Skip to main content

Toxicity of Metallic Nanoparticles in Microorganisms- a Review

  • Chapter
Book cover Atmospheric and Biological Environmental Monitoring

Abstract

Recent advances in the synthesis and development of nanoparticles (NPs) for wide applications has lead to a serious threat to both human and environmental health. NPs are highly reactive and catalytic in nature compared to their ions or bulk counterparts and thus applicable in various fields including drug delivery, electronics, optics, and therapeutics. Due to these applications, many varieties of NPs in massive amounts are being industrially produced. These NPs are discharged in to the environment and thus providing a path to enter into food chain via microorganisms and eventually disturbs the ecological balance. The NPs exhibit toxicity to living organisms mainly because of their small size (>100 nm), large surface-to-volume ratio and highly reactive facets. The microorganisms including bacteria present in the natural ecosystem are the primary targets that get exposed to NPs. Before these NPs enter into the food chain, it is imperative to evaluate the toxicity associated with NPs in microorganisms. The most convenient and rapid way is to perform toxicity analysis using microorganisms such as bacteria. Toxicity of nanomaterials using microorganisms such as E.coli, Pseudomonas, Bacillus as models for prokaryotes gives an insight into the toxic impacts of NPs. Toxicities associated with NPs in microorganisms is mainly related to their nano-size that cause membrane disorganization, generation of reactive oxygen species (ROS) and in some ases, oxidative DNA damage. In this review article we describe the toxicity of various nanoparticles in bacteria and provide a rationale for assessing nanotoxicity and discuss the current status on toxicity impacts on microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams LK, Lyon DY and Alvarez PJ (2006a) Comparative eco-toxicity of nanoscale TiO2, SiO2 and ZiO2 Water suspensions. Water Res 40: 3527–3532

    Google Scholar 

  • Adams LK, Lyon DY, McIntosh A and Alvarez PJJ (2006b) Comparative toxicity of nano scale TiO2, SiO2 and Zno water suspensions. Water Sci Technol 54: 327–334

    Google Scholar 

  • Astruc D, Blais JC, Daniel MC, Gatard S, Nlate S and Ruiz J (2003) Metallodendrimers and dendronized gold colloids as nanocatalysts, nanosensors and nanomaterials for molecular electronics. C R Chim 6: 1117–1127

    Google Scholar 

  • Baker C, Pradhan A, Pakstis L, Pochan DJ and Ismat SS (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5: 244–249

    Article  Google Scholar 

  • Balkwill DL, Maratea D and Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141: 1399–1408

    Google Scholar 

  • Beveridge TJ, Hughes MN, Lee H, Leung KT, Poole RK, Savvaidis I, Silver S and Trevors JT (1997) Metal-microbe interactions: contemporary approaches. Adv Microb Physiol 38: 177–243

    Article  Google Scholar 

  • Beydoun D, Amal R, Low G and McEvoy S (1999) Role of nanoparticles in photocatalysis. J Nanoparticle Res 1: 439–458

    Article  Google Scholar 

  • Bielski BH, Arudi RL and Sutherland MW (1983) A study of the reactivity of HO2/O2- with unsaturated fatty acids. J Biol Chem 258: 4759–4761

    Google Scholar 

  • Borm PJ and Kreyling W (2004) Toxicological hazards of inhaled nanoparticles – potential implications for drug delivery. J Nanosci Nanotechnol 4: 521–531

    Article  Google Scholar 

  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D and Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3: 11

    Article  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF and Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6: 866–870

    Article  Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V and Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175: 191–199

    Article  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A and Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40: 4374–4381

    Article  Google Scholar 

  • Caminade AM and Majoral JP (2004) Nanomaterials based on phosphorus dendrimers. Acc Chem Res 37: 341–348

    Article  Google Scholar 

  • Chatellier X, Bottero JY and Le Petit J (2001) Adsorption of a cationic polyelectrolyte on Escherichia coli bacteria: 1. Adsorption of the polymer. Langmuir 17: 2782–2790

    Article  Google Scholar 

  • Chen WJ, Tsai PJ and Chen YC (2008) Functional Fe(3)O(4)/TiO(2) Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria. Small 4: 485–491

    Article  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21: 1166–1170

    Article  Google Scholar 

  • De Windt W, Boon N, Van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T and Verstraete W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie Van Leeuwenhoek 90: 377–389

    Article  Google Scholar 

  • Derfus AM, Chan WCW and Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4: 11–18

    Article  Google Scholar 

  • Fang J, Lyon DY, Wiesner MR, Dong J and Alvarez PJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41: 2636–2642

    Article  Google Scholar 

  • Fasim F, Ahmed N, Parsons R and Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213: 1–6

    Article  Google Scholar 

  • Fischer HC and Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18: 565–571

    Article  Google Scholar 

  • Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL and Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39: 4307–4316

    Article  Google Scholar 

  • Frankel RB (1987) Microbial metabolism-anaerobes pumping iron. Nature 330: 208–209

    Article  Google Scholar 

  • Fredrickson JK, Zachara JM, Kukkadapu RK, Gorby YA, Smith SC and Brown CF (2001) Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium. Environ Sci Technol 35: 703–712

    Article  Google Scholar 

  • Fu J, Ji J, Fan D and Shen J (2006) Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J Biomed Mater Res A 79: 665–674

    Google Scholar 

  • Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, Bols NC and Tang XS (2008) Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3: 347–351

    Article  Google Scholar 

  • Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS and Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22: 9322–9328

    Article  Google Scholar 

  • Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM and Barakat AI (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115: 403–409

    Article  Google Scholar 

  • Gorby YA, Beveridge TJ and Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170: 834–841

    Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC and Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO(2) to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71: 1308–1316

    Article  Google Scholar 

  • Hoffmann M, Martin S, Choi W and Bahnemann D (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95: 69–96

    Article  Google Scholar 

  • Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D and Hao B (2008) Toxicological EFFECT of ZnO nanoparticles based on bacteria. Langmuir 24: 4140–4144

    Article  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI and B. GM (2008) Analysis of the toxic mode of action by silver nano-particles using stress-specific bioluminescent bacteria. Small 4: 746–750

    Article  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57: 395–418

    Article  Google Scholar 

  • Jeng HA and Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41: 2699–2711

    Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y and Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39: 1378–1383

    Article  Google Scholar 

  • Joo SH, Feitz AJ and Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38: 2242–2247

    Article  Google Scholar 

  • Kai Y, Komazawa Y, Miyajima A, Miyata N and Yamakoshi Y (2003) [60]Fullerene as a novel photoinduced antibiotic. Fuller Nanotub Car N 11: 79–87

    Article  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD and Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23: 8670–8673

    Article  Google Scholar 

  • Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114: 1697–1702

    Google Scholar 

  • Ke PC and Qiao R (2007) Carbon nanomaterials in biological systems. J Phys Condens Matter 19 373101 (25 pp)

    Google Scholar 

  • Kohen R and Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30: 620–650

    Article  Google Scholar 

  • Lam CW, James JT, McCluskey R and Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77: 126–134

    Article  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA and Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40: 6304–6309

    Article  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J and Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111: 455–460

    Google Scholar 

  • Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D and Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39: 9370–9376

    Article  Google Scholar 

  • Lin Y, Taylor S, Li HP, Fernando KAS, Qu LW, Wang W, Gu LR, Zhou B and Sun YP (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14: 527–541

    Article  Google Scholar 

  • Liu S, Zhou J, Zhang CC, Cole DR, Gajdarziska M and Phelps TJ (1997) Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implication. Science 277: 1106–1109

    Article  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF and Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5: 916–924

    Article  Google Scholar 

  • Lovely DR, Stolz JF, Nord Jr. GL and Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Naure 330: 252–254

    Google Scholar 

  • Lovley DR (1995) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14: 85–93

    Article  Google Scholar 

  • Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL and Ke P (2004) RNA polymer translocation with single-walled carbon nanotubes. Nano Lett 4: 2473–2477

    Article  Google Scholar 

  • Lyon DY, Adams LK, Falkner JC and Alvarezt PJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40: 4360–4366

    Article  Google Scholar 

  • Lyon DY, Fortner JD, Sayes CM, Colvin VL and Hughe JB (2005) Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem 24: 2757–2762

    Article  Google Scholar 

  • Maenosono S, Suzuki T and Saita S (2007) Mutagenicity of water-soluble FePt nanoparticles in Ames test. J Toxicol Sci 32: 575–579

    Article  Google Scholar 

  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B and Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6: 1121–1125

    Article  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G and Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69: 485–492

    Article  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32: 967–976

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT and Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346–2353

    Article  Google Scholar 

  • Narayan RJ, Berry CJ and Brigmon RL (2005) Structural and biological properties of carbon nanotube composite films. Mat Sci Eng B-Solid 123: 123–129

    Article  Google Scholar 

  • Nel A, Xia T, Madler L and Li N (2006) Toxic potential of materials at the nanolevel. Science 311: 622–627

    Article  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27: 313–339

    Article  Google Scholar 

  • Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112: 1058–1062

    Google Scholar 

  • Oberdorster E, Zhu S, Blickley TM, McClellan-Green P and Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44: 1112–1120

    Article  Google Scholar 

  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D and Yang H (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2: 8

    Google Scholar 

  • Oberdorster G, Oberdorster E and Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823–839

    Google Scholar 

  • Oberdorster G, Stone V and Donaklson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1: 2–25

    Article  Google Scholar 

  • Pal S, Tak YK and Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73: 1712–1720

    Article  Google Scholar 

  • Partha R, Lackey M, Hirsch A, Casscells SW and Conyers JL (2007) Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures. J Nanobiotechnol 5: 6

    Article  Google Scholar 

  • Porter AE, Muller K, Skepper J, Midgley P and Welland M (2006) Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater 2: 409–419

    Article  Google Scholar 

  • Rasanen LA, Elvang AM, Jansson J and Lindstrom K (2001) Effect of heat stress on cell activity and cell morphology of the tropical rhizobium, Sinorhizobium arboris. FEMS Microbiol Ecol 34: 267–278

    Google Scholar 

  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C and Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90: 213902

    Article  Google Scholar 

  • Rengifo-Herrera JA, Sanabria J, Machuca F, Dierolf CF, Pulgarin C and Orellana G (2007) A comparison of solar photocatalytic inactivation of waterborne E. coli using tris(2,2′-bipyridine)ruthenium(II), Rose Bengal, and TiO2. J. Solar Energy Engg. 129: 135–140

    Article  Google Scholar 

  • Rikans LE and Hornbrook KR (1997) Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta 1362: 116–127

    Google Scholar 

  • Ritz M, Tholozan JL, Federighi M and Pilet MF (2001) Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Appl Environ Microbiol 67: 2240–2247

    Article  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP and Mukherji S (2007) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4: 707–716

    Article  Google Scholar 

  • SCENIHR (2006) The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Available at: http://ec.europa.eu/health/opinions2/en/nanotechnologies/ l-3/9-conclusion.htm

  • Seetharam RN and Sridhar KR (2007) Nanotoxicity: Threat posed by nanoparticles. Curr Scie 93: 769–770

    Google Scholar 

  • Sera N, Tokiwa H and Miyata N (1996) Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 17: 2163–2169

    Article  Google Scholar 

  • Silver S (1996) Bacterial resistance to toxic metal ions-a review. Gene 179: 9–19

    Article  Google Scholar 

  • Sondi I and Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275: 177–182

    Article  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL and Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18: 6679–6686

    Article  Google Scholar 

  • Subramanian V, Wolf EE and Kamat PV (2003) Influence of metal/metal ion concentration on the photocatalytic activity of TiO2-Au composite nanoparticles. Langmuir 19: 469–474

    Article  Google Scholar 

  • Tang YJ, Ashcroft JM, Chen D, Min G, Kim CH, Murkhejee B, Larabell C, Keasling JD and Chen FF (2007) Charge-associated effects of fullurene derivatives on microbial structural integrity and central metabolism. Nano Lett 7: 754–760

    Article  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M and Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40: 6151–6156

    Google Scholar 

  • Tsuang YH, Sun JS, Huang YC, Lu CH, Chang WH and Wang CC (2008) Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs 32: 167–174

    Article  Google Scholar 

  • Veeranagouda Y, Karegoudar TB, Neumann G and Heipieper HJ (2006) Enterobacter sp. VKGH12 growing with n-butanol as the sole carbon source and cells to which the alcohol is added as pure toxin show considerable differences in their adaptive responses. FEMS Microbiol Lett 254: 48–54

    Google Scholar 

  • Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA and Narayan RJ (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7: 1284–1297

    Article  Google Scholar 

  • Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T and Nagano T (2003) Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2. J Am Chem Soc 125: 12803–12809

    Article  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M and York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9: 479–489

    Article  Google Scholar 

  • Zhu S, Oberdorster E and Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62 Suppl: S5–S9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Bock Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Niazi, J.H., Gu, M.B. (2009). Toxicity of Metallic Nanoparticles in Microorganisms- a Review. In: Kim, Y.J., Platt, U., Gu, M.B., Iwahashi, H. (eds) Atmospheric and Biological Environmental Monitoring. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9674-7_12

Download citation

Publish with us

Policies and ethics