Skip to main content

Relativistic Effects and the Chemistry of the Heavier Main Group Elements

  • Chapter
  • First Online:
Relativistic Methods for Chemists

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 10))

Abstract

This chapter reviews possible experimental aspects of relativistic effects in heavier Main Group elements and their compounds. Attention is focused on the sixth, seventh and eighth Period elements, for which the relativistic contribution to their physical and chemical properties is significant. Superheavy elements through Z = 120 are also discussed. This review may increase interest of theoreticians in chemistry-oriented problems that require use of relativistic methods of quantum chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thayer, J.S.: Relativistic effects and the chemistry of the heaviest main-group elements. J. Chem. Educ. 82, 1721–1729 (2005)

    Article  CAS  Google Scholar 

  2. Pitzer, K.S.: Relativistic effects on chemical properties. Acc. Chem. Res. 12, 271–276 (1977)

    Article  Google Scholar 

  3. Pyykkö, P., Desclaux, J.P.: Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276–281 (1977)

    Article  Google Scholar 

  4. Norrby, L.J.: Why is mercury liquid? J. Chem. Educ. 68, 110–113 (1991)

    Article  CAS  Google Scholar 

  5. Hess, B.A.: Relativistic Effects in Heavy-Element Chemistry and Physics. Wiley, Chichester (UK) (2003)

    Google Scholar 

  6. Balasubramanian, K.: Relativistic Effects in Chemistry. Wiley, New York (1997)

    Google Scholar 

  7. Schwerdtfeger, P.: Relativistic effects in molecular structures of s- and p-Block elements. In: A. Domenicano, I. Hargittai (eds.) Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules and Crystals, pp. 169–190. Kluwer, Dordrecht, The Netherlands (2002)

    Google Scholar 

  8. Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988)

    Article  Google Scholar 

  9. Schwerdtfeger, P. (ed.).: Relativistic Electronic Structure Theory, vol. 2. Elsevier, Amsterdam, The Netherlands (2004)

    Google Scholar 

  10. Douglas, B., McDaniel, D.H., Alexander, J.J.: Concepts and Models of Inorganic Chemistry, 3rd edn., pp. 10–12. Wiley, New York (1994)

    Google Scholar 

  11. Onoe, J.: Atomic number dependence of relativistic effects on chemical bonding. Adv. Quantum Chem. 37, 311–323 (2000)

    Article  CAS  Google Scholar 

  12. Desclaux, J.P.: Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. Atom. Data Nucl. Data 12, 374–383 (1973)

    Article  Google Scholar 

  13. Schwerdtfeger, P.: Relativistic effects in properties of gold. Heteroatom Chem. 13, 578–584 (2002)

    Article  CAS  Google Scholar 

  14. Huang, R.H., Ward, D.L., Kuchenmeister, M.E., Dye, J.L.: The crystal structures of two cesides show that Cs is the largest monatomic ion. J. Am. Chem. Soc. 109, 5561–5563 (1987)

    Article  CAS  Google Scholar 

  15. Ichimura, A.S., Huang, R.H., Xie, Q., et al.: One-dimensional zig-zag chains of Cs: The structure and properties of Li+ (Cryptand[2.1.1])Cs and Cs+ (Cryptand[2.2.1])Cs. J. Phys. Chem. B 110, 12293–12301 (2006)

    Article  CAS  Google Scholar 

  16. Jansen, M.: Effects of relativistic motion on the chemistry of gold and platinum. Solid State Sci. 7, 1464–1474 (2005)

    Article  CAS  Google Scholar 

  17. Schäfer, S., Mehring, M., Schäfer, R.: Polarizabilities of Ba and Ba2: Comparison of molecular beam experiments with relativistic quantum chemistry. Phys. Rev. A 76, 052515/1–5 (2007)

    Google Scholar 

  18. Karpov, A., Nuss, J., Wedig, U., Jansen, M.: Cs2Pt: A Platinide(-II) exhibiting complete charge separation. Angew. Chem. Int. Ed. Engl. 42, 4818–4821 (2003)

    Article  CAS  Google Scholar 

  19. Karpov, A., Nuss, J., Wedig, U., Jansen, M.: Covalently bonded [Pt] chains in BaPt: Extension of the Zintl-Klemm concept to anionic transition metals? J. Am. Chem. Soc. 126, 14123–14128 (2004)

    Article  CAS  Google Scholar 

  20. Ghilane, J., Lagrost, C., Guilloux-Viry, M., et al.: Spectroscopic evidence of platinum negative oxidation states at electrochemically reduced surfaces. J. Phys. Chem. C 111, 5701–5707 (2007)

    Article  CAS  Google Scholar 

  21. Bartlett, N., Lohmann, D.H.: Fluorides of the noble metals. II. Dioxygenyl hexafluoroplatinate(V) \({\mathrm{O}{}_{2}}^{+}[{\mathrm{PtF}{}_{6}}^{-}]\). J. Chem. Soc. 5253–5261 (1962)

    Google Scholar 

  22. Bartlett, N.: Xenon hexafluoroplatinate(V) \({\mathrm{Xe}}^{+}[{\mathrm{PtF}{}_{6}}^{-}]\). Proc. Chem. Soc. (June 1962) 218 (1962)

    Google Scholar 

  23. Alvarez-Thon, L., David, J., Arratia-Pérez, R., Seppelt, K.: Ground state of octahedral platinum hexafluoride. Phys. Rev. A 77, 034502/1–4 (2008)

    Article  CAS  Google Scholar 

  24. David, J., Fuentealba, P., Restrepo, A.: Relativistic effects on the hexafluorides of group 10 metals. Chem. Phys. Lett. 457, 42–44 (2008)

    Article  CAS  Google Scholar 

  25. Wesendrup, R., Schwerdtfeger, P.: Structure and electron affinity of platinum fluorides. Inorg. Chem. 40, 3351–3354 (2001)

    Article  CAS  Google Scholar 

  26. Pernpointer, M., Cederbaum, L.S.: PtF6 2 − dianion and its detachment spectrum: A fully relativistic study. J. Chem. Phys. 126, 144310/1–7 (2007)

    Google Scholar 

  27. Bartlett, N., Lohmann, D.H.: Fluorides of the noble metals. Part III. The fluorides of platinum. J. Chem. Soc. 619–626 (1964)

    Google Scholar 

  28. Bare, W.D., Citra, A., Chertihin, G.V., Andrews, L.: Reaction of laser-ablated platinum and palladium atoms with dioxygen. Matrix infrared spectra and density functional calculations of platinum oxides and palladium complexes. J. Phys. Chem. A 103, 5456–5462 (1999)

    CAS  Google Scholar 

  29. Ono, Y., Taketsugu, T., Noro, T.: Theoretical study of Pt-Ng and Ng-Pt-Ng (Ng = Ar,Kr,Xe). J. Chem. Phys. 123, 204321/1–5 (2005)

    Article  CAS  Google Scholar 

  30. Boča, R.: Platinum-centered octakis(Triphenylphosphinegold) clusters: A relativistic MO study. Int. J. Quantum Chem. 57, 735–740 (1996)

    Article  Google Scholar 

  31. Xia, F., Cao, Z.: Relativistic DFT studies of dehydrogenation of methane by Pt cationic clusters: Cooperative effect of bimetallic clusters. J. Phys. Chem. A 110, 10078–10083 (2006)

    Article  CAS  Google Scholar 

  32. Taylor, S., Lemire, G.W., Hamrick, Y.M., et al.: Resonant two-photon ionization spectroscopy of jet-cooled Pt2. J. Chem. Phys. 89, 5517–5523 (1988)

    Article  CAS  Google Scholar 

  33. Pyykkö, P.: Relativity, gold, closed-shell interactions and CsAu ∙ NH3. Angew. Chem. Int. Ed. Engl. 41, 3573–3578 (2002)

    Article  Google Scholar 

  34. Huang, R.H., Huang, S.Z., Dye, J.L.: Syntheses and structures of six compounds that contain the sodium anion. J. Coord. Chem. 46, 13–31 (1998)

    Article  CAS  Google Scholar 

  35. Tran, N.E., Lagowski, J.J.: Metal ammonia solutions: Solutions containing argentide ions. Inorg. Chem. 40, 1067–1068 (2001)

    Article  CAS  Google Scholar 

  36. Mudring, A.V., Jansen, M., Daniels, J., Krämer, S., Mehring, M., Ramalho, J.P.P., Romero, A.H., Parrinello, M.: Cesiumauride ammonia(1/1), CsAu ∙ NH3: A crystalline analogue to alkali metals dissolved in ammonia? Angew. Chem. Int. Ed. Engl. 41, 120–124 (2002)

    Article  CAS  Google Scholar 

  37. Mudring, A.V., Jansen, M.: Base-induced disproportionation of elemental gold. Angew. Chem. Int. Ed. Engl. 39, 3066–3067 (2000)

    Article  CAS  Google Scholar 

  38. Belpassi, L., Tarantelli, F., Sgamellotti, A., Quiney, H.M.: The electronic structure of alkali aurides. A four-component Dirac-Kohn-Sham study. J. Phys. Chem. A 110, 4543–4554 (2006)

    CAS  Google Scholar 

  39. Nuss, H., Jansen, M.: [Rb([18]crown-6)(NH3)3]Au ∙ NH3: Gold as acceptor in N-H⋯Au hydrogen bonds. Angew. Chem. Int. Ed. Engl. 45, 4369–4371 (2006)

    Article  CAS  Google Scholar 

  40. Barysz, M., Leszczyński, J., Bilewicz, A.: Hydrolysis of the heavy metal cations: Relativistic effects. Phys. Chem. Chem. Phys. 6, 4553–4557 (2004)

    Article  CAS  Google Scholar 

  41. Lee, D.-K., Lim, I.S., Lee, Y.S., Jeung, G.-H.: Relativistic effects on the ground state properties of group 1 and group 11 cyanides estimated from quantum chemical calculations. Int. J. Mass Spectrom. 271, 22–29 (2008)

    Article  CAS  Google Scholar 

  42. Zaleski-Ejgierd, P., Patzschke, M., Pyykkö, P.: Structure and bonding of the MCN moleucles, M = Cu,Ag,Au,Rg. J. Chem. Phys. 128, 224303/1–11 (2008)

    Article  CAS  Google Scholar 

  43. Kullie, O., Zhang, H., Kolb, D.: Relativistic and non-relativistic local-density functional benchmark results and investigations on the dimers Cu2 Ag2 Au2 Rg2. Chem. Phys. 351, 106–110 (2008)

    Article  CAS  Google Scholar 

  44. Hwang, I., Seppelt, K.: Gold pentafluoride: Structure and fluoride ion affinity. Angew. Chem. Int. Ed. Engl. 40, 3690–3693 (2001)

    Article  CAS  Google Scholar 

  45. Riedel, S., Kaupp, M.: Has AuF7 been made? Inorg. Chem. 45, 1228–1234 (2006)

    Article  CAS  Google Scholar 

  46. Himmel, D., Riedel, S.: After 20 years, theoretical evidence that “AuF7” is actually AuF5 ∙ F2. Inorg. Chem. 46, 5338–5342 (2007)

    Article  CAS  Google Scholar 

  47. Drews, T., Seidel, S., Seppelt, K.: Gold-Xenon complexes. Angew. Chem. Int. Ed. Engl. 41, 454–456 (2002)

    Article  CAS  Google Scholar 

  48. Hwang, I., Seidel, S., Seppelt, K.: Gold(I) and mercury(II) xenon complexes. Angew. Chem. Int. Ed. Engl. 42; 4392–4395 (2003)

    Article  CAS  Google Scholar 

  49. Seppelt, K.: Metal-Xenon complexes. Z. Anorg. Allg. Chem. 629, 2427–2430 (2003)

    Article  CAS  Google Scholar 

  50. Pyykkö, P.: Predicted chemical bonds between rare gases and Au+. J. Am. Chem. Soc. 117, 2067–2070 (1995)

    Article  Google Scholar 

  51. Belpassi, L., Infante, I., Tarantelli, F., Visscher, L.: The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J. Am. Chem. Soc. 130, 1048–1060 (2008)

    Article  CAS  Google Scholar 

  52. Lovallo, C.C., Klobukowski, M.: Transition metal-noble gas bonding: The next frontier. Chem. Phys. Lett. 368, 589–593 (2003)

    Article  CAS  Google Scholar 

  53. Berski, S., Latajka, Z., Andrés, J.: The nature of the Au-Rg bond in the [AuRg4]2 + (Rg = Ar,Kr,Xe) molecules. Chem. Phys. Lett. 356, 483–489 (2002)

    Article  CAS  Google Scholar 

  54. Zeng, T., Klobukowski, M.: Relativistic model core potential study of the Au+ Xe system. J. Phys. Chem. A 112, 5236–5242

    Google Scholar 

  55. Boyen, H.G., Kästle, G., Weigl, F., et al.: Oxidation-resistant Gold-55 clusters. Science 297, 1533–1536 (2002)

    Article  CAS  Google Scholar 

  56. Dhingra, S.S., Haushalter, R.C.: Synthesis and structure of the new gold polytelluride anion [Au2Te12]4-. Inorg. Chem. 33, 2735–2737 (1994)

    Article  CAS  Google Scholar 

  57. Huang, W., Ji, M., Dong, C.-D., et al.: Relativistic effects and the unique low-symmetry structures of gold nanoclusters. ACSNANO 2, 897–904 (2008)

    Article  CAS  Google Scholar 

  58. Lordeiro, R.A., Guimarăes, F.F., Belchior, J.C., Johnston, R.L.: Determination of main structural compositions of nanoalloy clusters of Cu x Au y (x + y ? 30) using a genetic algorithm approach. Int. J. Quantum Chem. 95, 112–125 (2003)

    Article  CAS  Google Scholar 

  59. Scherbaum, F., Grohmann, A., Huber, B., Krüger, C., Schmidbaur, H.: Aurophilicity as a consequence of relativistic effects. Angew. Chem. Int. Ed. Engl. 27, 1544–1546 (1988)

    Article  Google Scholar 

  60. Pyykkö, P.: Strong closed-shell interactions in inorganic chemistry. Chem. Rev. 97, 597–636 (1997)

    Article  Google Scholar 

  61. Bardají, M., Laguna, A.: Gold chemistry: The aurophilic attraction. J. Chem. Educ. 76, 201–203 (1999)

    Article  Google Scholar 

  62. Codina, A., Fernández, E.J., Jones, P.G., et al.: Do aurophilic interactions compete against hydrogen bonds? Experimental evidence and rationalization based on ab Initio calculations. J. Am. Chem. Soc. 124, 6781–6786 (2002)

    Article  CAS  Google Scholar 

  63. Pyykkö, P., Runeberg, N.: Icosahedral WAu12: A predicted closed-shell species, stabilized by aurophilic attraction and relativity and in accordance with the 18-electron rule. Angew. Chem. Int. Ed. Engl. 41, 2174–2176 (2002)

    Article  Google Scholar 

  64. Li, X., Kiran, B., Li, J., et al.: Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. Angew. Chem. Int. Ed. Engl. 41, 4786–4789 (2002)

    Article  CAS  Google Scholar 

  65. Schwerdtfeger, P., Lein, M., Krawczyk, R.P., Jacob, C.R.: The adsorption of CO on charged and neutral Au and Au2: A comparison between wave-function based and density functional theory. J. Chem. Phys. 128, 124302/1–9 (2008)

    Article  CAS  Google Scholar 

  66. Chang, C.M., Cheng, C., Wei, C.M.: CO oxidation on unsupported Au55, Ag55 and Au25Ag30 nanoclusters. J. Chem. Phys. 128, 124710/1–4 (2008)

    CAS  Google Scholar 

  67. Neisler, R.P., Pitzer, K.S.: The dipositive dimeric ion Hg2 2 +: A theoretical study. J. Phys. Chem. 91, 1084–1087 (1987)

    Article  CAS  Google Scholar 

  68. Horváth, O., Mikó, I.: Photoredox chemistry of mercury ions in aqueous ethanol solutions. J. Photochem. Photobiol. 128, 33–38 (1999)

    Article  Google Scholar 

  69. Schwerdtfeger, P., Boyd, P.D.W., Brienne, S., et al.: The mercury-mercury bond in inorganic and organometallic compounds. A theoretical study. Inorg. Chim. Acta. 213, 233–246 (1993)

    Article  CAS  Google Scholar 

  70. Liao, M.-S., Zhang, Q.: Hg-Hg bonding in mercurous Hg(I)2L2 compounds: The influence of ligand electronegativity. J. Mol. Struct. (Theochem). 358, 195–203 (1995)

    Article  CAS  Google Scholar 

  71. Singh, N.B., Marshall, G., Gottlieb, M., et al.: Purification and characterization of mercurous halides. J. Cryst. Growth 106, 62–67 (1990)

    Google Scholar 

  72. Catalano, V.J., Malwitz, M.A., Noll, B.C.: Pd(0) and Pt(0) metallo-cryptands encapsulating a spinning mercurous dimer. Inorg. Chem. 41, 6553–6559 (2002)

    Article  CAS  Google Scholar 

  73. Kunkely, H., Vogler, A.: On the origin of the photoluminescence of mercurous chloride. Chem. Phys. Lett. 240, 31–34 (1995)

    Article  CAS  Google Scholar 

  74. Ulvenlund, S., Rosdahl, J., Fischer, A., Schwerdtfeger, P., Kloo, L.: Hard acid and soft acid base stabilisation of di- and trimercury cations in benzene solution – a spectroscopic, X-ray scattering and quantum chemical study. Eur. J. Inorg. Chem. 633–642 (1999)

    Google Scholar 

  75. Gaston, N., Schwerdtfeger, P., von Issendorff, B.: Photoabsorption spectra of cationic mercury clusters. Phys. Rev. A 74, 043203/1–9 (2006)

    Article  CAS  Google Scholar 

  76. Olenev, A.V., Shevelkov, A.V.: The Hg3 2 + group as a framework unit in a host-guest compound. Angew. Chem. Int. Ed. Engl. 40, 2353–2354 (2001)

    Article  CAS  Google Scholar 

  77. Autschbach, J., Igna, C.D., Ziegler, T.: A theoretical study of the large Hg-Hg spin coupling constants in Hg2 2 +, Hg3 2 +, and Hg2 2 +– crown ether complexes. J. Am. Chem. Soc. 125, 4937–4942 (2003)

    Article  CAS  Google Scholar 

  78. Mason, W.R.: MCD spectra for metal-centered transitions in the Hg3(dppm)3 4 + cluster complex. Inorg. Chem. 36, 1164–1167 (1997)

    Article  CAS  Google Scholar 

  79. Mühlecker-Knoepfler, A., Ellmerer-Müller, E., Konrat, R., et al.: Synthesis and crystal structure of the subvalent mercury cluster [triangulo-Hg3(μ-dmpm)4] [O3SCF3]4. J. Chem. Soc., Dalton Trans. 1607–1610 (1997)

    Google Scholar 

  80. Meyer, G., Nolte, M., Berners, R.: Nanometer channels and cages within the extended basic mercurous cations [(Hg2)3(OH)2]4 + and [(Hg2)2O]2 + Z. Anorg. Allg. Chem. 632, 2184–2186 (2006)

    Article  CAS  Google Scholar 

  81. Shevelkov, A.V., Mustyakimov, M.Y., Dikarev, E.V., Popovkin, B.A.: (Hg2P)2HgBr4: A phosphorus analogue of the Millon’s base salts. J. Chem. Soc. Dalton Trans. 147–148 (1996)

    Google Scholar 

  82. Deming, R.L., Allred, A.L., Dahl, A.R., et al.: Tripositive mercury. Low temperature electrochemical oxidation of 1,4,8,11-Tetraazacyclo-tetradecanemercury(II) tetrafluoroborate. J. Am. Chem. Soc. 98, 4132–4137 (1976)

    Article  CAS  Google Scholar 

  83. Kaupp, M., Dolg, M., Stoll, H., von Schnering, H.G.: Oxidation state + IV in group 12 chemistry. Ab Initio study of Zinc(IV), Cadmium(IV) and Mercury(IV) fluorides. Inorg. Chem. 33, 2122–2131 (1994)

    Article  CAS  Google Scholar 

  84. Liu, W., Franke, R., Dolg, M.: Relativistic abIinitio and density functional theory calculations on the mercury fluorides: Is HgF4 thermodynamically stable? Chem. Phys. Lett. 302, 231–239 (1999)

    Article  CAS  Google Scholar 

  85. Riedel, S., Straka, M., Kaupp, M.: Can weakly coordinating anions stabilize mercury in its oxidation state + IV? Chem. Eur. J. 11, 2743–2755 (2005)

    Article  CAS  Google Scholar 

  86. Riedel, S., Kaupp, M., Pyykkö, P.: Quantum chemical study of trivalent group 12 fluorides. Inorg. Chem. 47, 3379 (2008)

    Article  CAS  Google Scholar 

  87. Wang, X., Andrews, L., Riedel, S., Kaupp, M.: Mercury is a transition metal: The first experimental evidence for HgF4. Angew. Chem. Int. Ed. Engl. 46, 8371–8375 (2007)

    Article  CAS  Google Scholar 

  88. Pyykkö, P., Straka, M., Patzschke, M.: HgH4 and HgH6: Further candidates for high-valent mercury compounds. Chem. Commun. 1728–1729 (2002)

    Google Scholar 

  89. Bronger, W.: Complex transition metal hydrides. Angew. Chem. Int. Ed. Engl. 30, 759–768 (1991)

    Article  Google Scholar 

  90. Wang, X., Andrews, L.: Gold is noble but gold hydride anions are stable. Angew. Chem. Int. Ed. Engl. 42, 5201–5206 (2003)

    Article  CAS  Google Scholar 

  91. Andrews, l., Wang, X.: Infrared spectra and structures of the stable CuH2 , AgH2 , AuH2 and AuH4 anions and the AuH2 molecule. J. Am. Chem. Soc. 125, 11751–11760 (2003)

    Article  CAS  Google Scholar 

  92. Burroughs, P., Evans, S., Hamnett, A., et al.: Evidence from the photoelectron spectra of some mercury(II) compounds for the involvement of the inner 5d electrons in covalent bonding JCS. Chem. Comm. 921–922 (1974)

    Google Scholar 

  93. Deiseroth, H.J.: Discrete and extended metal clusters in alloys with mercury and other group 12 elements. In: M. Driess, H. Nöth (eds.) Molecular Clusters of the Main Group Elements, pp. 169–187. Wiley, Weinheim (2004)

    Google Scholar 

  94. Tkachuk, A.V., Mar, A.: Alkaline-earth metal mercury intermediates. Inorg. Chem. 47, 1313–1318 (2008)

    Article  CAS  Google Scholar 

  95. Tomilin, O.B., Akamova, L.V., Yudin, P.A., Terekhin, II.: Electronic structure and stability of bulky mercury clusters. J. Struct. Chem. 42, 519–525 (2001)

    Article  CAS  Google Scholar 

  96. Moyano, G.E., Wesendrup, R., Söhnel, T., Schwerdtfeger, P.: Properties of small- to medium-sized mercury clusters from a combined ab initio, density-functional, and simulated-annealing study. Phys. Rev. Lett. 89, 103401/1–4 (2002)

    Article  CAS  Google Scholar 

  97. Schwerdtfeger, P., Heath, G.A., Dolg, M., Bennett, M.A.: Low valencies and periodic trends in heavy element chemistry. A theoretical study of relativistic effects and electron correlation effects in group 13 and period 6 hydrides and halides. J. Am. Chem. Soc. 114, 7518–7527 (1992)

    Article  CAS  Google Scholar 

  98. Dong, Z.C., Corbett, J.D.: CsTl: A new example of tetragonally compressed Tl6 6 − octahedra. Electronic effects and packing requirements in the diverse structures of ATl (A = Li, Na, K, Cs). Inorg. Chem. 35, 2301–2306 (1996)

    Article  CAS  Google Scholar 

  99. Costa Cabral, B.J., Martins, J.L.: Ab initio molecular dynamics of liquid K-Tl. J. Non-cryst. Solids 312–314, 69–73 (2002)

    Article  Google Scholar 

  100. Kaskeff, S., Dong, Z.C., Klem, M.T., Corbett, J.D.: Synthesis and structure of the metallic K6Tl17: A layered tetrahedral star structure related to that of Cr3Si. Inorg. Chem. 42, 1835–1841 (2003)

    Article  CAS  Google Scholar 

  101. Seo, D.K., Corbett, J.D.: Synthesis, structure and bonding of BaTl3: An unusual competition between clusters and classical bonding in the thallium layers. J. Am. Chem. Soc. 124, 415–420 (2002)

    Article  CAS  Google Scholar 

  102. Li, B., Corbett, J.D.: Na9K16Tl∼ 25: A new phase containing naked icosahedral cluster fragments Tl9 9 −. J. Clust. Sci. 19, 331–340 (2008)

    Article  CAS  Google Scholar 

  103. Thiele, G., Rink, W.: Die Konstitution des valenzgemischten Thalliumchlorid-bromids und ber Mischkristalle im system TlCl2 ∕ TlBr2 Z. Anorg. Allg. Chem. 414, 47–55 (1975)

    Article  CAS  Google Scholar 

  104. Szabó, A., Kovács, A., Frenking, G.: Theoretical studies of inorganic compounds. 34. Energy decomposition analysis of E-E bonding in planar and perpendicular X2E-EX2 (E = B,Al,Ga,In,Tl; X = H,F,Cl,Br,I). Z. Anorg. Allg. Chem. 631, 1803–1809 (2005)

    Article  Google Scholar 

  105. Uhl, W.: Organoelement compounds possessing Al-Al, Ga-Ga, In-In, and Tl-Tl single bonds. In: R. West, A.F. Hill (eds.) Advances in Organometallic Chemistry, vol. 51, pp. 53–108. Academic Press, Amsterdam (2004)

    Google Scholar 

  106. Dronskowski, R., Simon, A.: PbMo5O8 and Tl0. 8Sn0. 6Mo7O11, novel clusters of molybdenum and thallium. Angew. Chem. Int. Ed. Engl. 28, 758–760 (1989)

    Article  Google Scholar 

  107. Henkel, S., Klinkhammer, K.W., Schwarz, W.: Tetrakis(hypersilyl)-dithallium(Tl-Tl): A divalent thallium compound. Angew. Chem. Int. Ed. Engl. 33, 681–683 (1994)

    Article  Google Scholar 

  108. Wiberg, N., Amelunxen, K., Nöth, H., Schmidt, M., Schwenk, H.: Tetrasupersilyldiindium(In-In) and tetrasupersilyldithallium(Tl-Tl): (tBu3Si)2M-M(SitBu3)2 (M = In,Tl). Angew. Chem. Int. Ed. Engl. 35, 65–67 (1996)

    Article  CAS  Google Scholar 

  109. Wiberg, N., Blank, T., Amelunxen, K., et al.: Ditrielanes (R3Si)2E – E(SiR3)2 and heterocubanes (R3Si)4E4Y4 (R = tBu, Ph; E = Al, Ga, In, Tl; Y = O,S,Se). Eur. J. Inorg. Chem. 34, 341–350 (2002)

    Article  Google Scholar 

  110. Schumann, H., Janiak, C., Pickard, J., Börner, U.: Pentabenzylcyclopentadienylthallium(I): Synthesis and structure of a dimeric organothallium compound with Tl-Tl interactions. Angew. Chem. Int. Ed. Engl. 26, 789–790 (1987)

    Article  Google Scholar 

  111. Schumann, H., Janiak, C., Khani, H.: Cyclopentadienylthallium(I) compounds with bulky cyclopentadienyl ligands. J. Organomet. Chem.. 330, 347–355 (1987)

    Article  CAS  Google Scholar 

  112. Janiak, C., Hoffmann, R.: TlI – TlI interactions in the molecular state—an MO analysis. Angew. Chem. Int. Ed. Engl. 28, 1688–1690 (1989)

    Article  Google Scholar 

  113. Janiak, C., Hoffmann, R.: TlI – TlI and InI-InI interactions: From the molecular to the solid state. J. Am. Chem. Soc. 112, 5924–5946 (1990)

    Article  CAS  Google Scholar 

  114. Schwerdtfeger, P.: Metal-metal bonds in Tl(I)-Tl(I) compounds: Fact or fiction? Inorg. Chem. 30, 1660–1663 (1991)

    Article  CAS  Google Scholar 

  115. Wiberg, N., Blank, T., Lerner, H.W., et al.: R4 Tl3Cl and \({\mathrm{R}}_{6}^{{_\ast}}{\mathrm{Tl}}_{6}{\mathrm{Cl}}_{2}(\mathrm{R} ={ \mbox{ t-Bu}}_{3}\mathrm{Si})\)— the first compounds with larger clusters containing covalently linked thallium atoms. Angew. Chem. Int. Ed. Engl. 40, 1232–1235 (2001)

    Article  CAS  Google Scholar 

  116. Fernández, E.J., Laguna, A., López-de-Luzuriaga, J.M., et al.: Theoretical study of the aggregation of d10s2 Au(I)-Tl(I) complexes in extended un-supported chains. J. Mol. Struct. Theor. Chem. 851, 121–126 (2008)

    Article  CAS  Google Scholar 

  117. Liu, F.L., Zhao, Y.F., Li, X.Y., Hao, F.Y.: Ab Initio study of the struc-ture and stability of MnTln (M = Cu,Ag,Au; n = 1, 2) clusters. J. Mol. Struct. Theor. Chem. 809, 189–194 (2007)

    Article  CAS  Google Scholar 

  118. Karanović, L., Poleti, D., Balić-Žuni, T., et al.: Two new examples of very short thallium-transition metal contacts: Tl3Ag3Sb2S6 and Tl3Ag3A 2S6. J. Alloy. Compd. 457, 66–74 (2008)

    Article  CAS  Google Scholar 

  119. Kaupp, M., Schleyer, P.v.R.: Ab Initio study of structures and stabilities of substituted lead compounds. Why is inorganic lead chemistry dominated by PbII but organolead chemistry by PbIV? J. Am. Chem. Soc. 115, 1061–1073 (1993)

    Article  CAS  Google Scholar 

  120. Edwards, P.A., Corbett, J.D.: Stable homopolyatomic anions. Synthesis and crystal structures of salts containing the pentaplumbide(2-) and pentastannide(2-) anions. Inorg. Chem. 16, 903–907 (1977)

    Article  CAS  Google Scholar 

  121. Molina, L.M., López, M.J., Rubio, L.C., et al.: Pure and mixed Pb clusters of interest for liquid ionic alloys. In: J.R. Sabin, M.C. Zerner, E. Brändas, J.M. Seminario (eds.) Advances in Quantum Chemistry, vol. 33, pp. 329–348. Academic, San Diego, CA (1999)

    Google Scholar 

  122. Molina, L.M., Alonso, J.A., Stott, M.J.: Octet composition in alkali-Pb solid alloys. Phys. Rev. B 66, 165427–1–165427–8 (2002)

    Article  CAS  Google Scholar 

  123. Liu, S., Corbett, J.D.: Synthesis, structure and properties of four ternary compounds: CaSrTt,Tt =. Si,Ge,Sn,Pb. J. Solid. State. Chem. 179, 830–835 (2006)

    Article  CAS  Google Scholar 

  124. Schwerdtfeger, P., Silberfach, H., Miehlich, B.: Relativistic effects in molecules: Pseudopotential calculations for PbH+, PbH, PbH2, and PbH4. J. Chem. Phys. 90; 762–767 (1989)

    Article  CAS  Google Scholar 

  125. Wang, X., Andrews, L.: Infrared spectra of group 14 hydrides in solid hydrogen: Experimental observation of PbH4, Pb2H2 and Pb2H4. J. Am. Chem. Soc. 125, 6581–6587 (2003)

    Article  CAS  Google Scholar 

  126. Malli, G.L., Siegert, M., Turner, D.P.: Relativistic and electron cor-relation effects for molecules of heavy elements: Ab Initio relativistic coupled-cluster calculations for PbH4. Int. J. Quantum Chem. 99, 940–949 (2004)

    Article  CAS  Google Scholar 

  127. Wang, S.G., Schwartz, W.H.E.: Relativistic effects of p-Block molecules. J. Mol. Struct. (Theor Chem). 338, 347–362 (1995)

    Article  CAS  Google Scholar 

  128. Dos Santos, E.J., Herrmann, A.B., Frescura, V.L.A., et al.: Determination of lead in sediments and sewage sludge by on-line hydride generation axial-view inductively-coupled plasma optical-emission spectrometry using slurry sampling. Anal. Bioanal. Chem. 388, 863–868 (2007)

    Article  CAS  Google Scholar 

  129. Escalante, S., Vargas, R., Vela, A.: Structure and energetics of group 14 (IV-A) halides: A comparative density functional-pseudopotential study. J. Phys. Chem. A 103, 5590–5601 (1999)

    Article  CAS  Google Scholar 

  130. Seth, M., Faegri, K., Schwerdtfeger, P.: The stability of the oxidation state + 4 in group 14 compounds from carbon to element 114. Angew. Chem. Int. Ed. Engl. 37, 2493–2495 (1998)

    Article  CAS  Google Scholar 

  131. Giju, K.T., De Proft, F., Geerlings, P.: Comprehensive study of density functional theory based properties for group 14 atoms and functional groups –XY3 (X = C, Si, Ge, Sn, Pb, Element 114; Y = CH3, H, F, Cl, Br, I, At). J. Phys. Chem. A 109, 2925–2936 (2005)

    Article  CAS  Google Scholar 

  132. Salyulev, A.B., Vovkotrub, E.G., Strekalovskii, V.N.: The interaction of divalent lead compounds with chlorine. Russ. J. Inorg. Chem. 37, 109–110 (1992)

    Google Scholar 

  133. El-Issa, B.D., Pyykkö, P., Zanati, H.M.: MS Xα studies on the colors of BiPh5, PbCl6 2 −, and WS4 2 −: Are relativistic effects on the LUMO important? Inorg. Chem. 30, 2781–2787 (1991)

    Article  CAS  Google Scholar 

  134. Basinski, A., Lenarcik, B.: Investigation of the PbBr2 – Br2 – Br - H2O system. I. Solubility method. Rocz. Chem. 38, 1035–1044; Chem. Abstr. 62, 15487 (1964)

    Google Scholar 

  135. Lenarcik, B., Basinski, A.: Investigation of the PbBr2-Br2- Br - H2O system. III. Equilibria of complex formation between Pb\({}^{++}\) and Br, Br2 and Br, and among \({\mathrm{Pb}}^{++}\), Br and Br2. Rocz. Chem. 40, 165–176; Chem. Abstr. 65, 1460 (1965)

    Google Scholar 

  136. Stoltzfus, M.W., Woodward, P.M., Seshadri, R. et al.: Structure and bonding in SnWO4, PbWO4 and BiVO4: Lone pairs vs inert pairs. Inorg. Chem. 46, 3839–3850 (2007)

    Article  CAS  Google Scholar 

  137. Schwerdtfeger, P.: On the anomaly of the metal-carbon bond strength in (CH3)2M compounds of the heavy elements \(\mathrm{M} ={ \mathrm{Au}}^{-}\), Hg, Tl+, Pb2 +. Relativistic effects in metal-ligand force constants. J. Am. Chem. Soc. 112, 2818–2820 (1990)

    CAS  Google Scholar 

  138. (a) The Dictionary of Organometallic Compounds, 2nd edn, vol. 3, pp. 2851–2880. Chapman & Hall, London; (b) vol. 1, pp. 721–747 (1995)

    Google Scholar 

  139. Kano, N., Tokitoh, N., Okazaki, R.: Synthesis and X-ray crystal structure of Bis{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}dibromoplumbane. Organometallics 16, 2748–2750 (1997)

    Article  CAS  Google Scholar 

  140. Mallela, S.P., Myrczek, J., Bernal, I., Geanangel, R.A.: Crystal and molecular structure of pentaphenyl[tris(trimethylsilyl)methyl]diplumbane. J. Chem. Soc. Dalton. Trans. 2891–2894 (1993)

    Google Scholar 

  141. Stabenow, F., Saak, W., Marsmann, H., Weidenbruch, M.: Hexa-arylcyclotriplumbane: A molecule with a homonuclear ring system of lead. J. Am. Chem. Soc. 125, 10172–10173 (2003)

    Article  CAS  Google Scholar 

  142. Koch, R., Bruhn, T., Weidenbruch, M.: Theoretical group 14 chemistry. 4. Cyclotriplumbanes: Relativistic and substituent effects. J. Chem. Theor. Comput. 1, 1298–1303 (2005)

    Article  CAS  Google Scholar 

  143. Klinkhammer, K.W., Xiong, Y., Yao, S.: Molecular lead clusters-from unexpected discovery to rational synthesis. Angew. Chem. Int. Ed. Engl. 43, 6202–6204 (2004)

    Article  CAS  Google Scholar 

  144. Liu, H., Xing, X., Sun, S., et al.: Pbm-Phenyl (m = 1–5) complexes: An anion photoelectron spectroscopy and density functional study. J. Phys. Chem. A 110, 8688–8694 (2006)

    Article  CAS  Google Scholar 

  145. Tokitoh, N., Okazaki, R.: Recent topics in the chemistry of heavier congenors of carbenes. Coord. Chem. Rev. 210, 251–277 (2000)

    Article  CAS  Google Scholar 

  146. Spikes, G.H., Peng, Y., Fettinger, J.C., Power, P.P.: Synthesis and characterization of the monomeric sterically encumbered diaryls \(\mathrm{E}\left\{{\mathrm{C}}_{6}{\mathrm{H}}_{3}\_2, 6\mbox{ -}{({\mathrm{C}}_{6}{\mathrm{H}}_{3}{\_}2, 6\mbox{-}{\mathrm{Pr}}_{2}^{i})}_{2}\right\}_{2}\) (E = Ge, Sn, Pb). Z. Anorg. Allg. Chem. 632, 1005–1010 (2006)

    Article  CAS  Google Scholar 

  147. Jutzi, P., Burford, N.: Structurally diverse π-Cyclopentadienyl complexes of the main group elements. Chem. Rev. 99, 969–990 (1999)

    Article  CAS  Google Scholar 

  148. Watt, G.W., Moore, T.E.: Some reactions of trsodium monobismuthide in liquid ammonia. J. Am. Chem. Soc. 70, 1197–1200 (1948)

    Article  CAS  Google Scholar 

  149. Derrien, G., Tillard-Charbonnel, M., Manteghetti, A., et al.: Synthesis and crystal structure of M11X10 compounds, M = Sr, Ba and X = Sb, Bi. Electronic requirements and chemical bonding. J. Solid State Chem. 164, 169–175 (2002)

    CAS  Google Scholar 

  150. Eliav, E., Kaldor, U., Ishikawa, Y.: The relativistic coupled-cluster method: Transition energies of bismuth and Eka-Bismuth. Mol. Phys. 94, 181–187 (1998)

    Article  CAS  Google Scholar 

  151. Ruck, M.: From the metal to the molecule – ternary bismuth subhalides. Angew. Chem. Int. Ed. Engl. 40, 1182–1193 (2001)

    Article  CAS  Google Scholar 

  152. Bjerrum, N.J., Boston, C.R., Smith, G.P.: Lower oxidation states of bismuth. Bi+ and Bi5 3 + in molten salt solutions. Inorg. Chem. 6, 1162–1172 (1967)

    Article  CAS  Google Scholar 

  153. Kuznetsov, A.N., Popovkin, B.A., Henderson, W., et al.: Monocations of bismuth and indium in arene media: A spectroscopic and EXAFS investigation. J. Chem. Soc. Dalton. Trans. 1777–1781 (2000)

    Google Scholar 

  154. Friedman, R.M., Corbett, J.D.: Synthesis and structural characterization of bismuth(1 + ) nonabismuth(5 + ) hexachlorohafnate(IV), \({\mathrm{Bi}}^{+}\ {\mathrm{Bi}}_{9}^{5+}{({\mathrm{HfCl}{}_{6}}^{2-})}_{3}\). Inorg. Chem. 12, 1134–1139 (1973)

    Article  CAS  Google Scholar 

  155. Norman, N.C. (ed.).: Chemistry of Arsenic, Antimony and Bismuth, pp. 86–87. Blackie Academic & Professional, London (1998)

    Google Scholar 

  156. Huttner, G., Weber, U., Zsolnai, L.: B12, das Bismuth-Homolog des Stickstoffs, als Komplexligand in Bi2[W(CO)5]. Z. Naturforsch. B 37, 707–710 (1982)

    Google Scholar 

  157. Esterhuysen, C., Frenking, G.: Comparison of side-on and end-on coordination of E2 ligands in complexes [W(CO)5E2] (E = N, P, As, Sb, Bi, Si, Ge, Sn, Pb). Chem. Eur. J. 9, 3518–3529 (2003)

    Article  CAS  Google Scholar 

  158. Drake, G.W., Dixon, D.A., Sheehy, J.A., et al.: Seven-coordinated pnicogens. Synthesis and characterization of the SbF7 2 − and BiF7 2 − dianions and a theoretical study of the AsF7 2 − dianion. J. Am. Chem. Soc. 120, 8392–8400 (1998)

    Article  CAS  Google Scholar 

  159. Breidung, J., Thiel, W.: A systematic Ab Initio study of the group V trihalides MX3 and pentahalides MX5 (M = P-Bi, X = F-I). J. Comput. Chem. 13, 165–176 (1991)

    Article  Google Scholar 

  160. Kuznetsov, A.N., Kloo, L., Lindsjö, M., et al.: Ab Initio calculations on bismuth cluster polycations. Chem. J. Eur. 7, 2821–2828 (2001)

    Article  CAS  Google Scholar 

  161. Krossing, I.: Homoatomic cages and clusters of the heavier group 15 elements: Neutral species and cations. In: M. Driess, H. Nöth (eds.) Molecular Clusters of the Main Group Elements, pp. 209–229. Wiley, Weinheim, Germany (2004)

    Google Scholar 

  162. Smith, G.P., Davis, H.L.: Relationships between the chemistry and spectroscopy of bismuth and that anticipated for element 115. Inorg. Nucl. Chem. Lett. 9, 991–996 (1973)

    Article  CAS  Google Scholar 

  163. Yuan, H.K., Chen, H., Kuang, A.L., et al.: Density-functional study of small neutral and cationic bismuth clusters. J. Chem. Phys. 128, 094305/1–10 (2008)

    CAS  Google Scholar 

  164. Lein, M., Frunzke, J., Frenking, G.: A novel class of aromatic compounds: Metal-centered planar cations [Fe(Sb5)]+ and [Fe(Bi5)]+. Angew. Chem. Int. Ed. Engl. 42, 1303–1306 (2002)

    Article  Google Scholar 

  165. Beck, J., Dolg, M., Schlüter, S.: Bi4Te4 4 +– A cube-shaped polycationic main group element cluster. Angew. Chem. Int. Ed. Engl. 40, 2287–2289 (2001)

    Article  CAS  Google Scholar 

  166. Ferhat, M., Zaoui, A.: Structural and electrical properties of III-V bismuth compounds. Phys. Rev. B 73, 5107/1–7 (2006)

    Article  CAS  Google Scholar 

  167. Saidi-Houat, N., Zaoui, A., Ferhat, M.: Structural stability of thallium-V compounds. J. Phys.: Condens. Matter. 19, 106221/1–18 (2007)

    Article  CAS  Google Scholar 

  168. Duncan, J.F., Thomas, F.G.: β-decay of radioactive lead tetramethyl. J. Inorg. Nucl. Chem. 29, 869–890 (1967)

    Article  CAS  Google Scholar 

  169. Neumüller, B., Dehnicke, K.: Blue-violet pentamethylbismuth. Angew. Chem. Int. Ed. Engl. 33, 1726–1727 (1994)

    Article  Google Scholar 

  170. Seppelt, K.: Structure, color and chemistry of pentaarylbismuth compounds. In: F.G.A. Stone, R. West (eds.) Advances in Organometallic Chemistry, vol. 34, pp. 207–217. Academic Press, San Diego, CA (1992)

    Google Scholar 

  171. Wallenhauser, S., Leopold, D., Seppelt, K.: Hexacoordinate organobismuth compounds. Inorg. Chem. 32, 3948–3951 (1993)

    Article  Google Scholar 

  172. Ashe, A.J.: Thermochromic distibines and dibismuthines. In: F.G.A. Stone, R. West (eds.) Advances in Organometallic Chemistry, vol. 30, pp. 77–97. Academic, San Diego, CA (1990)

    Google Scholar 

  173. Bagnall, K.W.: Chemistry of the Rare Radioelements, pp. 3–94. Butterworths, London (1957)

    Google Scholar 

  174. Zingaro, R.A.: (a) Polonium: Inorganic chemistry, pp. 3338–3341; (b) Polonium: Organometallic chemistry, pp. 3341–3343. In: R.B. King (ed.) Encyclopedia of Inorganic Chemistry, vol. 6. Wiley, Chichester, UK (1994)

    Google Scholar 

  175. Legut, D., Friák, M., Šob, M.: Why is polonium simple cubic and so highly anisotropic? Phys. Rev. Lett. 99, 016402/1–4 (2007)

    Article  CAS  Google Scholar 

  176. Weinstock, B., Chernick, C.L.: The preparation of a volatile polonium fluoride. J. Am. Chem. Soc. 82, 4116–4117 (1960)

    Article  CAS  Google Scholar 

  177. Onoe, J.: Relativistic effects on covalent bonding: Role of individual valence atomic orbitals. J. Phys. Soc. Japan 66, 2328–2336 (1997)

    Article  CAS  Google Scholar 

  178. Abakumov, A.S., Malyshev, M.L.: Dissociation of polonium iodides and vapor pressure in the polonium-iodine system. Radiokhimiya 18, 894–901 (1976); Chem. Abstr. 86, 60689s (1977)

    CAS  Google Scholar 

  179. Abakumov, A.S., Malyshev, M.L.: Possibility of the pyrochemical removal of radiogenic lead from polonium by the use of volatile polonium iodides. Radiokhimiya (5), 776–778; Chem. Abstr. 94, 94988u (1980)

    Google Scholar 

  180. Bilewicz, A.: Adsorption of Zr4 +, Hf4 +, Rf4 + and Po4 + diketonate complexes on hydrophobized glass surface. J. Radioanal. Nucl. Chem. 247, 407–410 (2001)

    Article  CAS  Google Scholar 

  181. Suganuma, H.: Anion exchange of the chemical species of tracer concentrations of polonium(IV) in chloride solutions. J. Radioanal. Nucl. Chem. 191, 265–272 (1995)

    Article  CAS  Google Scholar 

  182. Ayala, R., Martinez, J.M., Pappalardo, R.R., et al.: Po(IV) hydration: A quantum chemical study. J. Phys. Chem. B 112, 5416–5422 (2008)

    Article  CAS  Google Scholar 

  183. Zikovsky, L.: Precipitation and solubility of some polonium compounds. J. Radioanal. Nucl. Chem. 227, 171–172 (1998)

    Article  CAS  Google Scholar 

  184. Chu, K.D., Hopke, P.K.: Neutralization kinetics for polonium-218. Environ. Sci. Technol. 22, 711–717 (1988)

    Article  CAS  Google Scholar 

  185. Eichler, B.: Volatility of polonium PSI-Bericht (02-12) a 1-52. Chem. Abstr. 137, 146192h (2002)

    Google Scholar 

  186. Dubillard, S., Rota, J.B., Saue, T., Faegri, K.: Bonding and analysis using localized relativistic orbitals: Water, the ultrarelativistic case and the heavy homologues H2X (X = Te, Po, eka-Po). J. Chem. Phys. 124, 154307/1–14 (2006)

    Article  CAS  Google Scholar 

  187. Sumathi, K., Balasubramanian, K.: Electronic states and potential energy surfaces of H2Te, H2Po and their positive ions. J. Chem. Phys. 92, 6604–6619 (1990)

    Article  CAS  Google Scholar 

  188. Petryanov, I.V., Borisov, N.B., Churkin, S.L., et al.: Generation and isolation of a gaseous fraction of polonium from its solid preparations. Dokl. Akad. Nauk. SSSR 322, 557–559; Chem. Abstr. 116, 160875f (1992)

    CAS  Google Scholar 

  189. Buongiorno, J., Larson, C., Czerwinski, K.R.: Speciation of polonium released from molten lead-bismuth. Radiochim. Acta. 91, 153–158 (2003)

    Article  CAS  Google Scholar 

  190. Witteman, W.G., Giorgi, A.L., Vier, D.T.: The preparation and identification of some intermetallic compounds of polonium. J. Am. Chem. Soc. 64, 434–440 (1960)

    CAS  Google Scholar 

  191. Miura, T., Obara, T., Sekimoto, H.: Experimental verification of thermal decomposition of lead polonide. Ann. Nucl. Energy 34, 926–930 (2007)

    Article  CAS  Google Scholar 

  192. Rabii, S., Lasseter, R.H.: Band structure of PbPo and trends in the Pb chalcogenides. Phys. Rev. Lett. 33, 703–705 (1974)

    Article  CAS  Google Scholar 

  193. Boukra, A., Zaoui, A., Ferhat, M.: Ground state structures in the polonium-based II-VI compounds. Solid State Commun.. 141, 523–528 (2007)

    Article  CAS  Google Scholar 

  194. Wiles, D.R.: The radiochemistry of organometallic compounds. In: F.G.A. Stone, R. West (eds.) Advances in Organometallic Chemistry, vol. 11, pp. 207–252. Academic, New York (1973)

    Google Scholar 

  195. Ohtsuki, T., Ohno, K.: Formation of Po@C60. Phys. Rev. B 72, 153411/1–3 (2005)

    Article  CAS  Google Scholar 

  196. Chi, M., Han, P., Fang, X., et al.: Density functional theory of polonium-doped endohedral fullerenes Po@C60. J. Mol. Struct. Theor. Chem. 807, 121–124 (2007)

    Article  CAS  Google Scholar 

  197. Thayer, J.S.: Biological methylation of less-studied elements. Appl. Organomet. Chem. 16; 677–691 (2002)

    Article  CAS  Google Scholar 

  198. Momoshima, N., Fukuda, A., Ishida, A., Yoshinaga, C.: Impact of microorganisms on polonium volatilization. J. Radioanal. Nucl. Chem. 272, 413–417 (2007)

    Article  CAS  Google Scholar 

  199. Aten, A.H.W.: The chemistry of astatine. In: H.J. Emeleus, A.G. Sharpe (eds.) Advances in Inorganic Chemistry, vol. 6, pp. 207–223. Academic, San Diego, CA (1964)

    Google Scholar 

  200. Brown, I.: Astatine: Its organonuclear chemistry and biomedical application. In: H.J. Emeleus, A.G. Sharpe (eds.) Advances in Inorganic Chemistry, vol. 31, pp. 43–88. Academic, San Diego, CA (1987)

    Google Scholar 

  201. Blower, P.J.: Inorganic pharmaceuticals: Astatine. Annu. Rep. Prog. Chem. Sect. A 96, 655 (2000)

    Article  Google Scholar 

  202. Schwerdtfeger, P.: Second-order Jahn-Teller distortions in group 17 fluorides EF3 (E = Cl, Br, I, At). Large relativistic bond angle changes in AtF3. J. Phys. Chem. 100, 2968–2973 (1996)

    Article  CAS  Google Scholar 

  203. Bae, C., Han, Y.K., Lee, Y.S.: Spin-orbit and relativistic effects on structures and stabilities of group 17 fluorides EF3 (E = I, At and Element 117): Relativity induced stability for the D 3h structure of (117)F3. J. Phys. Chem. A 107, 852–858 (2003)

    Article  CAS  Google Scholar 

  204. Pyykkö, P., Lohr, L.L.: Relativistically parameterized exrended Hückel calculations. 3. Structure and bonding for some compounds of uranium and other heavy elements. Inorg. Chem. 20, 1950–1959 (1981)

    Article  Google Scholar 

  205. Pruszyński, M., Bilewicz, A., Was, B., Petelenz, B.: Formation and stability of astatide-mercury complexes. J. Radioanal. Nucl. Chem. 268, 91–94 (2006)

    Article  CAS  Google Scholar 

  206. Pruszyński, M., Bilewicz, A., Zalutsky, M.R.: Preparation of Rh[16aneS4-diol]211At and Ir[16aneS4-diol]211At complexes as potential precursors for astatine radiopharmaceuticals. Part 1: Synthesis. Bioconjug. Chem. 19, 958–965 (2008)

    Article  CAS  Google Scholar 

  207. Roy, K., Lahiri, S.: Production and separation of astatine radionuclides: Some new addition to astatine chemistry. Appl. Radiat. Isot. 66, 571–576 (2008)

    Article  CAS  Google Scholar 

  208. Baran, E.J.: Vibrational properties for hydrogen astatide, HAt. Z. Naturforsch. A 59, 133–135 (2004)

    CAS  Google Scholar 

  209. Saue, T., Faegri, K., Gropen, O.: Relativistic effects on the bonding of heavy and superheavy hydrogen halides. Chem. Phys. Lett. 263, 360–366 (1996)

    Article  CAS  Google Scholar 

  210. Stewart, M., Rösler Bickelhaupt, F.M.: Proton affinities in water of maingroup-element hydrides—effects of hydration and methyl substitution. Eur. J. Inorg. Chem. 3646–3654 (2007)

    Google Scholar 

  211. Dolg, M., Küchle, W., Stoll, H., et al.: Ab Initio pseudopotentials for Hg to Rn II. Molecular calculations on the hydrides of Hg to At and the fluorides of Rn. Mol. Phys. 74, 1265–1285 (1991)

    CAS  Google Scholar 

  212. Vasilescu, I.J.: On the existence, structure and properties of radon compounds. Rev. Roum. Chim. 12, 835–838 (1967)

    CAS  Google Scholar 

  213. Holloway, J.H., Hope, E.G.: Recent advances in noble-gas chemistry. In: A.G. Sykes (ed.) Advances in Inorganic Chemistry, vol. 46, pp. 51–100. Academic, San Diego, CA (1999)

    Google Scholar 

  214. Malli, G.L.: Relativistic all-electron Dirac-Fock calculations on RnF6 and its ions. J. Mol. Struct (Theor Chem). 537, 71–77 (2001)

    Article  CAS  Google Scholar 

  215. Filatov, M., Cremer, D.: Bonding in radon hexafluoride: An unusual relativistic problem? Phys. Chem. Chem. Phys. 5, 1103–1105 (2003)

    Article  CAS  Google Scholar 

  216. Kaupp, M., van Wüllen, Ch., Franke, R., et al.: The structure of XeF6 and compounds isoelectronic with it. A challenge to computational chemistry and to the qualitative theory of the chemical bond. J. Am. Chem. Soc. 118, 11939–11950 (1996)

    CAS  Google Scholar 

  217. Stein, L., Hohorst, F.A.: Collection of radon with solid oxidizing reagents. Environ. Sci. Technol. 16, 419–422 (1982)

    Article  CAS  Google Scholar 

  218. Stein, L.: New evidence that radon is a metalloid element: Ion-exchange reactions of cationic radon. J. Chem. Soc., Chem. Commun. 1631–1632 (1985)

    Google Scholar 

  219. Buchachenko, A.A., Klos, J., Szczesniak, M.M., et al.: Interaction potentials for B-Rg (Rg = He-Rn): Spectroscopy and transport coefficients. J. Chem. Phys. 125, 064305/1–12 (2006)

    Article  CAS  Google Scholar 

  220. Malli, G.L.: Prediction of the existence of radon carbonyl: RnCO. Int. J. Quantum Chem. 90, 611–615.

    Google Scholar 

  221. Li, K., Xue, D.: Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 110, 11332–11337 (2006)

    Article  CAS  Google Scholar 

  222. Eliav, E., Vilkas, M.J., Ishikawa, Y., Kaldor, U.: Ionization potentials of alkali atoms: Towards meV accuracy. Chem. Phys. 311, 163–168 (2005)

    Article  CAS  Google Scholar 

  223. Landau, A., Eliav, E., Ishikawa, Y., Kaldor, U.: Benchmark calculations of electron affinities of the alkali atoms sodium to eka-Francium. J. Chem. Phys. 115, 2389–2392 (2001)

    Article  CAS  Google Scholar 

  224. Lupinetti, C., Thakkar, A.J.: Polarizabilities of the alkali anions Li to Fr. J. Chem. Phys. 125, 194317/1–7 (2006)

    Article  CAS  Google Scholar 

  225. Aymar, M., Dulieu, O., Spiegelman, F.: Electronic properties of francium diatomic compounds and prospects for cold molecule formation. J. Phys. B: At. Mol. Opt. 39, S905-S927 (2006)

    Article  CAS  Google Scholar 

  226. Lee, E.P.F., Wright, T.G.: Ground electronic states of RbO2 +, CsO2 + and FrO2: The ionization energies of RbO2 and CsO2. J. Phys. Chem. A 109, 3257–3261 (2005)

    Article  CAS  Google Scholar 

  227. Hickling, H.L., Viehland, L.A., Shepherd, D.T., et al.: Spectroscopy of M+ ∙ Rg and transport coefficients of M+ in Rg (M = Rb-Fr; Rg = He-Rn). Phys. Chem. Chem. Phys. 6, 4233–4239 (2004)

    Article  CAS  Google Scholar 

  228. Zielińska, B., Bilewicz, A.: Influence of relativistic effects on hydrolysis of Ra2 +. J. Radioanal. Nucl. Chem. 266, 339–341 (2005)

    Article  CAS  Google Scholar 

  229. Lee, E.P.F., Soldán, P., Wright, T.G.: The heaviest group 2 difluoride, RaF2: Geometry and ionization energy. Inorg. Chem. 40, 5979–5984 (2001)

    Article  CAS  Google Scholar 

  230. Lee, E.P.F., Wright, T.G.: The heaviest group 2 dihalide: RaAt2. Chem. Phys. Lett. 374, 176–182 (2003)

    Article  CAS  Google Scholar 

  231. Gumiński, C.: The Hg-Ra (Mercury-Radium) system. J. Phase. Equil. Diff. 26, 80 (2005)

    Google Scholar 

  232. Schädel, M. (ed.).: The Chemistry of the Superheavy Elements. Kluwer, Dordrecht (2003)

    Google Scholar 

  233. Pershina, V.: The chemistry of the superheavy elements and relativistic effects. In: P. Schwerdtfeger (ed.) Relativistic Electronic Structure, vol. 2, pp. 1–80. Elsevier, Amsterdam (2004)

    Google Scholar 

  234. Kemsley, J.: Extreme elements. Chem. Eng. News. (June ), 42–43 (2008)

    Google Scholar 

  235. Bonchev, D., Kamenska, V.: Predicting the properties of the 113–120 transactinide elements. J. Phys. Chem. 85, 1177–1186 (1981)

    Article  CAS  Google Scholar 

  236. Han, Y.K., Bae, C., Son, S.K., Lee, Y.S.: Spin-orbit effects on the transactinide p-Block element monohydrides MH (M = Element 113–118). J. Chem. Phys. 112, 2684–2691 (2000)

    Article  CAS  Google Scholar 

  237. David, J., Fuentealba, P., Restreppo, A.: Relativistic effects on the hexafluorides of group 10 metals. Chem. Phys. Lett. 457, 42–44 (2008)

    Article  CAS  Google Scholar 

  238. Patzschke, M., Pyykkö, P.: Darmstadtium carbonyl and carbide resemble platinum carbonyl and carbide. Chem. Commun. 1982–1983 (2004)

    Google Scholar 

  239. De Macedo, L.G.M., Sambrano, J.R., De Souza, A.R., Borin, A.C.: All electron fully relativistic Dirac-Fock calculation for darmstadtium carbide using prolapse free basis set. Chem. Phys. Lett. 440, 367–371 (2007)

    Article  CAS  Google Scholar 

  240. Ionova, G.V., Ionova, I.S., Mikhalko, V.K., et al.: Halides of tetravalent transactinides (Rg,Db,Sg,Bh,Hs,Mt, 110th Element): Physicochemical properties. Russ. J. Coord. Chem. 30, 352–359 (2004)

    Article  CAS  Google Scholar 

  241. Eliav, E., Kaldor, U., Schwerdtfeger, P., et al.: Ground state electron configuration of element 111. Phys. Rev. Lett. 73, 3203–3206 (1994)

    Article  CAS  Google Scholar 

  242. Hancock, R.D., Bartolotti, L.J., Kaltsoyannia, H.: Density functional theory-based prediction of some aqueous-phase chemistry of superheavy element 111. Roentgenium(I) is the “Softest” metal ion. Inorg. Chem. 45, 10780–10785 (2006)

    Article  CAS  Google Scholar 

  243. Seth, M., Schwerdtfeger, P., Dolg, M., et al.: Large relativistic effects in molecular properties of the hydride of superheavy element 111. Chem. Phys. Lett. 250, 461–465 (1996)

    Article  CAS  Google Scholar 

  244. Gaston, N., Opahle, I., Gäggeler, H.W., Schwerdtfeger, P.: Is Eka-Mercury (Element 112) a group 12 metal? Angew. Chem. Int. Ed. Engl. 46, 1663–1666 (2007)

    Article  CAS  Google Scholar 

  245. Guang, L.J., Zhong, D.C., Jun, Y.Y., et al.: The atomic structure and the properties of ununbium(Z = 112) and mercury(Z = 80). Sci. China G 50, 707–715 (2007)

    Article  CAS  Google Scholar 

  246. Eichler, R., Aksenov, N.V., Belozerov, A.V., et al.: Confirmation of the decay of 283112 and first indication for Hg-like behavior of element 112. Nucl. Phys. A 787, 373c-380c (2007)

    Article  CAS  Google Scholar 

  247. Eichler, R., Aksenov, N.V., Belozerov, A.V., et al.: Chemical characterization of element 112. Nature 447, 72–75 (2007)

    Article  CAS  Google Scholar 

  248. Eichler, R., Aksenov, N.V., Belozerov, A.V., et al.: Thermochemical and physical properties of element 112. Angew. Chem. Int. Ed. Engl. 47, 3262–3266 (2008)

    Article  CAS  Google Scholar 

  249. Pershina, V., Bastug, T., Jacob, T., et al.: Intermetallic compounds of the heaviest elements: The electronic structure and bonding of dimers of element 112 and its homolog Hg. Chem. Phys. Lett. 365, 176–183 (2002)

    Article  CAS  Google Scholar 

  250. Bae, C., Choi, Y.J., Lee, Y.S.: Two-component spin-orbit calculations for the heterodiatomic molecules TlAt and (113)(117) with relativistic effective core potentials. Chem. Phys. Lett. 375, 65–71 (2003)

    Article  CAS  Google Scholar 

  251. Eliav, E., Kaldor, U., Ishikawa, Y., et al.: Calculated energy levels of thallium and eka-thallium(Element 113). Phys. Rev. A 53, 3926–3933 (1996)

    Article  CAS  Google Scholar 

  252. Yu, Y.J., Dong, C.Z., Li, J.G., Fricke, B.: The excitation energies, ionization potentials and oscillator strengths of neutral and ionized species of Uuq (Z = 114) and the homolog elements Ge,Sn and Pb. J. Chem. Phys. 128, 124316/1–7 (2008)

    CAS  Google Scholar 

  253. Seth, M., Faegri, K., Schwerdtfeger, P.: The stability of the oxidation state + 4 in group 14 compounds from carbon to element 114. Angew. Chem. Int. Ed. Engl. 37, 2493–2496 (1998)

    Article  CAS  Google Scholar 

  254. Guseva, L.I.: A study of ion-exchange behavior of Pb in dilute HBr solutions, aimed to evaluate the possibility of on-line isolation of element 114. 228Ra – 212Pb generator. Radiochemistry 49, 92–96 (2007)

    Article  CAS  Google Scholar 

  255. Guseva, L.I.: A comparative study of ion-exchange behavior of Hf and Pb as homologs of elements 104(Rf) and 114, respectively, in solutions of hydrohalic acids. Relativistic Effects Radiochem. 50, 186–190 (2008)

    CAS  Google Scholar 

  256. Pershina, V., Anton, J., Fricke, B.: Intermetallic compounds on the heaviest elements and their homologs: The electronic structure and bonding of MM’, where M = Ge,Sn,Pb, and element 114 and M’ = Ni,Pd,Pt,Cu,Ag,Au,Sn,Pb and element 114. J. Chem. Phys. 127, 134310/1–9 (2007)

    Article  CAS  Google Scholar 

  257. Pershina, V., Borschevsky, A., Eliav, E., Kaldor, U.: Prediction of the adsorption behavior of elements 112 and 114 on inert surfaces from Ab Initio Dirac-Coulomb atomic calculations. J. Chem. Phys. 128, 024707/1–9 (2008)

    Article  CAS  Google Scholar 

  258. Giju, K.T., De Proft, F., Geerlings, P.: Comprehensive study of density functional theory based properties for group 14 atoms and functional groups, -XY3 (X = C, Si, Ge, Sn. Pb, Element 114; Y = CH3, H, F, Cl, Br, I, At). J. Phys. Chem. A 109, 2925–2936 (2005)

    Article  CAS  Google Scholar 

  259. Keller, O.L., Nestor, C.W., Fricke, B.: Predicted properties of the superheavy elements. III. Element 115, eka-bismuth. J. Phys. Chem. 78, 1945–1949 (1974)

    Article  CAS  Google Scholar 

  260. Van Wüllen, C., Langermann, N.: Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116. J. Chem. Phys. 126, 114106/1–9 (2007)

    Google Scholar 

  261. Nash, C.S., Crockett, W.W.: An anomalous bond angle in (116)H2. Theoretical evidence for supervalent hybridization. J. Phys. Chem. A 110, 4619–4621 (2006)

    CAS  Google Scholar 

  262. Takahashi, N.: Boiling points of the superheavy elements 117 and 118. J. Radioanal. Nucl. Chem. 251, 299–301 (2002)

    Article  CAS  Google Scholar 

  263. Faegri, K., Saue, T.: Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding. J. Chem. Phys. 115, 2456–2464 (2001)

    Article  CAS  Google Scholar 

  264. Nash, C.S., Bursten, B.E.: Spin-orbit effects on the electronic structure of heavy and superheavy hydrogen halides. J. Phys. Chem. A 103, 632–636 (1999)

    Article  CAS  Google Scholar 

  265. Mitin, A.V., van Wüllen, C.: Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using core potential and all-electron methods. J. Chem. Phys. 124, 064305/1–7 (2006)

    Article  CAS  Google Scholar 

  266. Eliav, E., Kaldor, U., Ishikawa, Y., Pyykkö, P.: Element 118: The first rare gas with an electron affinity. Phys. Rev. Lett. 77, 5350–5352 (1996)

    Article  CAS  Google Scholar 

  267. Nash, C.S., Bursten, B.E.: Spin-orbit effects, VSEPR theory and the electronic structures of heavy and superheavy group IVA hydrides and group VIIIA tetrafluorides. A partial role reversal for elements 114 and 118. J. Phys. Chem. A 103, 402–410 (1999)

    Article  CAS  Google Scholar 

  268. Han, Y.K., Lee, Y.S.: Structures of RgFn (Rg = Xe, Rn and Element 118. n = 2,4) calculated by two-component spin-orbit methods. A spin-orbit induced isomer of (118)F4. J. Phys. Chem. A 103, 1104–1108 (1999)

    Article  CAS  Google Scholar 

  269. Mişicu, Ş., Bürvenich, T., Cornelius, T., Greiner, W.: Collective ex-citations of the element Z = 120. Phys. Atom. Nucl. 66, 1552–1556 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Thayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Thayer, J.S. (2010). Relativistic Effects and the Chemistry of the Heavier Main Group Elements. In: Barysz, M., Ishikawa, Y. (eds) Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9975-5_2

Download citation

Publish with us

Policies and ethics