceição C, Evangelista P. Preoperative applications of cortical mapping with functional magnetic resonance. Acta Méd Port. 2001;14(1):21–5.

    PubMed  CAS  Google Scholar 

  55. Booth JR, Macwhinney B, Thulborn KR, Sacco K, Voyvodic J, Feldman HM. Functional organization of activation patterns in children: whole brain fMRI imaging during three different cognitive tasks. Prog Neuropsychopharmacol Biol Psychiatry. 1999;23(4):669–82.

    Article  PubMed  CAS  Google Scholar 

  56. Holland SK, Plante E, Weber Byars A, Strawsburg RH, Schmithorst VJ, Ball Jr WS. Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage. 2001;14(4):837–43.

    Article  PubMed  CAS  Google Scholar 

  57. Liégeois F, Connelly A, Cross JH, et al. Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain. 2004;127(Pt 6):1229–36.

    Article  PubMed  Google Scholar 

  58. Schapiro MB, Schmithorst VJ, Wilke M, Byars AW, Strawsburg RH, Holland SK. BOLD fMRI signal increases with age in selected brain regions in children. Neuroreport. 2004;15(17):2575–8.

    Article  PubMed  Google Scholar 

  59. Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW. fMRI study of language lateralization in children and adults. Hum Brain Mapp. 2006;27(3):202–12.

    Article  PubMed  Google Scholar 

  60. Gaillard WD, Balsamo L, Xu B, et al. fMRI language task panel improves determination of language dominance. Neurology. 2004;63(8):1403–8.

    PubMed  CAS  Google Scholar 

  61. Lehéricy S, Cohen L, Bazin B, et al. Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology. 2000;54(8):1625–33.

    PubMed  Google Scholar 

  62. Jacola LM, Schapiro MB, Schmithorst VJ, et al. Functional magnetic resonance imaging reveals atypical language organization in children following perinatal left middle cerebral artery stroke. Neuropediatrics. 2006;37(1):46–52.

    Article  PubMed  CAS  Google Scholar 

  63. Vannest JJ, Karunanayaka PR, Altaye M, et al. Comparison of fMRI data from passive listening and active-response story processing tasks in children. J Magn Reson Imaging. 2009;29(4):971–6.

    Article  PubMed  Google Scholar 

  64. Ahmad Z, Balsamo LM, Sachs BC, Xu B, Gaillard WD. Auditory comprehension of language in young children: neural networks identified with fMRI. Neurology. 2003;60(10):1598–605.

    PubMed  CAS  Google Scholar 

  65. Gaillard WD, Berl MM, Moore EN, et al. Atypical language in lesional and nonlesional complex partial epilepsy. Neurology. 2007;69(18):1761–71.

    Article  PubMed  CAS  Google Scholar 

  66. Rutten GJ, van Rijen PC, van Veelen CW, Ramsey NF. Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca’s area. Ann Neurol. 1999;46(3):405–8.

    Article  PubMed  CAS  Google Scholar 

  67. Turkeltaub PE, Flowers DL, Lyon LG, Eden GF. Development of ventral stream representations for single letters. Ann NY Acad Sci. 2008;1145:13–29.

    Article  PubMed  Google Scholar 

  68. Ulualp SO, Biswal BB, Yetkin FZ, Kidder TM. Functional magnetic resonance imaging of auditory cortex in children. Laryngoscope. 1998;108(12):1782–6.

    Article  PubMed  CAS  Google Scholar 

  69. Kansaku K, Yamaura A, Kitazawa S. Sex differences in lateralization revealed in the posterior language areas. Cereb Cortex. 2000;10(9):866–72.

    Article  PubMed  CAS  Google Scholar 

  70. Gaillard WD, Pugliese M, Grandin CB, et al. Cortical localization of reading in normal children: an fMRI language study. Neurology. 2001;57(1):47–54.

    PubMed  CAS  Google Scholar 

  71. Ojemann GA. Cortical organization of language. J Neurosci. 1991;11(8):2281–7.

    PubMed  CAS  Google Scholar 

  72. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358(1):18–27.

    Article  PubMed  CAS  Google Scholar 

  73. Boakye M, Huckins SC, Szeverenyi NM, Taskey BI, Hodge Jr CJ. Functional magnetic resonance imaging of somatosensory cortex activity produced by electrical stimulation of the median nerve or tactile stimulation of the index finger. J Neurosurg. 2000;93(5):774–83.

    Article  PubMed  CAS  Google Scholar 

  74. Chapman SB, McKinnon L. Discussion of developmental plasticity: factors affecting cognitive outcome after pediatric traumatic brain injury. J Commun Disord. 2000;33(4):333–44.

    Article  PubMed  CAS  Google Scholar 

  75. Jacobs KM, Graber KD, Kharazia VN, Parada I, Prince DA. Postlesional epilepsy: the ultimate brain plasticity. Epilepsia. 2000;41 Suppl 6:S153–61.

    Article  PubMed  Google Scholar 

  76. Schwartzkroin PA. Mechanisms of brain plasticity: from normal brain function to pathology. Int Rev Neurobiol. 2001;45:1–15.

    Article  PubMed  CAS  Google Scholar 

  77. Benbadis SR, Binder JR, Swanson SJ, et al. Is speech arrest during wada testing a valid method for determining hemispheric representation of language? Brain Lang. 1998;65(3):441–6.

    Article  PubMed  CAS  Google Scholar 

  78. Yetkin FZ, Swanson S, Fischer M, et al. Functional MR of frontal lobe activation: comparison with Wada language results. AJNR Am J Neuroradiol. 1998;19(6):1095–8.

    PubMed  CAS  Google Scholar 

  79. Spreer J, Arnold S, Quiske A, et al. Determination of hemisphere dominance for language: comparison of frontal and temporal fMRI activation with intracarotid amytal testing. Neuroradiology. 2002;44(6):467–74.

    Article  PubMed  CAS  Google Scholar 

  80. Woermann FG, Jokeit H, Luerding R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology. 2003;61(5):699–701.

    PubMed  CAS  Google Scholar 

  81. Baciu MV, Watson JM, Maccotta L, et al. Evaluating functional MRI procedures for assessing hemispheric language dominance in neurosurgical patients. Neuroradiology. 2005;47(11):835–44.

    Article  PubMed  CAS  Google Scholar 

  82. Arora J, Pugh K, Westerveld M, Spencer S, Spencer DD, Todd Constable R. Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia. 2009;50:2225–41.

    Google Scholar 

  83. Benke T, Köylü B, Visani P, et al. Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada Test. Epilepsia. 2006;47(8):1308–19.

    Article  PubMed  Google Scholar 

  84. Kho KH, Leijten FS, Rutten GJ, Vermeulen J, Van Rijen P, Ramsey NF. Discrepant findings for Wada test and functional magnetic resonance imaging with regard to language function: use of electrocortical stimulation mapping to confirm results. Case report. J Neurosurg. 2005;102(1):169–73.

    Article  PubMed  Google Scholar 

  85. Lanzenberger R, Wiest G, Geissler A, et al. FMRI reveals functional cortex in a case of inconclusive Wada testing. Clin Neurol Neurosurg. 2005;107(2):147–51.

    Article  PubMed  Google Scholar 

  86. Ruge MI, Victor J, Hosain S, et al. Concordance between functional magnetic resonance imaging and intraoperative language mapping. Stereotact Funct Neurosurg. 1999;72(2–4):95–102.

    Article  PubMed  CAS  Google Scholar 

  87. Schlosser MJ, Luby M, Spencer DD, Awad IA, McCarthy G. Comparative localization of auditory comprehension by using functional magnetic resonance imaging and cortical stimulation. J Neurosurg. 1999;91(4):626–35.

    Article  PubMed  CAS  Google Scholar 

  88. Jayakar P, Bernal B, Santiago Medina L, Altman N. False lateralization of language cortex on functional MRI after a cluster of focal seizures. Neurology. 2002;58(3):490–2.

    PubMed  Google Scholar 

  89. Kang HC, Burgund ED, Lugar HM, Petersen SE, Schlaggar BL. Comparison of functional activation foci in children and adults using a common stereotactic space. Neuroimage. 2003;19(1):16–28.

    Article  PubMed  Google Scholar 

  90. Ferretti A, Del Gratta C, Babiloni C, et al. Functional topography of the secondary somatosensory cortex for nonpainful and painful stimulation of median and tibial nerve: an fMRI study. Neuroimage. 2004;23(3):1217–25.

    Article  PubMed  Google Scholar 

  91. Manganotti P, Formaggio E, Storti SF, et al. Steady-state activation in somatosensory cortex after changes in stimulus rate during median nerve stimulation. Magn Reson Imaging. 2009;27:1175–86.

    Google Scholar 

  92. Eilers RE, Minifie FD. Fricative discrimination in early infancy. J Speech Hear Res. 1975;18(1):158–67.

    PubMed  CAS  Google Scholar 

  93. Hohne EA, Jusczyk PW. Two-month-old infants’ sensitivity to allophonic differences. Percept Psychophys. 1994;56(6):613–23.

    Article  PubMed  CAS  Google Scholar 

  94. Hirsch J, Ruge MI, Kim KH, et al. An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery. 2000;47(3):711–21. discussion 721–2.

    PubMed  CAS  Google Scholar 

  95. Rivkin MJ, Vajapeyam S, Hutton C, et al. A functional magnetic resonance imaging study of paced finger tapping in children. Pediatr Neurol. 2003;28(2):89–95.

    Article  PubMed  Google Scholar 

  96. Ullen F, Forssberg H, Ehrsson HH. Neural networks for the coordination of the hands in time. J Neurophysiol. 2003;89(2):1126–35.

    Article  PubMed  Google Scholar 

  97. Mostofsky SH, Rimrodt SL, Schafer JG, et al. Atypical motor and sensory cortex activation in attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study of simple sequential finger tapping. Biol Psychiatry. 2006;59(1):48–56.

    Article  PubMed  Google Scholar 

  98. Lee CC, Jack Jr CR, Riederer SJ. Mapping of the central sulcus with functional MR: active versus passive activation tasks. AJNR Am J Neuroradiol. 1998;19(5):847–52.

    PubMed  CAS  Google Scholar 

  99. Roux FE, Ibarrola D, Lazorthes Y, Berry I. Chronic motor cortex stimulation for phantom limb pain: a functional magnetic resonance imaging study: technical case report. Neurosurgery. 2001;48(3):681–7. discussion 687–8.

    Article  PubMed  CAS  Google Scholar 

  100. Hoeller M, Krings T, Reinges MH, Hans FJ, Gilsbach JM, Thron A. Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochir (Wien). 2002;144(3):279–84. discussion 284.

    Article  CAS  Google Scholar 

  101. Krings T, Töpper R, Willmes K, Reinges MH, Gilsbach JM, Thron A. Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology. 2002;58(3):381–90.

    PubMed  CAS  Google Scholar 

  102. Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg. 1999;91(2):238–50.

    Article  PubMed  CAS  Google Scholar 

  103. Carpentier AC, Constable RT, Schlosser MJ, et al. Patterns of functional magnetic resonance imaging activation in association with structural lesions in the rolandic region: a classification system. J Neurosurg. 2001;94(6):946–54.

    Article  PubMed  CAS  Google Scholar 

  104. Vandermeeren Y, De Volder A, Bastings E, et al. Functional relevance of abnormal fMRI activation pattern after unilateral schizencephaly. Neuroreport. 2002;13(14):1821–4.

    Article  PubMed  Google Scholar 

  105. Staudt M, Pieper T, Grodd W, Winkler P, Holthausen H, Krägeloh-Mann I. Functional MRI in a 6-year-old boy with unilateral cortical malformation: concordant representation of both hands in the unaffected hemisphere. Neuropediatrics. 2001;32(3):159–61.

    Article  PubMed  CAS  Google Scholar 

  106. Hartnick CJ, Rudolph C, Willging JP, Holland SK. Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope. 2001;111(7):1183–91.

    Article  PubMed  CAS  Google Scholar 

  107. Puce A. Comparative assessment of sensorimotor function using functional magnetic resonance imaging and electrophysiological methods. J Clin Neurophysiol. 1995;12(5):450–9.

    Article  PubMed  CAS  Google Scholar 

  108. Puce A, Constable RT, Luby ML, et al. Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg. 1995;83(2):262–70.

    Article  PubMed  CAS  Google Scholar 

  109. Yousry T, Schmid UD, Schmidt D, et al. The motor hand area. Noninvasive detection with functional MRI and surgical validation with cortical stimulation. Radiologe. 1995;35(4):252–5.

    PubMed  CAS  Google Scholar 

  110. Deuchert M, Ruben J, Schwiemann J, et al. Event-related fMRI of the somatosensory system using electrical finger stimulation. Neuroreport. 2002;13(3):365–9.

    Article  PubMed  Google Scholar 

  111. Born AP, Law I, Lund TE, et al. Cortical deactivation induced by visual stimulation in human slow-wave sleep. Neuroimage. 2002;17(3):1325–35.

    Article  PubMed  Google Scholar 

  112. Meek JH, Firbank M, Elwell CE, Atkinson J, Braddick O, Wyatt JS. Regional hemodynamic responses to visual stimulation in awake infants. Pediatr Res. 1998;43(6):840–3.

    Article  PubMed  CAS  Google Scholar 

  113. Born AP, Rostrup E, Miranda MJ, Larsson HB, Lou HC. Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR). Magn Reson Imaging. 2002;20(2):199–205.

    Article  PubMed  CAS  Google Scholar 

  114. Marcar VL, Strässle AE, Loenneker T, Schwarz U, Martin E. The influence of cortical maturation on the BOLD response: an fMRI study of visual cortex in children. Pediatr Res. 2004;56(6):967–74.

    Article  PubMed  Google Scholar 

  115. Yeh CI, Xing D, Shapley RM. “Black” responses dominate macaque primary visual cortex v1. J Neurosci. 2009;29(38):11753–60.

    Article  PubMed  CAS  Google Scholar 

  116. Wiesel TN, Hubel DH. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966;29(6):1115–56.

    PubMed  CAS  Google Scholar 

  117. Bedwell JS, Miller LS, Brown JM, Yanasak NE. Schizophrenia and red light: fMRI evidence for a novel biobehavioral marker. Int J Neurosci. 2006;116(8):881–94.

    Article  PubMed  Google Scholar 

  118. Wang X, Takano T, Nedergaard M. Astrocytic calcium signaling: mechanism and implications for functional brain imaging. Methods Mol Biol. 2009;489:93–109.

    Article  PubMed  CAS  Google Scholar 

  119. Miki A, Liu GT, Fletcher DW, Hunter JV, Haselgrove JC. Ocular dominance in anterior visual cortex in a child demonstrated by the use of fMRI. Pediatr Neurol. 2001;24(3):232–4.

    Article  PubMed  CAS  Google Scholar 

  120. Sie LTL, Rombouts SA, Valk IJ, Hart AA, Scheltens P, van der Knaap MS. Functional MRI of visual cortex in sedated 18 month-old infants with or without periventricular leukomalacia. Dev Med Child Neurol. 2001;43(7):486–90.

    Article  PubMed  Google Scholar 

  121. Liu GT, Miki A, Francis E, et al. Eye dominance in visual cortex in amblyopia using functional magnetic resonance imaging. J AAPOS. 2004;8(2):184–6.

    Article  PubMed  Google Scholar 

  122. Choi MY, Lee KM, Hwang JM, et al. Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol. 2001;85(9):1052–6.

    Article  PubMed  CAS  Google Scholar 

  123. Miki A, Nakajima T, Hasebe H, Abe H. Functional magnetic resonance imaging of visual function in postpapilledema optic atrophy. J Neuroophthalmol. 1997;17(4):223–5.

    PubMed  CAS  Google Scholar 

  124. Born AP, Miranda MJ, Rostrup E, et al. Functional magnetic resonance imaging of the normal and abnormal visual system in early life. Neuropediatrics. 2000;31(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  125. Bernal B, Altman N. Visual functional magnetic resonance imaging in patients with Sturge-Weber syndrome. Pediatr Neurol. 2004;31(1):9–15.

    Article  PubMed  Google Scholar 

  126. Sininger YS, Doyle KJ, Moore JK. The case for early identification of hearing loss in children. Auditory system development, experimental auditory deprivation, and development of speech perception and hearing. Pediatr Clin North Am. 1999;46(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  127. Paradise JL, Dollaghan CA, Campbell TF, et al. Language, speech sound production, and cognition in three-year-old children in relation to otitis media in their first three years of life. Pediatrics. 2000;105(5):1119–30.

    Article  PubMed  CAS  Google Scholar 

  128. Anderson AW, Marois R, Colson ER, et al. Neonatal auditory activation detected by functional magnetic resonance imaging. Magn Reson Imaging. 2001;19(1):1–5.

    Article  PubMed  Google Scholar 

  129. Spreen O, Risser A, Edgell D. Developmental neuropsychology. USA: Oxford University Press; 1995.

    Google Scholar 

  130. Johansson B, Wedenberg E, Westin B. Measurement of tone response by the human foetus. A preliminary report. Acta Otolaryngol. 1964;57:188–92.

    Article  PubMed  CAS  Google Scholar 

  131. Hykin J, Moore R, Duncan K, et al. Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet. 1999;354(9179):645–6.

    Article  PubMed  CAS  Google Scholar 

  132. Moore RJ, Vadeyar S, Fulford J, et al. Antenatal determination of fetal brain activity in response to an acoustic stimulus using functional magnetic resonance imaging. Hum Brain Mapp. 2001;12(2):94–9.

    Article  PubMed  CAS  Google Scholar 

  133. Fulford J, Vadeyar SH, Dodampahala SH, et al. Fetal brain activity and hemodynamic response to a vibroacoustic stimulus. Hum Brain Mapp. 2004;22(2):116–21.

    Article  PubMed  Google Scholar 

  134. Jardri R, Pins D, Thomas P. A case of fMRI-guided rTMS treatment of coenesthetic hallucinations. Am J Psychiatry. 2008;165(11):1490–1.

    Article  PubMed  Google Scholar 

  135. Patel AM, Cahill LD, Ret J, Schmithorst V, Choo D, Holland S. Functional magnetic resonance imaging of hearing-impaired children under sedation before cochlear implantation. Arch Otolaryngol Head Neck Surg. 2007;133(7):677–83.

    Article  PubMed  Google Scholar 

  136. Thomason ME, Race E, Burrows B, Whitfield-Gabrieli S, Glover GH, Gabrieli JD. Development of spatial and verbal working memory capacity in the human brain. J Cogn Neurosci. 2009;21(2):316–32.

    Article  PubMed  Google Scholar 

  137. Nelson CA, Monk CS, Lin J, Carver LJ, Thomas KM, Truwit CL. Functional neuroanatomy of spatial working memory in children. Dev Psychol. 2000;36(1):109–16.

    Article  PubMed  CAS  Google Scholar 

  138. Geier CF, Garver K, Terwilliger R, Luna B. Development of working memory maintenance. J Neurophysiol. 2009;101(1):84–99.

    Article  PubMed  Google Scholar 

  139. Libertus ME, Brannon EM, Pelphrey KA. Developmental changes in category-specific brain responses to numbers and letters in a working memory task. Neuroimage. 2009;44(4):1404–14.

    Article  PubMed  Google Scholar 

  140. O’Hare ED, Lu LH, Houston SM, Bookheimer SY, Sowell ER. Neurodevelopmental changes in verbal working memory load-dependency: an fMRI investigation. Neuroimage. 2008;42(4):1678–85.

    Article  PubMed  Google Scholar 

  141. Golby AJ, Poldrack RA, Illes J, Chen D, Desmond JE, Gabrieli JD. Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia. 2002;43(8):855–63.

    Article  PubMed  Google Scholar 

  142. Jokeit H, Okujava M, Woermann FG. Memory fMRI lateralizes temporal lobe epilepsy. Neurology. 2001;57(10):1786–93.

    PubMed  CAS  Google Scholar 

  143. Booth JR, Burman DD, Meyer JR, et al. Neural development of selective attention and response inhibition. Neuroimage. 2003;20(2):737–51.

    Article  PubMed  Google Scholar 

  144. Konrad K, Neufang S, Thiel CM, et al. Development of attentional networks: an fMRI study with children and adults. Neuroimage. 2005;28(2):429–39.

    Article  PubMed  Google Scholar 

  145. Lawrence EJ, Rubia K, Murray RM, et al. The neural basis of response inhibition and attention allocation as mediated by gestational age. Hum Brain Mapp. 2009;30(3):1038–50.

    Article  PubMed  Google Scholar 

  146. Ciesielski KT, Lesnik PG, Savoy RL, Grant EP, Ahlfors SP. Developmental neural networks in children performing a categorical N-back task. Neuroimage. 2006;33(3):980–90.

    Article  PubMed  Google Scholar 

  147. Marsh R, Zhu H, Schultz RT, et al. A developmental fMRI study of self-regulatory control. Hum Brain Mapp. 2006;27(11):848–63.

    Article  PubMed  Google Scholar 

  148. Rubia K, Smith AB, Taylor E, Brammer M. Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Hum Brain Mapp. 2007;28(11):1163–77.

    Article  PubMed  Google Scholar 

  149. Crone EA, Zanolie K, Van Leijenhorst L, Westenberg PM, Rombouts SA. Neural mechanisms supporting flexible performance adjustment during development. Cogn Affect Behav Neurosci. 2008;8(2):165–77.

    Article  PubMed  Google Scholar 

  150. van Duijvenvoorde AC, Zanolie K, Rombouts SA, Raijmakers ME, Crone EA. Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development. J Neurosci. 2008;28(38):9495–503.

    Article  PubMed  CAS  Google Scholar 

  151. Eslinger PJ, Blair C, Wang J, et al. Developmental shifts in fMRI activations during visuospatial relational reasoning. Brain Cogn. 2009;69(1):1–10.

    Article  PubMed  Google Scholar 

  152. Jackson GD, Connelly A, Cross JH, Gordon I, Gadian DG. Functional magnetic resonance imaging of focal seizures. Neurology. 1994;44(5):850–6.

    PubMed  CAS  Google Scholar 

  153. Schwartz TH, Resor Jr SR, De La Paz R, Goodman RR. Functional magnetic resonance imaging localization of ictal onset to a dysplastic cleft with simultaneous sensorimotor mapping: intraoperative electrophysiological confirmation and postoperative follow-up: technical note. Neurosurgery. 1998;43(3):639–44. discussion 644–5.

    Article  PubMed  CAS  Google Scholar 

  154. Liu Y, Yang T, Liao W, et al. EEG-fMRI study of the ictal and interictal epileptic activity in patients with eyelid myoclonia with absences. Epilepsia. 2008;49(12):2078–86.

    Article  PubMed  Google Scholar 

  155. Leal AJ, Monteiro JP, Secca MF, Jordão C. Functional brain mapping of ictal activity in gelastic epilepsy associated with hypothalamic hamartoma: a case report. Epilepsia. 2009;50(6):1624–31.

    Article  PubMed  Google Scholar 

  156. Detre JA, Sirven JI, Alsop DC, O’Connor MJ, French JA. Localization of subclinical ictal activity by functional magnetic resonance imaging: correlation with invasive monitoring. Ann Neurol. 1995;38(4):618–24.

    Article  PubMed  CAS  Google Scholar 

  157. Seeck M, Lazeyras F, Michel CM, et al. Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalogr Clin Neurophysiol. 1998;106(6):508–12.

    Article  PubMed  CAS  Google Scholar 

  158. Krakow K, Woermann FG, Symms MR, et al. EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain. 1999;122(Pt 9):1679–88.

    Article  PubMed  Google Scholar 

  159. Lazeyras F, Blanke O, Perrig S, et al. EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imaging. 2000;12(1):177–85.

    Article  PubMed  CAS  Google Scholar 

  160. Leal A, Dias A, Vieira JP, Secca M, Jordão C. The BOLD effect of interictal spike activity in childhood occipital lobe epilepsy. Epilepsia. 2006;47(9):1536–42.

    Article  PubMed  Google Scholar 

  161. Masuoka LK, Anderson AW, Gore JC, McCarthy G, Spencer DD, Novotny EJ. Functional magnetic resonance imaging identifies abnormal visual cortical function in patients with occipital lobe epilepsy. Epilepsia. 1999;40(9):1248–53.

    Article  PubMed  CAS  Google Scholar 

  162. Müller RA, Kleinhans N, Kemmotsu N, Pierce K, Courchesne E. Abnormal variability and distribution of functional maps in autism: an FMRI study of visuomotor learning. Am J Psychiatry. 2003;160(10):1847–62.

    Article  PubMed  Google Scholar 

  163. Schultz RT, Gauthier I, Klin A, et al. Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Arch Gen Psychiatry. 2000;57(4):331–40.

    Article  PubMed  CAS  Google Scholar 

  164. Schultz RT, Grelotti DJ, Klin A, et al. The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philos Trans R Soc Lond B Biol Sci. 2003;358(1430):415–27.

    Article  PubMed  Google Scholar 

  165. Grelotti DJ, Klin AJ, Gauthier I, et al. fMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia. 2005;43(3):373–85.

    Article  PubMed  Google Scholar 

  166. Bölte S, Hubl D, Feineis-Matthews S, Prvulovic D, Dierks T, Poustka F. Facial affect recognition training in autism: can we animate the fusiform gyrus? Behav Neurosci. 2006;120(1):211–6.

    Article  PubMed  Google Scholar 

  167. Takeuchi M, Harada M, Matsuzaki K, Nishitani H, Mori K. Difference of signal change by a language task on autistic patients using functional MRI. J Med Invest. 2004;51(1–2):59–62.

    Article  PubMed  Google Scholar 

  168. Gomot M, Bernard FA, Davis MH, et al. Change detection in children with autism: an auditory event-related fMRI study. Neuroimage. 2006;29(2):475–84.

    Article  PubMed  Google Scholar 

  169. Müller RA, Pierce K, Ambrose JB, Allen G, Courchesne E. Atypical patterns of cerebral motor activation in autism: a functional magnetic resonance study. Biol Psychiatry. 2001;49(8):665–76.

    Article  PubMed  Google Scholar 

  170. Dapretto M, Davies MS, Pfeifer JH, et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci. 2006;9(1):28–30.

    Article  PubMed  CAS  Google Scholar 

  171. Baron-Cohen S, Ring H, Chitnis X, et al. fMRI of parents of children with Asperger Syndrome: a pilot study. Brain Cogn. 2006;61(1):122–30.

    Article  PubMed  Google Scholar 

  172. Baumeister AA, Hawkins MF. Incoherence of neuroimaging studies of attention deficit/hyperactivity disorder. Clin Neuropharmacol. 2001;24(1):2–10.

    Article  PubMed  CAS  Google Scholar 

  173. Sunshine JL, Lewin JS, Wu DH, et al. Functional MR to localize sustained visual attention activation in patients with attention deficit hyperactivity disorder: a pilot study. AJNR Am J Neuroradiol. 1997;18(4):633–7.

    PubMed  CAS  Google Scholar 

  174. Booth JR, Burman DD, Meyer JR, et al. Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiatry. 2005;46(1):94–111.

    Article  PubMed  Google Scholar 

  175. Durston S, Tottenham NT, Thomas KM, et al. Differential patterns of striatal activation in young children with and without ADHD. Biol Psychiatry. 2003;53(10):871–8.

    Article  PubMed  Google Scholar 

  176. Vaidya CJ, Austin G, Kirkorian G, et al. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci USA. 1998;95(24):14494–9.

    Article  PubMed  CAS  Google Scholar 

  177. Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E. Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry. 2005;162(6):1067–75.

    Article  PubMed  Google Scholar 

  178. Rodriguez PD, Baylis GC. Activation of brain attention systems in individuals with symptoms of ADHD. Behav Neurol. 2007;18(2):115–30.

    PubMed  Google Scholar 

  179. Bush G, Frazier JA, Rauch SL, et al. Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol Psychiatry. 1999;45(12):1542–52.

    Article  PubMed  CAS  Google Scholar 

  180. Vaidya CJ, Bunge SA, Dudukovic NM, Zalecki CA, Elliott GR, Gabrieli JD. Altered neural substrates of cognitive control in childhood ADHD: evidence from functional magnetic resonance imaging. Am J Psychiatry. 2005;162(9):1605–13.

    Article  PubMed  Google Scholar 

  181. Bernal B, Altman N. Neural networks of motor and cognitive inhibition are dissociated between brain hemispheres: an fMRI study. Int J Neurosci. 2009;119(10):1848–80.

    Article  PubMed  Google Scholar 

  182. Peterson BS, Skudlarski P, Gatenby JC, Zhang H, Anderson AW, Gore JC. An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry. 1999;45(10):1237–58.

    Article  PubMed  CAS  Google Scholar 

  183. Solanto MV, Schulz KP, Fan J, Tang CY, Newcorn JH. Event-related FMRI of inhibitory control in the predominantly inattentive and combined subtypes of ADHD. J Neuroimaging. 2009;19(3):205–12.

    Article  PubMed  Google Scholar 

  184. Bernal B, Altman N. Neural networks of motor and cognitive inhibition are dissociated between brain hemispheres: an fMRI study. Int J Neurosci. 2009;119(10):1848–80.

    Article  PubMed  Google Scholar 

  185. Rubia K, Halari R, Cubillo A, Mohammad AM, Brammer M, Taylor E. Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology. 2009;57(7–8):640–52.

    Article  PubMed  CAS  Google Scholar 

  186. Temple E, Poldrack RA, Salidis J, et al. Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Neuroreport. 2001;12(2):299–307.

    Article  PubMed  CAS  Google Scholar 

  187. Backes W, Vuurman E, Wennekes R, et al. Atypical brain activation of reading processes in children with developmental dyslexia. J Child Neurol. 2002;17(12):867–71.

    Article  PubMed  Google Scholar 

  188. Aylward EH, Richards TL, Berninger VW, et al. Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology. 2003;61(2):212–9.

    PubMed  CAS  Google Scholar 

  189. Cao F, Bitan T, Chou TL, Burman DD, Booth JR. Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. J Child Psychol Psychiatry. 2006;47(10):1041–50.

    Article  PubMed  Google Scholar 

  190. Gaab N, Gabrieli JD, Deutsch GK, Tallal P, Temple E. Neural correlates of rapid auditory processing are disrupted in children with developmental dyslexia and ameliorated with training: an fMRI study. Restor Neurol Neurosci. 2007;25(3–4):295–310.

    PubMed  CAS  Google Scholar 

  191. Baillieux H, Vandervliet EJ, Manto M, Parizel PM, De Deyn PP, Mariën P. Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain Lang. 2009;108(2):122–32.

    Article  PubMed  Google Scholar 

  192. Schneider G. Early lesions and abnormal neuronal connections. Trends Neurosci. 1981;4(18):192.

    Google Scholar 

  193. Hebb D. The effect of early and late brain injury upon test scores, and the nature of normal adult intelligence. Proc Am Philos Soc. 1942;85:275–92.

    Google Scholar 

  194. Mills DL, Coffey-Corina SA, Neville HJ. Variability in cerebral organization during primary language acquisition. In: Dawson G, Fischer KW, editors. Human behavior and the developing brain. New York: The Guilford Press; 1994. p. 427–55.

    Google Scholar 

  195. Papanicolaou AC, Simos PG, Breier JI, et al. Brain plasticity for sensory and linguistic functions: a functional imaging study using magnetoencephalography with children and young adults. J Child Neurol. 2001;16(4):241–52.

    PubMed  CAS  Google Scholar 

  196. Lewine JD, Astur RS, Davis LE, Knight JE, Maclin EL, Orrison Jr WW. Cortical organization in adulthood is modified by neonatal infarct: a case study. Radiology. 1994;190(1):93–6.

    PubMed  CAS  Google Scholar 

  197. Carr LJ, Harrison LM, Evans AL, Stephens JA. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain. 1993;116(Pt 5):1223–47.

    Article  PubMed  Google Scholar 

  198. Benecke R, Meyer BU. Magnetic stimulation of corticonuclear systems and of cranial nerves in man: physiological basis and clinical application. Electroencephalogr Clin Neurophysiol Suppl. 1991;43:333–43.

    PubMed  CAS  Google Scholar 

  199. Müller RA, Rothermel RD, Behen ME, et al. Brain organization of language after early unilateral lesion: a PET study. Brain Lang. 1998;62(3):422–51.

    Article  PubMed  Google Scholar 

  200. Müller RA, Rothermel RD, Behen ME, Muzik O, Mangner TJ, Chugani HT. Differential patterns of language and motor reorganization following early left hemisphere lesion: a PET study. Arch Neurol. 1998;55(8):1113–9.

    Article  PubMed  Google Scholar 

  201. Müller RA, Rothermel RD, Behen ME, Muzik O, Chakraborty PK, Chugani HT. Language organization in patients with early and lateleft-hemisphere lesion: a PET study. Neuropsychologia. 1999;37(5):545–57.

    Article  PubMed  Google Scholar 

  202. Hertz-Pannier L. Brain plasticity during development: physiological bases and functional MRI approach. J Neuroradiol. 1999;26(1 Suppl):S66–74.

    PubMed  CAS  Google Scholar 

  203. Hertz-Pannier L, Chiron C, Jambaqué I, et al. Late plasticity for language in a child’s non-dominant hemisphere: a pre-and post-surgery fMRI study. Brain. 2002;125(2):361.

    Article  PubMed  Google Scholar 

  204. Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krägeloh-Mann I. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain. 2002;125(Pt 10):2222–37.

    Article  PubMed  Google Scholar 

  205. Anderson DP, Harvey AS, Saling MM, et al. FMRI lateralization of expressive language in children with cerebral lesions. Epilepsia. 2006;47(6):998–1008.

    Article  PubMed  Google Scholar 

  206. Hadac J, Brozová K, Tintera J, Krsek P. Language lateralization in children with pre- and postnatal epileptogenic lesions of the left hemisphere: an fMRI study. Epileptic Disord. 2007;9 Suppl 1:S19–27.

    PubMed  Google Scholar 

  207. Guzzetta A, Pecini C, Biagi L, et al. Language organisation in left perinatal stroke. Neuropediatrics. 2008;39(3):157–63.

    Article  PubMed  CAS  Google Scholar 

  208. Staudt M, Grodd W, Niemann G, Wildgruber D, Erb M, Krägeloh-Mann I. Early left periventricular brain lesions induce right hemispheric organization of speech. Neurology. 2001;57(1):122–5.

    PubMed  CAS  Google Scholar 

  209. Hamzei F, Liepert J, Dettmers C, Adler T, Kiebel S, Rijntjes M, et al. Structural and functional cortical abnormalities after upper limb amputation during childhood. Neuroreport. 2001;12(5):957–62.

    Article  PubMed  CAS  Google Scholar 

  210. Iwase Y, Mashiko T, Ochiai N, Kurosawa H. Postoperative changes on functional mapping of the motor cortex in patients with brachial plexus injury: comparative study of magnetoencephalography and functional magnetic resonance imaging. J Orthop Sci. 2001;6(5):397–402.

    Article  PubMed  CAS  Google Scholar 

  211. Crawford D, Acuna J, Sherman S. FMRI and fragile X syndrome: human genome epidemiology. Review. Genet Med. 2001;3:359–71.

    Article  PubMed  CAS  Google Scholar 

  212. Guerreiro MM, Camargo EE, Kato M, et al. Fragile X syndrome. Clinical, electroencephalographic and neuroimaging characteristics. Arq Neuropsiquiatr. 1998;56(1):18–23.

    Article  PubMed  CAS  Google Scholar 

  213. Eliez S, Blasey CM, Freund LS, Hastie T, Reiss AL. Brain anatomy, gender and IQ in children and adolescents with fragile X syndrome. Brain. 2001;124(Pt 8):1610–8.

    Article  PubMed  CAS  Google Scholar 

  214. Tamm L, Menon V, Johnston CK, Hessl DR, Reiss AL. fMRI study of cognitive interference processing in females with fragile X syndrome. J Cogn Neurosci. 2002;14(2):160–71.

    Article  PubMed  Google Scholar 

  215. Swerdlow NR, Karban B, Ploum Y, Sharp R, Geyer MA, Eastvold A. Tactile prepuff inhibition of startle in children with Tourette’s syndrome: in search of an “fMRI-friendly” startle paradigm. Biol Psychiatry. 2001;50(8):578–85.

    Article  PubMed  CAS  Google Scholar 

  216. Marsh R, Zhu H, Wang Z, Skudlarski P, Peterson BS. A developmental fMRI study of self-regulatory control in Tourette’s syndrome. Am J Psychiatry. 2007;164(6):955–66.

    Article  PubMed  Google Scholar 

  217. Baym CL, Corbett BA, Wright SB, Bunge SA. Neural correlates of tic severity and cognitive control in children with Tourette syndrome. Brain. 2008;131(Pt 1):165–79.

    PubMed  CAS  Google Scholar 

  218. Biswal B, Ulmer JL, Krippendorf RL, et al. Abnormal cerebral activation associated with a motor task in Tourette syndrome. AJNR Am J Neuroradiol. 1998;19(8):1509–12.

    PubMed  CAS  Google Scholar 

  219. Epstein JN, Casey BJ, Tonev ST, et al. ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. J Child Psychol Psychiatry. 2007;48(9):899–913.

    Article  PubMed  Google Scholar 

  220. Arwert LI, Veltman DJ, Deijen JB, van Dam PS, Drent ML. Effects of growth hormone substitution therapy on cognitive functioning in growth hormone deficient patients: a functional MRI study. Neuroendocrinology. 2006;83(1):12–9.

    Article  PubMed  CAS  Google Scholar 

  221. Chang K, Karchemskiy A, Kelley R, et al. Effect of divalproex on brain morphometry, chemistry, and function in youth at high-risk for bipolar disorder: a pilot study. J Child Adolesc Psychopharmacol. 2009;19(1):51–9.

    Article  PubMed  Google Scholar 

  222. Peterson BS, Potenza MN, Wang Z, et al. An FMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am J Psychiatry. 2009;166(11):1286–94.

    Article  PubMed  Google Scholar 

  223. McKeown MJ, Makeig S, Brown GG, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 1998;6(3):160–88.

    Article  PubMed  CAS  Google Scholar 

  224. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005;360(1457):1001–13.

    Article  PubMed  Google Scholar 

  225. Fransson P, Skiöld B, Engström M, et al. Spontaneous brain activity in the newborn brain during natural sleep – an fMRI study in infants born at full term. Pediatr Res. 2009;66:301–5.

    Google Scholar 

  226. Redcay E, Kennedy D, Courchesne E. fMRI during natural sleep as a method to study brain function during early childhood. Neuroimage. 2007;38(4):696–707.

    Article  PubMed  Google Scholar 

  227. Kiviniemi V, Jauhiainen J, Tervonen O, et al. Slow vasomotor fluctuation in fMRI of anesthetized child brain. Magn Reson Med. 2000;44(3):373–8.

    Article  PubMed  CAS  Google Scholar 

  228. Kiviniemi V, Kantola JH, Jauhiainen J, Hyvärinen A, Tervonen O. Independent component analysis of nondeterministic fMRI signal sources. Neuroimage. 2003;19(2 Pt 1):253–60.

    Article  PubMed  Google Scholar 

  229. Harrison BJ, Pujol J, López-Solà M, et al. Consistency and functional specialization in the default mode brain network. Proc Natl Acad Sci USA. 2008;105(28):9781–6.

    Article  PubMed  CAS  Google Scholar 

  230. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003;100(1):253.

    Article  PubMed  CAS  Google Scholar 

  231. Vuontela V, Steenari MR, Aronen ET, Korvenoja A, Aronen HJ, Carlson S. Brain activation and deactivation during location and color working memory tasks in 11–13-year-old children. Brain Cogn. 2009;69(1):56–64.

    Article  PubMed  Google Scholar 

  232. Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol. 2009;101(6):3270–83.

    Article  PubMed  Google Scholar 

  233. Tian L, Jiang T, Wang Y, et al. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett. 2006;400(1–2):39–43.

    Article  PubMed  CAS  Google Scholar 

  234. Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29(2):83–91.

    Article  PubMed  Google Scholar 

  235. Cao Q, Zang Y, Sun L, Sui M, Long X, Zou Q, et al. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport. 2006;17(10):1033–6.

    Article  PubMed  Google Scholar 

  236. Peterson BS, Potenza MN, Wang Z, et al. An fMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am J Psychiatry. 2009;166:1286–94.

    Google Scholar 

  237. Fair DA, Cohen AL, Power JD, et al. Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol. 2009;5(5):e1000381.

    Article  PubMed  CAS  Google Scholar 

  238. Lin W, Zhu Q, Gao W, et al. Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain. AJNR Am J Neuroradiol. 2008;29(10):1883–9.

    Article  PubMed  CAS  Google Scholar 

  239. Cao X, Cao Q, Long X, et al. Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Res. 2009;1303:195–206.

    Google Scholar 

  240. Kennedy DP, Redcay E, Courchesne E. Failing to deactivate: resting functional abnormalities in autism. Proc Natl Acad Sci USA. 2006;103(21):8275–80.

    Article  PubMed  CAS  Google Scholar 

  241. Monk CS, Peltier SJ, Wiggins JL, et al. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage. 2009;47(2):764–72.

    Article  PubMed  Google Scholar 

  242. Shimony JS, Zhang D, Johnston JM, Fox MD, Roy A, Leuthardt EC. Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad Radiol. 2009;16(5):578–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byron Bernal MD, CCTI .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Altman, N.R., Bernal, B. (2011). Pediatric Applications of fMRI. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_28

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics